CN105806867B - Analysis method for quantitatively evaluating alloy element segregation in high-temperature alloy - Google Patents
Analysis method for quantitatively evaluating alloy element segregation in high-temperature alloy Download PDFInfo
- Publication number
- CN105806867B CN105806867B CN201610351779.0A CN201610351779A CN105806867B CN 105806867 B CN105806867 B CN 105806867B CN 201610351779 A CN201610351779 A CN 201610351779A CN 105806867 B CN105806867 B CN 105806867B
- Authority
- CN
- China
- Prior art keywords
- segregation
- analysis
- grain
- analysis method
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 25
- 238000005204 segregation Methods 0.000 title claims abstract description 25
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 24
- 238000004458 analytical method Methods 0.000 title claims description 20
- 239000000523 sample Substances 0.000 claims abstract description 36
- 238000009826 distribution Methods 0.000 claims abstract description 21
- 238000001228 spectrum Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000005211 surface analysis Methods 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 5
- 238000002474 experimental method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 3
- 238000001556 precipitation Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 229910000601 superalloy Inorganic materials 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 abstract description 2
- 238000011158 quantitative evaluation Methods 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000010183 spectrum analysis Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001063 inconels 617 Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种定量评价高温合金中合金元素偏析的方法,利用能谱仪确定晶界析出相的主要成分,结合电子探针波谱面扫描功能区分出晶界与晶内对应元素的分布,提取元素面分布图的数据,对数据进行分析,计算出晶界、晶内的元素浓度分配系数,作出关系曲线图,最终实现对高温合金中合金元素偏析的定量评价。本发明可实现高温合金中晶界与晶内不同位置合金元素分布的定量区分,无需使用大量的标准样品,适用范围广、评价方式合理。
The invention discloses a method for quantitatively evaluating the segregation of alloy elements in superalloys. The energy spectrometer is used to determine the main components of precipitated phases in grain boundaries, and the distribution of corresponding elements in grain boundaries and in grains is distinguished by combining the electronic probe spectrum surface scanning function. Extract the data of the element surface distribution diagram, analyze the data, calculate the distribution coefficient of the element concentration in the grain boundary and in the grain, and make a relationship curve, and finally realize the quantitative evaluation of the segregation of alloy elements in the superalloy. The invention can realize the quantitative distinction of the distribution of alloy elements at different positions in the grain boundary and in the grain in the superalloy, without using a large number of standard samples, and has a wide application range and a reasonable evaluation method.
Description
技术领域technical field
本发明属于高温合金材料成分分析技术领域,涉及一种定量评价高温合金中合金元素偏析的分析方法。The invention belongs to the technical field of component analysis of high-temperature alloy materials, and relates to an analysis method for quantitatively evaluating the segregation of alloy elements in high-temperature alloys.
背景技术Background technique
为了提高合金高温强度、耐蚀性能以及组织稳定性,高温合金的研究趋于合金元素种类的多样化以及数量的增大化。不同的合金元素,起着不同的作用,如固溶强化、第二相强化以及晶界强化等等。各种相的数量、组成、大小、分布状况和合金元素在晶界的分配情况与高温合金的力学性能及耐蚀性能有很大的关系,所以研究合金元素在高温合金中的偏析规律,预测偏析状态,对于高温合金生产的工艺优化有很大的意义。In order to improve the high-temperature strength, corrosion resistance and structural stability of alloys, the research on superalloys tends to diversify the types and increase the number of alloying elements. Different alloying elements play different roles, such as solid solution strengthening, second phase strengthening and grain boundary strengthening and so on. The quantity, composition, size, distribution of various phases and the distribution of alloying elements at grain boundaries have a great relationship with the mechanical properties and corrosion resistance of superalloys. Therefore, the segregation law of alloying elements in superalloys is studied and predicted The state of segregation is of great significance for the process optimization of superalloy production.
高温合金元素偏析的传统分析方法中元素偏析行为主要用析出相来间接表征,通过扫描电镜、X射线衍射仪、透射电镜、能谱仪等对析出相的形貌、物相、成分进行分析,以此来间接评价元素偏析行为。In the traditional analysis method of superalloy element segregation, the element segregation behavior is mainly characterized indirectly by the precipitated phase, and the morphology, phase and composition of the precipitated phase are analyzed by scanning electron microscope, X-ray diffractometer, transmission electron microscope, energy spectrometer, etc. In this way, the element segregation behavior can be evaluated indirectly.
缪乐德等在《冶金分析》第35卷第1期公开的《不同热处理状态下镍基耐蚀合金析出相的定性定量分析》中主要是利用化学法电解出析出相,并得到其成分的定量结果。但是该法仅能得到析出相的成分,不能显示出各元素在样品中的分布位置。郭岩等在《中国电力》第45卷第1期公开的《INCONEL617合金的高温时效析出相》中主要是利用透射电镜和扫描电镜对析出相进行了研究,同样无法得出各元素在不同位置的偏析情况。In the "Qualitative and Quantitative Analysis of Precipitated Phases of Nickel-based Corrosion-resistant Alloys under Different Heat Treatment States" published in "Metallurgical Analysis" Vol. Quantitative results. However, this method can only obtain the composition of the precipitated phase, and cannot show the distribution position of each element in the sample. In the "High Temperature Aging Precipitated Phases of INCONEL617 Alloy" published in Volume 45, Issue 1 of "China Electric Power", Guo Yan et al. mainly used transmission electron microscope and scanning electron microscope to study the precipitated phases. of segregation.
从上述文献专利中看出,现有的分析偏析技术存在需要标样,且对元素含量有限制,结果不直观;各元素在样品中的分布不明确等缺陷。It can be seen from the above-mentioned literature and patents that the existing analytical segregation technology has defects such as the need for standard samples and restrictions on element content, the results are not intuitive, and the distribution of each element in the sample is not clear.
发明内容Contents of the invention
针对现有技术存在的不足,本发明的目的在于提供一种定量评价高温合金中合金元素偏析的分析方法,通过电子探针波谱仪对样品进行元素面分析,取多个面分析的平均结果,计算晶界与晶内元素的平均浓度分配系数,定量评价偏析规律。In view of the deficiencies in the prior art, the object of the present invention is to provide a method for quantitatively evaluating the segregation of alloy elements in superalloys. An electronic probe spectrometer is used to analyze the element surface of the sample, and the average result of multiple surface analysis is taken. Calculate the average concentration distribution coefficient of grain boundary and intragranular elements, and quantitatively evaluate the segregation law.
为实现上述发明目的,本发明采用了如下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention has adopted following technical scheme:
一种定量评价高温合金中合金元素偏析的分析方法,工艺步骤包括:An analytical method for quantitatively evaluating alloy element segregation in superalloys, the process steps comprising:
1)试样经过热镶嵌、磨抛、腐蚀后,制备出待分析面的复型样品,对复型后得到的析出相进行能谱成分分析,根据分析结果确定电子探针分析时需选择的元素;1) After the sample is hot-mounted, ground and polished, and corroded, a replica sample of the surface to be analyzed is prepared, and the precipitated phase obtained after the replica is analyzed by energy spectrum composition, and the electron probe to be selected is determined according to the analysis results. element;
2)对抛光后的试样进行电子探针波谱面分析实验,分别提取实验结果中晶界与晶内的各元素的成分数据,计算出晶界与晶内的元素的浓度分配系数,作出浓度分配系数的变化曲线,定量评价合金元素的偏析规律。2) Carry out the electron probe spectrum surface analysis experiment on the polished sample, extract the composition data of each element in the grain boundary and in the grain respectively in the experimental results, calculate the concentration distribution coefficient of the element in the grain boundary and in the grain, and calculate the concentration The change curve of the distribution coefficient can be used to quantitatively evaluate the segregation law of alloying elements.
优选的,所述的定量评价高温合金中合金元素偏析的分析方法中,电子探针波谱面分析区域与复型区域要相对应。Preferably, in the analysis method for quantitatively evaluating the segregation of alloy elements in superalloys, the electron probe spectral surface analysis area should correspond to the replica area.
优选的,所述的定量评价高温合金中合金元素偏析的分析方法中,进行电子探针波谱面分析试验时,步径选择0.05μm。Preferably, in the analysis method for quantitatively evaluating the segregation of alloy elements in superalloys, the step diameter is selected to be 0.05 μm when conducting the electron probe spectrum analysis test.
优选的,所述的定量评价高温合金中合金元素偏析的分析方法中,各元素的浓度分配系数为多个区域面分析数据的平均结果。Preferably, in the analysis method for quantitatively evaluating the segregation of alloy elements in superalloys, the concentration distribution coefficient of each element is the average result of analysis data of multiple regions.
与现有技术比较,本发明至少具有如下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
1.该方法通过对电子探针波谱面分析数据的处理,引出浓度分配系数,即可实现高温合金中晶界与晶内不同位置元素分布的定量区分,无需使用大量的标准样品。1. By processing the electron probe spectral surface analysis data and extracting the concentration distribution coefficient, this method can realize the quantitative distinction of the grain boundary and the distribution of elements in different positions in the superalloy without using a large number of standard samples.
2.本发明提出的浓度分配系数,可通过比较来显示偏析规律,适用范围广、评价方式合理。2. The concentration distribution coefficient proposed by the present invention can show the segregation law through comparison, and has a wide application range and a reasonable evaluation method.
附图说明Description of drawings
图1为实施例中电子探针观察样品表面的二次电子像;Fig. 1 is the secondary electron image that electron probe observes sample surface in the embodiment;
图2为实施例中电子探针的波谱面扫描结果图;Fig. 2 is the spectrum surface scanning result figure of electronic probe in the embodiment;
图3为实施例中四种主要元素的浓度分配系数与热处理时间的关系曲线图。Fig. 3 is a curve diagram of the relationship between the concentration distribution coefficient of the four main elements and the heat treatment time in the embodiment.
具体实施方式Detailed ways
下面结合实施例进一步说明本发明。Below in conjunction with embodiment further illustrate the present invention.
1)将825合金试样进行热镶嵌,利用磨抛机进行180#、800#砂纸粗磨,1200#、1500#砂纸细磨,然后经过5μm、1μm金刚石抛光剂,抛光至无明显划痕后,迅速在无水乙醇中洗净,并用电吹风吹干;1) Thermally mount the 825 alloy sample, use a polishing machine to perform rough grinding with 180#, 800# sandpaper, fine grinding with 1200#, 1500# sandpaper, and then pass through 5μm, 1μm diamond polishing agent, and polish until there is no obvious scratch , quickly washed in absolute ethanol, and dried with a hair dryer;
2)将硫酸铜、盐酸、蒸馏水按照mCuSO4:VHCl:VH2O=1:5:5的比例配制腐蚀液,将样品浸泡在溶液中,抛光面面向容器侧壁,观察样品表面状态,2.5分钟后取出样品,迅速在无水乙醇中洗净,并用电吹风吹干,并在扫描电镜观察析出相的分布,如图1所示,白色颗粒为析出相;2) Copper sulfate, hydrochloric acid, distilled water are prepared corrosion solution according to the ratio of m CuSO4 :V HCl :V H2O =1:5:5, the sample is immersed in the solution, the polished surface faces the side wall of the container, and the surface state of the sample is observed, 2.5 After 10 minutes, take out the sample, wash it quickly in absolute ethanol, and dry it with a hair dryer, and observe the distribution of the precipitated phase under a scanning electron microscope, as shown in Figure 1, the white particles are the precipitated phase;
3)利用高真空喷碳仪在样品表面溅射碳膜,在上述腐蚀液中脱膜,置于蒸馏水中反复清洗碳膜,最后将碳膜烘干;3) Use a high-vacuum carbon sprayer to sputter a carbon film on the surface of the sample, remove the film in the above-mentioned corrosive solution, place the carbon film in distilled water to clean it repeatedly, and finally dry the carbon film;
4)将复型样品置于扫描电镜中,利用能谱仪分析析出相的成分,确定电子探针所需分析的合金元素;4) Place the replica sample in a scanning electron microscope, use an energy spectrometer to analyze the composition of the precipitated phase, and determine the alloy elements to be analyzed by the electronic probe;
5)样品再次用5μm、1μm金刚石抛光剂进行抛光处理,直至表面的腐蚀痕迹消失。通过电子探针对重新抛光后的试样进行表面观察,对试样表面进行波谱面分析,如图2所示,电子探针波谱面分析区域与复型区域要相对应;5) The sample is polished again with 5 μm and 1 μm diamond polishing agents until the corrosion traces on the surface disappear. Observe the surface of the re-polished sample with an electronic probe, and perform spectral analysis on the surface of the sample. As shown in Figure 2, the electronic probe spectral analysis area should correspond to the replica area;
6)电子探针数据采集时,设置的参数如下:加速电压为15kV,电流为100nA,分析步径为0.05μm,提取晶界与晶内的合金元素的成分数据测试多个晶粒,求平均值;6) When collecting electronic probe data, set the parameters as follows: the acceleration voltage is 15kV, the current is 100nA, the analysis step is 0.05μm, and the composition data of the alloy elements in the grain boundary and the grain are extracted to test multiple grains and calculate the average value;
分析结果处理如下:The analysis results are processed as follows:
分别提取多个区域的晶界与晶内的数据,取其平均值,计算出晶界与晶内的元素的浓度分配系数K,并作出与热处理时间的关系曲线图,如图3所示:The data of grain boundaries and grains in multiple regions were respectively extracted, and the average value was taken to calculate the concentration distribution coefficient K of elements in grain boundaries and grains, and the relationship curve with heat treatment time was drawn, as shown in Figure 3:
K=晶界平均计数(元素)/晶内平均计数(元素)K = grain boundary average count (element) / grain average count (element)
根据曲线图即可定量的评价随着热处理温度的变化,所选的825合金试样中合金元素在晶界与晶内的偏析规律:元素Cr、Mo随着热处理温度的增加先向晶界迁移再向晶内移动,而元素Fe、Ni正好相反,随着热处理温度的增加先向晶内迁移再向晶界移动。According to the graph, we can quantitatively evaluate the segregation law of alloy elements in the grain boundary and in the grain of the selected 825 alloy sample with the change of heat treatment temperature: elements Cr and Mo migrate to the grain boundary first with the increase of heat treatment temperature Then it moves into the grain, while the elements Fe and Ni are just the opposite. With the increase of heat treatment temperature, they first migrate into the grain and then move to the grain boundary.
以上所述实施例仅表达了本发明的具体实施方式,但并不能因此理解为对本发明专利范围的限制。本领域的技术人员在本发明构思的启示下对本发明所做的任何变动均落在本发明的保护范围内。The above-mentioned embodiments only represent specific implementation methods of the present invention, but should not be construed as limiting the patent scope of the present invention. Any changes made by those skilled in the art to the present invention under the inspiration of the present invention fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610351779.0A CN105806867B (en) | 2016-05-25 | 2016-05-25 | Analysis method for quantitatively evaluating alloy element segregation in high-temperature alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610351779.0A CN105806867B (en) | 2016-05-25 | 2016-05-25 | Analysis method for quantitatively evaluating alloy element segregation in high-temperature alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105806867A CN105806867A (en) | 2016-07-27 |
CN105806867B true CN105806867B (en) | 2018-11-06 |
Family
ID=56452954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610351779.0A Active CN105806867B (en) | 2016-05-25 | 2016-05-25 | Analysis method for quantitatively evaluating alloy element segregation in high-temperature alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105806867B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106596615A (en) * | 2016-12-25 | 2017-04-26 | 首钢总公司 | Quantitative analysis method for continuous casting billet dendritic segregation |
CN110470687A (en) * | 2019-07-22 | 2019-11-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Properties of Heavy Rail Steel microsegregation quickly positions evaluation method |
CN111060544A (en) * | 2019-12-10 | 2020-04-24 | 中国科学院金属研究所 | A kind of electron probe sample preparation method of Ti-Al alloy powder and detection method of microsegregation |
CN113777115A (en) * | 2021-09-10 | 2021-12-10 | 西安热工研究院有限公司 | Quantitative statistical method for precipitated phase in alloy |
CN114137010B (en) * | 2021-11-05 | 2024-02-13 | 上海交通大学 | A method for measuring the distribution state of trace elements in high-temperature alloys |
CN114252466B (en) * | 2021-12-16 | 2024-01-12 | 昆山晶微新材料研究院有限公司 | Quantitative analysis method and comparison method for intra-crystal solid solubility of alloy |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101900698A (en) * | 2010-07-08 | 2010-12-01 | 东方锅炉(集团)股份有限公司 | A method for measuring Delta ferrite phase content in high Cr heat-resistant steel |
CN102495088A (en) * | 2011-12-07 | 2012-06-13 | 江苏省沙钢钢铁研究院有限公司 | Method for quantifying line/surface analysis result of electronic probe |
CN103308725A (en) * | 2013-06-04 | 2013-09-18 | 首钢总公司 | Method of analyzing dendritic segregation in low-carbon high-manganese steel continuously-cast billets |
CN103411990A (en) * | 2013-08-23 | 2013-11-27 | 武汉钢铁(集团)公司 | Detection method for precipitated phases of nitride and oxide in steel-iron material |
CN103454294A (en) * | 2013-08-16 | 2013-12-18 | 江苏省沙钢钢铁研究院有限公司 | Method for quantitatively evaluating structures of various phases in hot-rolled TRIP steel |
CN103454300A (en) * | 2013-09-06 | 2013-12-18 | 鞍钢股份有限公司 | Electronic probe line analysis quantitative detection method for ultra-light element carbon |
CN105445306A (en) * | 2015-11-16 | 2016-03-30 | 南京钢铁股份有限公司 | Method for evaluating element segregation degree in steel |
CN105466961A (en) * | 2015-12-26 | 2016-04-06 | 首钢总公司 | Method for evaluating microsegregation of alloy elements of continuous casting billet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5320791B2 (en) * | 2008-03-28 | 2013-10-23 | Jfeスチール株式会社 | Center segregation evaluation method |
-
2016
- 2016-05-25 CN CN201610351779.0A patent/CN105806867B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101900698A (en) * | 2010-07-08 | 2010-12-01 | 东方锅炉(集团)股份有限公司 | A method for measuring Delta ferrite phase content in high Cr heat-resistant steel |
CN102495088A (en) * | 2011-12-07 | 2012-06-13 | 江苏省沙钢钢铁研究院有限公司 | Method for quantifying line/surface analysis result of electronic probe |
CN103308725A (en) * | 2013-06-04 | 2013-09-18 | 首钢总公司 | Method of analyzing dendritic segregation in low-carbon high-manganese steel continuously-cast billets |
CN103454294A (en) * | 2013-08-16 | 2013-12-18 | 江苏省沙钢钢铁研究院有限公司 | Method for quantitatively evaluating structures of various phases in hot-rolled TRIP steel |
CN103411990A (en) * | 2013-08-23 | 2013-11-27 | 武汉钢铁(集团)公司 | Detection method for precipitated phases of nitride and oxide in steel-iron material |
CN103454300A (en) * | 2013-09-06 | 2013-12-18 | 鞍钢股份有限公司 | Electronic probe line analysis quantitative detection method for ultra-light element carbon |
CN105445306A (en) * | 2015-11-16 | 2016-03-30 | 南京钢铁股份有限公司 | Method for evaluating element segregation degree in steel |
CN105466961A (en) * | 2015-12-26 | 2016-04-06 | 首钢总公司 | Method for evaluating microsegregation of alloy elements of continuous casting billet |
Non-Patent Citations (6)
Title |
---|
82B线材元素中心偏析定性定量分析方法研究;许竹桃 等;《金属制品》;20111231;第37卷(第6期);第73-76页 * |
INCONEL617合金的高温时效析出相;郭岩 等;《中国电力》;20120131;第45卷(第1期);第33-36页 * |
Precipitation of Austenite Particles at Grain Boundaries during Aging of Fe-Mn-Ni Steel;Seung-Ho Mun et al.;《Metallurgical and Materials Transactions A》;20020430;第33卷(第4期);第1057-1067页 * |
The Segregating Behavior of Alloying Elements Based on the Divorced Coincident Segregation in 5% Ni Steels by the Application of FE-TEM;Hidesato Mabuchi et al.;《ISIJ International》;19981231;第38卷(第2期);第203-211页 * |
不同热处理状态下镍基耐蚀合金析出相的定性定量分析;缪乐德 等;《冶金分析》;20151231;第35卷(第1期);第6-12页 * |
电子探针分析方法及在材料研究领域的应用;吴园园 等;《电子显微学报》;20101231;第29卷(第6期);第574-577页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105806867A (en) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105806867B (en) | Analysis method for quantitatively evaluating alloy element segregation in high-temperature alloy | |
TWI403714B (en) | Determination of Particle Size Distribution of Microparticles in Metallic Materials | |
CN102692425A (en) | T/P91 steel ageing rating method based on precipitated phase fractional area | |
CN105424574A (en) | Quantitative characterization method for foam aluminum alloy porosity and dispersity | |
Liu et al. | Different microgalvanic corrosion behavior of cast and extruded EW75 Mg alloys | |
CN103868780B (en) | The preparation method of the colour metallograpy sample of Al-Mg system and Al-Mg-Si-type aluminum alloy | |
CN104562012A (en) | Iron-base high-temperature alloy sample metallographic etching solution and etching method | |
CN104777046A (en) | Fatigue crack propagation mechanism testing method based on small time scale | |
CN104634800A (en) | Quantitative determination method for thickness of transition layer of titanium-steel composite plate | |
CN107478668A (en) | A kind of preparation method of heterogeneous alloy EBSD analyses test sample | |
CN108132268B (en) | A method for detecting the three-dimensional morphology of Al3Zr precipitates in aluminum alloys | |
CN104655465A (en) | Preparation method of metallographic specimen of silicon steel oxidized scale | |
CN106198320B (en) | A Method for Determination of Microphase in High Titanium Type Blast Furnace Slag | |
CN103743614A (en) | Metallographic polishing etchant and processing method for high-alloy heat-resistant steel | |
CN103760001A (en) | Heat-resisting steel metallographic polishing etching agent and processing method thereof | |
CN110455846A (en) | A method for displaying microstructure of fine powder section | |
CN108240934A (en) | Vanadium-iron alloy sample and its preparation method and vanadium-iron metallographic corrosion agent | |
CN111289542B (en) | A Quantitative Statistical Characterization of Second Phase Particles in Materials | |
CN102854137B (en) | In-situ metallographic structure analysis method | |
CN108572187A (en) | A semi-quantitative method for grain boundary segregation of elements based on scanning electron microscopy | |
CN103940642B (en) | Nd Fe B magnetic material quantitative analysis standard samples and XRF analysis method | |
CN105203370B (en) | A kind of developer and display methods of nickelic magnetically soft alloy metallographic structure pattern | |
CN105717118A (en) | Method for determining nickel-based single crystal high-temperature alloy residual segregation | |
CN105445185A (en) | A method of accurately measuring distribution uniformity of a second phase with segregation in a material | |
CN107389711A (en) | The detection of WC grain grain boundary fracture and transgranular fracture and characterizing method in WC Co alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |