CN105779966B - 一种低表面粗糙度纳米金刚石膜的制备方法 - Google Patents
一种低表面粗糙度纳米金刚石膜的制备方法 Download PDFInfo
- Publication number
- CN105779966B CN105779966B CN201610191161.2A CN201610191161A CN105779966B CN 105779966 B CN105779966 B CN 105779966B CN 201610191161 A CN201610191161 A CN 201610191161A CN 105779966 B CN105779966 B CN 105779966B
- Authority
- CN
- China
- Prior art keywords
- nano
- diamond
- substrate
- film
- acetone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
- C23C16/272—Diamond only using DC, AC or RF discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
- C23C16/0281—Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
一种低表面粗糙度纳米金刚石膜的制备方法,步骤如下:将抛光Si片超声清洗以除去杂质和污染物;采用射频磁控溅射法在Si衬底上沉积多晶Ti膜;采用丙酮、二甲基亚砜和纳米金刚石粉的悬浊液对衬底进行超声预处理;在沉积有纳米金刚石粉的Ti/Si基片上采用直流喷射CVD法制备纳米金刚石膜。本发明的优点是:该方法在衬底上制备的Ti过渡层,使金刚石粉分散的更均匀,使纳米金刚石成核更均匀,提高纳米金刚石膜的成核密度,降低纳米金刚石的表面粗糙度;采用悬浊液对衬底进行超声预处理,克服了以往纳米金刚石粉在酒精或丙酮中易沉淀,超声不均匀的现象;该制备方法工艺简单、成本低,有利于大规模的推广,具有重大的生产实践意义。
Description
技术领域
本发明属于薄膜电子材料领域,尤其是涉及一种低表面粗糙度金刚石膜的制备方法。
背景介绍
在所有材料中,金刚石具有最高的硬度和热导率,且耐酸碱、化学稳定性好,是一种非常重要的工程材料。天然金刚石含量非常少,价格昂贵,无法满足社会生产的需求。化学气相法(CVD法)制备的金刚石膜具有与天然金刚石相比拟的物理化学性能,且成本低,因此得到了广泛应用。CVD法制备的金刚石膜通常是微米级的,如果要将其用于微电子、微机电系统(MEMS)、声表面波器件等行业,由于其具有较大的表面粗糙度,必须对其抛光,金刚石的硬度很大,对其抛光非常困难。纳米金刚石膜是指平均晶粒尺寸在200nm以下的金刚石膜,纳米金刚石膜继承了金刚石薄膜的优异的性能,但与微米金刚石薄膜相比,有其独特的优势,例如,纳米金刚石的表面粗糙度小,只需简单抛光甚至无需抛光。纳米金刚石的成核密度是影响其性能(尤其是表面粗糙度)的主要因素,采用金刚石粉对衬底进行研磨是最早也是最普遍被采用的提高金刚石成核密度的方法,该方法一方面可以在衬底表面形成划痕和缺陷,减少衬底的表面能;另一方面在划痕处留下的金刚石粉可以作为金刚石的成核点,加速金刚石成核。金刚石粉研磨法虽然能够有效的提高成核密度,但是其成核点不均匀,造成的划痕和缺陷较大,且只适用于硬质衬底。迫切需要一种能够提供高密度、均匀成核点的简单易操作方法。
发明内容
本发明的目的是针对上述存在问题,提供一种低表面粗糙度纳米金刚石膜的制备方法,该制备方法工艺简单、成本低,有利于大规模的推广,具有重大的生产实践意义。
本发明的技术方案:
一种低表面粗糙度纳米金刚石膜的制备方法,包括如下步骤:
1)将抛光Si片依次用超纯水、乙醇、丙酮、超纯水分别超声清洗15分钟,以除去Si片表面的杂质和污染物,最后用N2气吹干;
2)将清洗后的Si基片作为衬底,采用射频磁控溅射法在Si衬底上沉积多晶Ti膜,溅射过程中采用纯度为99.99%的金属Ti靶材,本底真空度不大于1×10-6Pa,溅射功率为50-100W,Ar气流量为10sccm,溅射压强为0.5-1.5Pa,靶基距为5-8cm,衬底不加热,沉积时间为5-15min,在Si基片上沉积Ti过渡层,Ti膜厚度为20-60nm、晶粒尺寸为5-20nm、均方根粗糙度为0.5-1.0nm;
3)将纳米金刚石粉加入丙酮和二甲基亚砜的混合液中得到悬浊液,将沉积Ti膜过渡层的Si基片放入上述悬浊液中超声震荡2-5h,再用去离子水超声清洗15min,得到沉积有纳米金刚石粉的Ti/Si基片;
4)将上述沉积有纳米金刚石粉的Ti/Si基片放入带凹槽的石磨基台上,采用直流喷射CVD法制备纳米金刚石膜,工艺参数为:本底真空度不大于100Pa,分别通入H2、Ar和CH4,气体流量分别是H2为1.0-5.0slpm、Ar为1.0-6.0slpm、CH4为0.1-0.2slpm,腔压为3000-5000Pa,弧电压为110-120V,弧电流为80-100A,制备的纳米金刚石膜厚度为3-6μm,晶粒平均尺寸为100-150nm,均方根粗糙度约为10-30nm。
所述丙酮和二甲基亚砜的混合液中丙酮与二甲基亚砜的体积比为1:1,金刚石粉的晶粒平均尺寸为5nm,纳米金刚石粉与丙酮和二甲基亚砜的混合液的用量比为1mg:1mL。
本发明的优点是:
1)本发明采用磁控溅射法先在衬底上制备了Ti过渡层,该过渡层一方面可以形成纳米级的凹坑,这些凹坑能够使金刚石粉分散的更均匀,克服了Si片上金刚石粉容易团聚的问题,从而使纳米金刚石成核更均匀;另一方面Ti过渡层可以与C原子结合,形成一层TiC,克服了C原子进一步向Si衬底中扩散,使C原子在Ti层中快速积累,有利于纳米金刚石的快速成核,提高纳米金刚石膜的成核密度,进而降低纳米金刚石的表面粗糙度;
2)本发明采用丙酮、二甲基亚砜和纳米金刚石粉的悬浊液对衬底进行超声预处理,其中纳米金刚石的晶粒平均尺寸约为5nm,该纳米金刚石可以在丙酮和二甲基亚砜的混合溶液中悬浮,克服了以往纳米金刚石粉在酒精或丙酮中易沉淀,超声不均匀的现象。
3)本发明只需对衬底进行预处理,不需要对沉积设备进行改造,有利于大规模推广。
附图说明
图1为实施例1制得的纳米金刚石膜的扫描电子显微镜(SEM)图,图中:A为Si上纳米金刚石的成核;B为Ti/Si上纳米金刚石的成核。
图2为实施例1制得的纳米金刚石膜的原子力显微镜(AFM)图,图中:A为Si上生长1h的纳米金刚石;B为Ti/Si上生长1h的纳米金刚石。
具体实施方式
通过以下实施例进一步阐明本发明的实质性特点和显著进步,但本发明绝非仅局限于实施例。
实施例1:
一种低表面粗糙度纳米金刚石膜的制备方法,包括如下步骤:
1)将粗糙度为0.2nm的抛光(100)Si片依次用超纯水、乙醇、丙酮、超纯水分别超声清洗15分钟,以除去Si片表面的杂质和污染物,最后用N2气吹干;
2)将清洗后的Si基片作为衬底,采用射频磁控溅射法在Si衬底上沉积多晶Ti膜,溅射过程中采用纯度为99.99%的金属Ti靶材,本底真空度为1×10-6Pa,溅射功率为80W,Ar气流量为10sccm,溅射压强为1.0Pa,靶基距为6cm,衬底不加热,沉积时间为8min,在Si基片上沉积Ti过渡层,Ti膜厚度为50nm、晶粒尺寸为12nm、均方根粗糙度为0.8nm;
3)将50mg、尺寸为5nm的纳米金刚石粉加入50mL、体积比为1:1的丙酮和二甲基亚砜的混合液中得到悬浊液,将沉积Ti膜过渡层的Si基片放入上述悬浊液中超声震荡2h,再用去离子水超声清洗15min,得到沉积有纳米金刚石粉的Ti/Si基片;
4)将上述沉积有纳米金刚石粉的Ti/Si基片放入带凹槽的石磨基台上,采用直流喷射CVD法制备纳米金刚石膜,工艺参数为:本底真空度为100Pa,分别通入H2、Ar和CH4,气体流量分别是H2为1.5slpm、Ar为1.5slpm、CH4为0.2slpm,腔压为4000Pa,弧电压为120V,弧电流为90A,制备的纳米金刚石膜厚度为4μm,晶粒平均尺寸为120nm,均方根粗糙度约为25nm。
图1为制得的纳米金刚石膜的扫描电子显微镜(SEM)图,图中:A为Si上纳米金刚石的成核;B为Ti/Si上纳米金刚石的成核。图中表明:Ti/Si上纳米金刚石的成核密度远远高于Si上纳米金刚石的成核密度。
图2为制得的纳米金刚石膜的原子力显微镜(AFM)图,图中:A为Si上生长1h的纳米金刚石;B为Ti/Si上生长1h的纳米金刚石。图中表明:Ti/Si上生长的纳米金刚石比Si上生长的纳米金刚石更平整,表面粗糙度更低。
实施例2:
一种低表面粗糙度纳米金刚石膜的制备方法,包括如下步骤:
1)将粗糙度为0.2nm的抛光(100)Si片依次用超纯水、乙醇、丙酮、超纯水分别超声清洗15分钟,以除去Si片表面的杂质和污染物,最后用N2气吹干;
2)将清洗后的Si基片作为衬底,采用射频磁控溅射法在Si衬底上沉积多晶Ti膜,溅射过程中采用纯度为99.99%的金属Ti靶材,本底真空度为1×10-6Pa,溅射功率为100W,Ar气流量为10sccm,溅射压强为1.0Pa,靶基距为6cm,衬底不加热,沉积时间为8min,在Si基片上沉积Ti过渡层,Ti膜厚度为60nm、晶粒尺寸为15nm、均方根粗糙度为1.2nm;
3)将50mg、尺寸为5nm的纳米金刚石粉加入50mL、体积比为1:1的丙酮和二甲基亚砜的混合液中得到悬浊液,将沉积Ti膜过渡层的Si基片放入上述悬浊液中超声震荡2h,再用去离子水超声清洗15min,得到沉积有纳米金刚石粉的Ti/Si基片;
4)将上述沉积有纳米金刚石粉的Ti/Si基片放入带凹槽的石磨基台上,采用直流喷射CVD法制备纳米金刚石膜,工艺参数为:本底真空度为100Pa,分别通入H2、Ar和CH4,气体流量分别是H2为1.5slpm、Ar为1.5slpm、CH4为0.2slpm,腔压为4000Pa,弧电压为120V,弧电流为90A,制备的纳米金刚石膜厚度为3.5μm,晶粒平均尺寸为120nm,均方根粗糙度约为30nm。
制得的纳米金刚石膜的扫描电子显微镜(SEM)图和原子力显微镜(AFM)图与实施例1的检测结果类同。
Claims (2)
1.一种低表面粗糙度纳米金刚石膜的制备方法,其特征在于包括如下步骤:
1)将抛光Si片依次用超纯水、乙醇、丙酮、超纯水分别超声清洗15分钟,以除去Si片表面的杂质和污染物,最后用N2气吹干;
2)将清洗后的Si基片作为衬底,采用射频磁控溅射法在Si衬底上沉积多晶Ti膜,溅射过程中采用纯度为99.99%的金属Ti靶材,本底真空度不大于1×10-6Pa,溅射功率为50-100W,Ar气流量为10sccm,溅射压强为0.5-1.5Pa,靶基距为5-8cm,衬底不加热,沉积时间为5-15min,在Si基片上沉积Ti过渡层,Ti膜厚度为20-60nm、晶粒尺寸为5-20nm、均方根粗糙度为0.5-1.0nm;
3)将纳米金刚石粉加入丙酮和二甲基亚砜的混合液中得到悬浊液,将沉积Ti膜过渡层的Si基片放入上述悬浊液中超声震荡2-5h,再用去离子水超声清洗15min,得到沉积有纳米金刚石粉的Ti/Si基片;
4)将上述沉积有纳米金刚石粉的Ti/Si基片放入带凹槽的石磨基台上,采用直流喷射CVD法制备纳米金刚石膜,工艺参数为:本底真空度不大于100Pa,分别通入H2、Ar和CH4,气体流量分别是H2为1.0-5.0slpm、Ar为1.0-6.0slpm、CH4为0.1-0.2slpm,腔压为3000-5000Pa,弧电压为110-120V,弧电流为80-100A,制备的纳米金刚石膜厚度为3-6μm,晶粒平均尺寸为100-150nm,均方根粗糙度约为10-30nm。
2.根据权利要求1所述低表面粗糙度纳米金刚石膜的制备方法,其特征在于:所述丙酮和二甲基亚砜的混合液中丙酮与二甲基亚砜的体积比为1:1,金刚石粉的晶粒平均尺寸为5nm,纳米金刚石粉与丙酮和二甲基亚砜的混合液的用量比为1mg:1mL。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610191161.2A CN105779966B (zh) | 2016-03-30 | 2016-03-30 | 一种低表面粗糙度纳米金刚石膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610191161.2A CN105779966B (zh) | 2016-03-30 | 2016-03-30 | 一种低表面粗糙度纳米金刚石膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105779966A CN105779966A (zh) | 2016-07-20 |
CN105779966B true CN105779966B (zh) | 2018-06-01 |
Family
ID=56392368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610191161.2A Active CN105779966B (zh) | 2016-03-30 | 2016-03-30 | 一种低表面粗糙度纳米金刚石膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105779966B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111015535B (zh) * | 2019-12-04 | 2021-04-23 | 东莞金太阳研磨股份有限公司 | 一种具有特殊结构的精密抛光膜及其制备方法 |
CN112281136B (zh) * | 2020-10-27 | 2023-08-18 | 曾一 | 一种制备超纳米金刚石薄膜的方法 |
CN112265989B (zh) * | 2020-11-03 | 2023-09-22 | 中国林业科学研究院林产化学工业研究所 | 以植物纤维膜为原料制备的纳米金刚石及其方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105132878A (zh) * | 2015-09-11 | 2015-12-09 | 太原理工大学 | 一种在硅表面制备钛/类金刚石纳米多层薄膜的方法 |
-
2016
- 2016-03-30 CN CN201610191161.2A patent/CN105779966B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105132878A (zh) * | 2015-09-11 | 2015-12-09 | 太原理工大学 | 一种在硅表面制备钛/类金刚石纳米多层薄膜的方法 |
Non-Patent Citations (1)
Title |
---|
预处理对纳米金刚石薄膜表面质量的影响;黑立富等;《人工晶体学报》;20120430;第41卷(第2期);第302-305页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105779966A (zh) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105779966B (zh) | 一种低表面粗糙度纳米金刚石膜的制备方法 | |
CN102965666B (zh) | 一种柔性衬底纳米金刚石薄膜及其制备方法 | |
JP3554074B2 (ja) | 弓そりを低下させた合成ダイヤモンド皮膜とその製造方法 | |
CN110106483A (zh) | 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用 | |
CN108060407A (zh) | 一种微纳多层复合金刚石薄膜的制备方法 | |
CN103334082A (zh) | 一种切削刀具材料表面的Ti/TiN/TiAlN复合镀层及其制备方法 | |
CN113186510B (zh) | 一种金属强化多孔金刚石膜及其制备方法 | |
CN105506576A (zh) | 一种高品质自支撑金刚石厚膜的制备方法 | |
CN104141109B (zh) | 钛金属表面原位合成TiC‑DLC复合涂层的方法 | |
CN102560687B (zh) | 一种金刚石纳米坑阵列及其制备方法 | |
CN105568252A (zh) | 一种金刚石膜表面处理方法 | |
CN101451232B (zh) | 一种纳米复合多层硬质薄膜制备方法 | |
CN108611638A (zh) | 高磨耗比、高断裂强度微米金刚石厚膜及其制备方法 | |
CN114717534B (zh) | 一种大面积超高硬度金刚石膜的制备方法 | |
CN113529050B (zh) | 一种用于金刚石膜抛光的等离子体刻蚀法及其产品 | |
CN1233870C (zh) | 表面层贫钴的梯度硬质合金上进行金刚石涂层的方法 | |
CN1294293C (zh) | 制备纳米金刚石薄膜的辅助栅极热丝化学气相沉积法 | |
CN109913826A (zh) | 一种新型银引入氮化铪膜高疏水耐久材料 | |
CN110735107A (zh) | 一种类金刚石涂层制备前的离子表面刻蚀方法 | |
CN1167827C (zh) | 金刚石复合涂层拉丝模制备方法 | |
CN203360554U (zh) | 一种切削刀具材料表面的复合镀层 | |
CN102864414B (zh) | 一种制备具有金字塔结构的Fe薄膜的方法 | |
CN102634793A (zh) | 柔性衬底纳米金刚石薄膜及其制备方法与应用 | |
CN113755814A (zh) | 衬底的预处理方法、及该方法在金刚石膜制备过程中的应用 | |
CN110438445B (zh) | W-w2n强韧化纳米多层涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |