CN105779955B - 一种髋关节假体柄表面纳米生物活性涂层及其制备方法 - Google Patents
一种髋关节假体柄表面纳米生物活性涂层及其制备方法 Download PDFInfo
- Publication number
- CN105779955B CN105779955B CN201610136729.0A CN201610136729A CN105779955B CN 105779955 B CN105779955 B CN 105779955B CN 201610136729 A CN201610136729 A CN 201610136729A CN 105779955 B CN105779955 B CN 105779955B
- Authority
- CN
- China
- Prior art keywords
- coating
- target
- bioactive
- layer
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/306—Other specific inorganic materials not covered by A61L27/303 - A61L27/32
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/32—Phosphorus-containing materials, e.g. apatite
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/082—Oxides of alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2420/00—Materials or methods for coatings medical devices
- A61L2420/08—Coatings comprising two or more layers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Inorganic Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials For Medical Uses (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一种髋关节假体柄表面纳米生物活性涂层及其制备方法。特征是关节柄表面依次由Ti6Al4V基体1,金属Ti层2,金属Ti与致密陶瓷混合层3,致密陶瓷层4,致密陶瓷与BAG/HA/Si混合层5和BAG/HA/Si多元生物活性层6构成。采用非平衡磁控溅射技术依次沉积成分连续变化的多功能纳米梯度复合涂层。本发明所制备的涂层具有良好的生物活性、生物相容性和膜‑基结合强度,BAG与HA复合可调控涂层的降解速度更接近人体组织,致密过渡层能有效阻止有害金属离子的释放,Si是BAG向磷灰石转化的催化剂、对初始骨钙化有重要作用。本发明能够改善假体柄与表面涂层的结合强度,与人体骨组织形成牢固的化学结合,减少有害金属离子的释放,提高假体柄使用的可靠性。
Description
技术领域
本发明涉及一种人工髋关节表面涂层及其制备方法,特别是一种髋关节假体柄表面纳米生物活性涂层及其制备方法。
背景技术
Ti6Al4V合金是一种常用的人工关节假体材料,以Ti6Al4V合金作为关节柄的表面镀覆纳米生物活性梯度涂层的人工髋关节假体。
自1931年国外首次报道生物氧化物涂层的研究以来,表面改性技术和涂层种类得到不断的丰富和发展。一方面研究最多、应用最广泛的羟基磷灰石(HA)涂层具有良好的生物活性和生物相容性,然而将其涂覆在Ti6Al4V合金表面时,基体与HA的热膨胀系数差别较大,因此涂层容易产生剥落,另外HA在体内的降解速度较慢,这也限制了其作为生物活性涂层的应用;另一方面,生物活性玻璃作为较早使用的生物材料之一,拥有良好的生物活性和化学稳定性、机械性能好、具有多元组分,其成分和结构可在较大范围内调整,赋予其不同的性能,微晶化处理可以有效提高其强度,通过加入碱金属和碱土金属氧化物可以改变玻璃网络三维结构从而改变其生物活性,因此在生物医学领域也得到了广泛的应用,生物活性玻璃与Ti6Al4V合金的热膨胀系数差别较小,满足Ti6Al4V合金表面涂层材料的热膨胀系数要求,然而其溶解速率过快,在新的骨组织未形成时就可能完全溶解掉。
目前生物涂层的制备技术种类繁多,可用于制备HA和生物活性玻璃涂层的制备技术也很多。HA涂层的制备方法主要有等离子喷涂法、溅射镀膜、脉冲激光沉积法、溶胶凝胶法、电泳沉积法、水热合成法等。研究发现等离子喷涂制备的涂层在高温下易分解,微孔、裂纹等缺陷较多;溶胶凝胶法制备的涂层久置易开裂;电泳沉积法制备的涂层膜-基结合差,涂层结构疏松;溅射镀膜相对于其他技术来说,粒子能量在1-10eV的范围内,制备出的膜层结构致密、成分均匀,性能稳定,沉积速度快,涂层与基体具有良好的附着力,绕镀性能好。生物活性玻璃涂层的制备技术也较多,熔融法、水热法和溶胶凝胶法都是常用的制备技术,近年来国内外也有很多学者采用磁控溅射技术制备生物活性玻璃涂层。传统的熔融法能耗较大,工艺难以精确控制;水热法制备的涂层颗粒粒度过大,薄膜质量较差;磁控溅射技术制备的涂层颗粒细小、与靶材成分的化学计量比接近,与基体的接触界面存在原子级别的扩散。磁控溅射是一种低温制备技术,靶材溅射到基底上快速冷却,以无定形态的形式存在;通常也会造成HA缺失了羟基,这就需要后续的热处理来恢复羟基,提高涂层的结晶度。
发明内容
本发明的目的是要提供一种具有屏蔽离子释放能力、优异生物活性及良好附着力的髋关节假体柄表面纳米生物活性涂层及其制备方法,解决Ti6Al4V合金制造的人工髋关节关节柄与周围骨组织结合不牢固,术后容易产生松动及有害铝、钒离子的溢出的问题。
本发明的目的是这样实现的:该生物活性涂层制备在人工髋关节柄近端的1/2-2/3部位,减少与骨组织牢固结合后下端关节柄的应力遮挡效应;涂层总厚度为1-4μm,涂层的成分由里向外呈连续梯度变化;人工髋关节柄表面涂层依次由Ti6Al4V基体(1),金属Ti层(2),Ti与致密陶瓷混合层(3),致密陶瓷层(4),致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层(5)和生物活性玻璃/羟基磷灰石/Si多元生物活性层(6)构成;每一层涂层的厚度:金属Ti层为100-200nm,Ti与致密陶瓷混合层为50-100nm,致密陶瓷层为200-300nm,致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层为100-300nm、生物活性玻璃/羟基磷灰石/Si多元生物活性层为1-3μm;所述的Ti6Al4V基体表面粗糙度小于0.1μm。
所述的致密陶瓷层为氮化钛、碳化钛、碳氮化钛中的一种或两种。
所述的生物活性玻璃/羟基磷灰石/Si多元生物活性层制备时所需的生物活性玻璃/羟基磷灰石复合靶材中生物活性玻璃/羟基磷灰石的质量百分比为1:4~3:2。
所述的生物活性玻璃由下述组分构成,其质量百分比为:SiO2为55-65%、CaO为20-25%、P2O5为1-5%、Na2O为7-12%、TiO2为1-2%和B2O3为2-5%。
纳米生物活性涂层的制备方法:人工髋关节表面多元纳米梯度复合涂层采用多靶材磁控溅射表面功能化薄膜沉积系统制备,溅射过程保证腔体的本体真空度达到1-5×10- 5Pa之间,靶-基距在60-100mm的范围内调整,基体架转速在5-10r/min的范围内调整,依次包括如下步骤:
基底预处理:用砂纸打磨抛光Ti6Al4V基体,表面粗糙度达到要求后,放在丙酮和乙醇溶液中分别清洗10-15min;将清洗好的Ti6Al4V合金置于质量百分比为1:1硫酸和盐酸的混合液中对其表面进行酸蚀活化处理,将混合液水浴加热到70℃,保温30min,再次将活化后的基体进行超声波清洗,放在干燥箱中干燥备用;所述的硫酸的质量分数为66.3%,盐酸的质量分数为10.6%;
②溅射清洗:抽真空至溅射系统腔体的本体真空度达到1-5×10-5Pa范围之间,通入氩气,氩气流量保持在80-150sccm之间,待放电气压达到0.8-3.0Pa之间清洗基体及腔体内壁并活化基体,调节溅射负偏压在-300—-1200V的范围清洗20min;关闭负偏压,打开中频、射频和直流电源分别清洗靶材,采用中频电源清洗Ti靶,清洗工艺条件为:电流0.5-3A,放电气压0.8-3.0Pa,氩气流量80-120sccm;采用射频电源清洗致密陶瓷靶,清洗工艺条件为:功率100-300W,放电气压0.8-1.5Pa,氩气流量80-120sccm;采用直流电源清洗Si靶,清洗工艺条件为:直流1-3A,放电气压0.8-1.5Pa,氩气流量80-120sccm;用射频电源清洗羟基磷灰石/生物活性玻璃复合靶,清洗工艺条件为:功率100-500W,放电气压0.8-1.5Pa,氩气流量80-120sccm,溅射清洗靶材表面污染物20-40min;
③沉积Ti过渡层:溅射靶材为高纯钛靶,Ar离子轰击,Ar气流量为80-150sccm,采用中频电源,放电气压0.6-1.0Pa,电流1-4A,负偏压-200—-500V,沉积时间10-30min;
④沉积致密陶瓷涂层:放电气压0.7-1.0Pa,氩气流量80-120sccm,功率在150-400W、偏压-150—-350V,沉积50-100min;以0.2A/min的速度降低中频电源电流至零,逐步减小涂层中的Ti含量;同时打开射频电源Ⅰ,以氮化钛、碳化钛、碳氮化钛靶中的一种或两种作为溅射靶材,以10W/min的速度提高射频电源的功率,逐步增加涂层中TiN、TiC或TiNC的含量,保证涂层成分由金属Ti向TiN、TiC或TiNC梯度过渡;
⑤沉积多元复合生物活性涂层:放电气压0.8-1.2Pa,Ar气流量80-150sccm,保持溅射功率在100-500W之间、溅射偏压在-100—-400V之间,直流0.1-1.0A,沉积时间6-10h;以20W/min的速度降低射频电源Ⅰ的功率至零,逐步减小涂层中TiN、TiC或TiNC的含量;以羟基磷灰石/生物活性玻璃复合靶、Si靶作为溅射靶材,打开射频电源Ⅱ和直流电源沉积涂层,具体操作步骤为:打开射频电源Ⅱ,以10W/min的速度提高射频电源Ⅱ的功率,逐步增加涂层中羟基磷灰石和生物活性玻璃的含量,同时以0.01A/min的速度提高直流电源电流,逐步增加涂层中Si元素掺杂量,保证涂层成分由TiN、TiC或TiNC向羟基磷灰石/生物活性玻璃/Si梯度过渡;
⑥涂层热处理:对制备的纳米生物活性梯度涂层在电阻炉中进行热处理,热处理工艺条件为:水蒸气气氛,升温速率3-5℃/min,保温温度400-700℃,保温时间3-6h,后随炉冷却至室温。
有益效果,由于采用了上述方案,为采用非平衡磁控溅射法沉积涂层,在生物医用金属Ti6Al4V基体上制备具有良好生物活性和生物降解性、一定屏蔽离子释放能力的纳米梯度涂层。梯度涂层的设计改善了层与层之间的化学结合状态、表面涂层与基体热膨胀系数差异的减小都对膜-基结合强度的提高有重要作用。
涂层的热处理一方面提高了HA的结晶度,恢复了对HA生物活性具有重要影响的羟基;另一方面,晶化处理后生物活性玻璃,在保持了原有生物活性的基础上,又提高了其力学性能。
(1)多元复合生物活性涂层的设计解决了单一涂层与基体热膨胀系数差异过大、涂层降解速度与人体骨生长速度不一致等问题;(2)多元涂层中的三组分产生相互协同的作用:硅的加入激活了成骨细胞的反应,提高了HA和生物活性玻璃的生物活性和生物相容性,同时生物活性玻璃也改善了HA与Si的界面结合强度;(3)热膨胀系数逐步递增,分逐步变化,各涂层过渡界面均为原子级别的扩散的梯度涂层设计缓解了涂层之间的内应力,改善了涂层的附着力;(4)致密陶瓷层的设计有效的抑制了Ti6Al4V合金中有害离子的释放;(5)复合涂层的成分均对人体无害。
Ti6Al4V合金制造的人工髋关节关节柄与周围骨组织结合不牢固,术后容易产生松动及有害铝、钒离子的溢出的问题,达到了本发明的目的。
优点:本发明采用非平衡磁控溅射技术在了Ti6Al4V合金表面制备出了多功能纳米复合梯度涂层,具有屏蔽离子释放能力、优异生物活性及良好附着力的等一系列优点,有效的解决了Ti6Al4V合金制造的人工髋关节柄与周围骨组织结合不牢固,术后容易产生松动及有害铝、钒离子的溢出问题,提高了关节柄使用的可靠性。
附图说明:
图1为本发明的人工髋关节关节柄表面膜层的结构示意图。
图2为本发明的Ti6Al4V合金表面梯度膜层的结构示意图。
图中,(1)Ti6Al4V基体;(2)金属Ti层;(3)Ti与致密陶瓷混合层;(4)致密陶瓷层;(5)致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层;(6)生物活性玻璃/羟基磷灰石/Si多元生物活性层。
具体实施方式
该生物活性涂层制备在人工髋关节柄近端的1/2-2/3部位,减少与骨组织牢固结合后下端关节柄的应力遮挡效应;涂层总厚度为1-4μm,涂层的成分由里向外呈连续梯度变化,人工髋关节柄表面涂层依次由Ti6Al4V基体(1),金属Ti层(2),Ti与致密陶瓷混合层(3),致密陶瓷层(4),致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层(5)和生物活性玻璃/羟基磷灰石/Si多元生物活性层(6)构成;每一层涂层的厚度:金属Ti层为100-200nm,Ti与致密陶瓷混合层为50-100nm,致密陶瓷层为200-300nm,致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层为100-300nm、生物活性玻璃/羟基磷灰石/Si多元生物活性层为1-5μm;所述的Ti6Al4V基体表面粗糙度小于0.1μm。
所述的致密陶瓷层为氮化钛、碳化钛、碳氮化钛中的一种或两种。
所述的生物活性玻璃/羟基磷灰石/Si多元生物活性层制备时所需的生物活性玻璃/羟基磷灰石复合靶材中生物活性玻璃/羟基磷灰石的质量百分比为1:4~3:2。
所述的生物活性玻璃由下述组分构成,其质量百分比为:SiO2为55-65%、CaO为20-25%、P2O5为1-5%、Na2O为7-12%、TiO2为1-2%和B2O3为2-5%。
纳米生物活性涂层的制备方法:人工髋关节表面多元纳米梯度复合涂层采用多靶材磁控溅射表面功能化薄膜沉积系统制备,溅射过程保证腔体的本体真空度达到1-5×10- 5Pa范围之间,靶-基距在60-100mm的范围内调整,基体架转速在5-10r/min的范围内调整,依次包括如下步骤:
基底预处理:用砂纸打磨抛光Ti6Al4V基体,表面粗糙度达到要求后,放在丙酮和乙醇溶液中分别清洗10-15min;将清洗好的Ti6Al4V合金置于质量百分比为1:1硫酸和盐酸的混合液中对其表面进行酸蚀活化处理,将混合液水浴加热到70℃,保温30min,再次将活化后的基体进行超声波清洗,放在干燥箱中干燥备用;所述的硫酸的质量分数为66.3%,盐酸的质量分数为10.6%;
②溅射清洗:抽真空至溅射系统腔体的本体真空度达到1-5×10-5Pa范围之间,通入氩气,氩气流量保持在80-150sccm之间,待放电气压达到0.8-3.0Pa之间清洗基体及腔体内壁并活化基体,调节溅射负偏压在-300—-1200V的范围清洗20min;关闭负偏压,打开中频、射频和直流电源分别清洗靶材,采用中频电源清洗Ti靶,清洗工艺条件为:电流0.5-3A,放电气压0.8-3.0Pa,氩气流量80-120sccm;采用射频电源清洗致密陶瓷靶,清洗工艺条件为:功率100-300W,放电气压0.8-1.5Pa,氩气流量80-120sccm;采用直流电源清洗Si靶,清洗工艺条件为:直流1-3A,放电气压0.8-1.5Pa,氩气流量80-120sccm;用射频电源清洗羟基磷灰石/生物活性玻璃复合靶,清洗工艺条件为:功率100-500W,放电气压0.8-1.5Pa,氩气流量80-120sccm。溅射清洗靶材表面污染物20-40min;
③沉积Ti过渡层:溅射靶材为高纯钛靶,Ar离子轰击,Ar气流量为80-150sccm,采用中频电源,放电气压0.6-1.0Pa,电流1-4A,负偏压-200—-500V,沉积时间10-30min;
④沉积致密陶瓷涂层:放电气压0.7-1.0Pa,氩气流量80-120sccm,功率在150-400W、偏压-150—-350V,沉积50-100min;以0.2A/min的速度降低中频电源电流至零,逐步减小涂层中的Ti含量;同时打开射频电源Ⅰ,以氮化钛、碳化钛、碳氮化钛靶中的一种或两种作为溅射靶材,以10W/min的速度提高射频电源的功率,逐步增加涂层中TiN、TiC或TiNC的含量,保证涂层成分由金属Ti向TiN、TiC或TiNC梯度过渡;
⑤沉积多元复合生物活性涂层:放电气压0.8-1.2Pa,Ar气流量80-150sccm,保持溅射功率在100-500W之间、溅射偏压在-100—-400V之间,直流0.1-1.0A,沉积时间6-10h;以20W/min的速度降低射频电源Ⅰ的功率至零,逐步减小涂层中TiN、TiC或TiNC的含量;以羟基磷灰石/生物活性玻璃复合靶、Si靶作为溅射靶材,打开射频电源Ⅱ和直流电源沉积涂层,具体操作步骤为:打开射频电源Ⅱ,以10W/min的速度提高射频电源Ⅱ的功率,逐步增加涂层中羟基磷灰石和生物活性玻璃的含量,同时以0.01A/min的速度提高直流电源电流,逐步增加涂层中Si元素掺杂量,保证涂层成分由TiN、TiC或TiNC向羟基磷灰石/生物活性玻璃/Si梯度过渡;
⑥涂层热处理:对制备的纳米生物活性梯度涂层在电阻炉中进行热处理,热处理工艺条件为:水蒸气气氛,升温速率3-5℃/min,保温温度400-700℃,保温时间3-6h,后随炉冷却至室温。
下面结合实施例对本发明作详细说明:
实施例1:图1中涂层只分布在关节柄的近端1/2-2/3部位。
(1)将打磨抛光好的Ti6Al4V基体经超声波清洗后,置于质量百分比为1:1的硫酸(66.3%)、盐酸(10.6%)混合液中水浴加热到70℃,保温30min酸蚀活化处理,超声波清洗酸蚀后的基体,放在干燥箱中干燥备用;
(2)调整靶-基距为60mm,抽真空至腔体的本体真空度达到2×10-5Pa,通入氩气,氩气流量为120sccm,放电气压为1.0Pa,偏压电源调至-500V,清洗基体表面及腔体内壁污染物并活化表面15min;
(3)调整氩气流量为100sccm,放电气压保持不变,关闭偏压电源,调节中频电源电流1A清洗钛靶、直流电源电流2A清洗硅靶、射频电源Ⅰ功率200W清洗陶瓷靶、射频电源Ⅱ功率300W清洗羟基磷灰石/生物活性玻璃复合靶,清洗靶材表面污染物20min;
(4)溅射靶材为钛靶,采用中频电源,调整放电气压0.8Pa,氩气流量100sccm,电流1A,负偏压-200V,沉积Ti层25min;
(5)以氮化钛作为溅射靶材,调整放电气压0.8Pa,氩气流量100sccm,以0.2A/min的速度降低中频电源电流至0,逐步减小涂层中的Ti含量,以10W/min的速度提高射频电源Ⅰ的功率至200W,逐步增加涂层中TiN的含量,缓慢调节负偏压至-250V,保证涂层成分由金属Ti向TiN梯度过渡,沉积致密陶瓷涂层1h;
(6)以硅靶和生物活性玻璃/羟基磷灰石复合靶作为溅射靶材,复合靶中生物活性玻璃/羟基磷灰石的质量百分比为3:5,生物活性玻璃的组分为SiO2(57%)、CaO(25%)、P2O5(2%)、Na2O(10%)、TiO2(1.5%)、B2O3(4.5%)。调整放电气压1.0Pa,氩气流量120sccm,以20W/min的速度降低射频电源Ⅰ的功率至0,逐步减小涂层中TiN的含量,以10W/min的速度提高射频电源Ⅱ的功率至300W,逐步增加涂层中HA和生物活性玻璃的含量,以0.01A/min的速度提高直流电源电流至0.2A,逐步增加涂层中硅元素掺杂量,缓慢调节负偏压至-200V,保证涂层成分由TiN向羟基磷灰石/生物活性玻璃/Si梯度过渡,沉积掺Si生物活性复合涂层8h;
(7)对制备的纳米生物活性梯度涂层在电阻炉在水蒸气气氛下进行热处理,升温速率3℃/min,保温温度600℃,保温时间5h,后随炉冷却至室温,最终在Ti6Al4V基体表面制备高结合强度的生物活性纳米梯度涂层。
实施例2:
(1)将打磨抛光好的Ti6Al4V基体放在丙酮和酒精中超声波清洗各15min,放在干燥箱中干燥备用;
(2)调整靶-基距为80mm,抽真空至腔体本体真空度达到1×10-5Pa,通入氩气,氩气流量为100sccm,放电气压为1.0Pa,偏压电源调至-800V,清洗基体表面及腔体内壁污染物并活化表面15min;
(3)调整放电气压为0.8Pa,氩气流量保持不变,关闭偏压电源,调整中频电源电流1A清洗钛靶、直流电源电流1A清洗硅靶、射频电源Ⅰ功率300W清洗陶瓷靶、射频电源Ⅱ功率300W清洗HA与生物活性玻璃复合靶,清洗靶材表面污染物25min;
(4)溅射靶材为钛靶,采用中频电源,调整放电气压1.0Pa,氩气流量120sccm,电流1.2A,负偏压-200V,沉积Ti层20min;
(5)以碳化钛作为溅射靶材,调整放电气压为1.0Pa,氩气流量80sccm,以0.2A/min的速度降低中频电源电流至0,逐步减小涂层中的Ti含量,以10W/min的速度提高射频电源Ⅰ的功率至250W,逐步增加涂层中TiC的含量,缓慢调节负偏压至-300V,保证涂层成分由金属Ti向TiC梯度过渡,沉积致密陶瓷涂层50min;
(6)以硅靶和生物活性玻璃/羟基磷灰石复合靶作为溅射靶材,复合靶中生物活性玻璃/羟基磷灰石的质量百分比为4:5,生物活性玻璃的组分为SiO2(57%)、CaO(25%)、P2O5(2.5%)、Na2O(10%)、TiO2(1.5%)、B2O3(4%)。调整放电气压为1.2Pa,氩气流量100sccm,以20W/min的速度降低射频电源Ⅰ的功率至0,逐步减小涂层中TiC的含量,以10W/min的速度提高射频电源Ⅱ的功率至250W,逐步增加涂层中HA和生物活性玻璃的含量,以0.01A/min的速度提高直流电源电流至0.3A,逐步增加涂层中硅元素掺杂量,缓慢调节负偏压至-300V,保证涂层成分由TiC向羟基磷灰石/生物活性玻璃/Si梯度过渡,沉积掺Si生物活性涂层7h;
(7)对制备的纳米生物活性梯度涂层在电阻炉在水蒸气气氛下进行热处理,升温速率3℃/min,保温温度700℃,保温时间4h,后随炉冷却至室温,最终在Ti6Al4V基体表面制备高结合强度的生物活性纳米梯度涂层。
实施例3:
(1)将打磨抛光好的Ti6Al4V基体经超声波清洗后,置于质量百分比为1:1的硫酸(66.3%)、盐酸(10.6%)混合液中室温下酸蚀活化处理1h,超声波清洗酸蚀后的基体,放在干燥箱中干燥备用;
(2)调整靶-基距为100mm,抽真空至腔体的本体真空度达到3×10-5Pa,通入氩气,氩气流量为150sccm,放电气压为0.8Pa,偏压电源调至-300V,清洗基体表面及腔体内壁污染物并活化表面20min;
(3)调整放电气压为1.2Pa,氩气流量为120sccm,关闭偏压电源,调整中频电源电流1.5A清洗钛靶、直流电源电流2A清洗硅靶、射频电源Ⅰ功率300W清洗陶瓷靶、射频电源Ⅱ功率350W清洗HA与生物活性玻璃复合靶,清洗靶材表面污染物15min;
(4)溅射靶材为钛靶,采用中频电源,调整放电气压为1.0Pa,氩气流量100sccm,电流1.2A,负偏压-300V,沉积Ti层20min;
(5)以碳氮化钛作为溅射靶材,调整放电气压为0.8Pa,氩气流量120sccm,以0.2A/min的速度降低中频电源电流至0,逐步减小涂层中的Ti含量,以10W/min的速度提高射频电源Ⅰ的功率至300W,逐步增加涂层中TiNC的含量,缓慢调节负偏压至-200V,保证涂层成分由金属Ti向TiNC梯度过渡,沉积致密陶瓷涂层1h;
(6)以硅靶和生物活性玻璃/羟基磷灰石复合靶作为溅射靶材,复合靶中生物活性玻璃/羟基磷灰石的质量百分比为3:5,生物活性玻璃的组分为SiO2(57%)、CaO(25%)、P2O5(2%)、Na2O(10%)、TiO2(1.5%)、B2O3(4.5%)。调整放电气压为0.8Pa,氩气流量120sccm,以20W/min的速度降低射频电源Ⅰ的功率至0,步减小涂层中TiNC的含量,以10W/min的速度提高射频电源Ⅱ的功率至300W,逐步增加涂层中HA和生物活性玻璃的含量,以0.01A/min的速度提高直流电源电流至0.2A,逐步增加涂层中硅元素掺杂量,缓慢调节负偏压至-350V,保证涂层成分由TiNC向羟基磷灰石/生物活性玻璃/Si梯度过渡,沉积掺Si生物活性涂层8h;
(7)对制备的纳米生物活性梯度涂层在电阻炉在水蒸气气氛下进行热处理,升温速率5℃/min,保温温度500℃,保温时间7h,后随炉冷却至室温,最终在Ti6Al4V基体表面制备高结合强度的生物活性纳米梯度涂层。
Claims (5)
1.一种髋关节假体柄表面纳米生物活性涂层,其特征是:该生物活性涂层制备在人工髋关节柄近端的1/2-2/3部位,减少与骨组织牢固结合后下端关节柄的应力遮挡效应;涂层总厚度为1-4μm,涂层的成分由里向外呈连续梯度变化,人工髋关节柄表面涂层依次由Ti6Al4V基体(1),金属Ti层(2),Ti与致密陶瓷混合层(3),致密陶瓷层(4),致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层(5)和生物活性玻璃/羟基磷灰石/Si多元生物活性层(6)构成;每一层涂层的厚度:金属Ti层为100-200nm,Ti与致密陶瓷混合层为50-100nm,致密陶瓷层为200-300nm,致密陶瓷与生物活性玻璃/羟基磷灰石/Si混合层为100-300nm、生物活性玻璃/羟基磷灰石/Si多元生物活性层为1-3μm;所述的Ti6Al4V基体表面粗糙度小于0.1μm。
2.根据权利要求1所述的一种髋关节假体柄表面纳米生物活性涂层,其特征是:所述的致密陶瓷层为氮化钛、碳化钛、碳氮化钛中的一种或两种。
3.根据权利要求1所述的一种髋关节假体柄表面纳米生物活性涂层,其特征是:所述的生物活性玻璃/羟基磷灰石/Si多元生物活性层制备时所需的生物活性玻璃/羟基磷灰石复合靶材中生物活性玻璃/羟基磷灰石的质量百分比为1:4~3:2。
4.根据权利要求1所述的一种髋关节假体柄表面纳米生物活性涂层,其特征是:所述的生物活性玻璃由下述组分构成,其质量百分比为:SiO2为55-65%、CaO为20-25%、P2O5为1-5%、Na2O为7-12%、TiO2为1-2%和B2O3为2-5%。
5.根据权利要求1所述的一种髋关节假体柄表面纳米生物活性涂层的制备方法,其特征是:纳米生物活性涂层的制备方法:人工髋关节表面多元纳米梯度复合涂层采用多靶材磁控溅射表面功能化薄膜沉积系统制备,溅射过程保证腔体的本体真空度达到1-5×10-5Pa之间,靶-基距在60-100mm的范围内调整,基体架转速在5-10r/min的范围内调整,依次包括如下步骤:
①基底预处理:用砂纸打磨抛光Ti6Al4V基体,表面粗糙度达到要求后,放在丙酮和乙醇溶液中分别清洗10-15min;将清洗好的Ti6Al4V合金置于质量百分比为1:1硫酸和盐酸的混合液中对其表面进行酸蚀活化处理,将混合液水浴加热到70℃,保温30min,再次将活化后的基体进行超声波清洗,放在干燥箱中干燥备用;所述的硫酸的质量分数为66.3%,盐酸的质量分数为10.6%;
②溅射清洗:抽真空至溅射系统腔体的本体真空度达到1-5×10-5Pa范围之间,通入氩气,氩气流量保持在80-150sccm之间,待放电气压达到0.8-3.0Pa之间清洗基体及腔体内壁并活化基体,调节溅射负偏压在-300—-1200V的范围清洗20min;关闭负偏压,打开中频、射频和直流电源分别清洗靶材,采用中频电源清洗Ti靶,清洗工艺条件为:电流0.5-3A,放电气压0.8-3.0Pa,氩气流量80-120sccm;采用射频电源清洗致密陶瓷靶,清洗工艺条件为:功率100-300W,放电气压0.8-1.5Pa,氩气流量80-120sccm;采用直流电源清洗Si靶,清洗工艺条件为:直流1-3A,放电气压0.8-1.5Pa,氩气流量80-120sccm;用射频电源清洗羟基磷灰石/生物活性玻璃复合靶,清洗工艺条件为:功率100-500W,放电气压0.8-1.5Pa,氩气流量80-120sccm,溅射清洗靶材表面污染物20-40min;
③沉积Ti过渡层:溅射靶材为高纯钛靶,Ar离子轰击,Ar气流量为80-150sccm,采用中频电源,放电气压0.6-1.0Pa,电流1-4A,负偏压-200—-500V,沉积时间10-30min;
④沉积致密陶瓷涂层:放电气压0.7-1.0Pa,氩气流量80-120sccm,功率150-400W、偏压-150—-350V,沉积50-100min;以0.2A/min的速度降低中频电源电流至零,逐步减小涂层中的Ti含量;同时打开射频电源Ⅰ,以氮化钛、碳化钛、碳氮化钛靶中的一种或两种作为溅射靶材,以10W/min的速度提高射频电源的功率,逐步增加涂层中TiN、TiC或TiNC的含量,保证涂层成分由金属Ti向TiN、TiC或TiNC梯度过渡;
⑤沉积多元复合生物活性涂层:放电气压0.8-1.2Pa,Ar气流量80-150sccm,保持溅射功率在100-500W之间、溅射偏压在-100—-400V之间,直流0.1-1.0A,沉积时间6-10h;以20W/min的速度降低射频电源Ⅰ的功率至零,逐步减小涂层中TiN、TiC或TiNC的含量;以羟基磷灰石/生物活性玻璃复合靶、Si靶作为溅射靶材,打开射频电源Ⅱ和直流电源沉积涂层,具体操作步骤为:打开射频电源Ⅱ,以10W/min的速度提高射频电源Ⅱ的功率,逐步增加涂层中羟基磷灰石和生物活性玻璃的含量,同时以0.01A/min的速度提高直流电源电流,逐步增加涂层中Si元素掺杂量,保证涂层成分由TiN、TiC或TiNC向羟基磷灰石/生物活性玻璃/Si梯度过渡;
⑥涂层热处理:对制备的纳米生物活性梯度涂层在电阻炉中进行热处理,热处理工艺条件为:水蒸气气氛,升温速率3-5℃/min,保温温度400-700℃,保温时间3-6h,后随炉冷却至室温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610136729.0A CN105779955B (zh) | 2016-03-10 | 2016-03-10 | 一种髋关节假体柄表面纳米生物活性涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610136729.0A CN105779955B (zh) | 2016-03-10 | 2016-03-10 | 一种髋关节假体柄表面纳米生物活性涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105779955A CN105779955A (zh) | 2016-07-20 |
CN105779955B true CN105779955B (zh) | 2018-06-22 |
Family
ID=56387505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610136729.0A Active CN105779955B (zh) | 2016-03-10 | 2016-03-10 | 一种髋关节假体柄表面纳米生物活性涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105779955B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106264802A (zh) * | 2016-08-05 | 2017-01-04 | 北京爱康宜诚医疗器材有限公司 | 膝关节假体 |
CN106691609B (zh) * | 2016-11-24 | 2022-04-15 | 北京华钽生物科技开发有限公司 | 一种高亲组织耐腐蚀种植牙及其制造方法 |
CN107029284B (zh) * | 2017-06-03 | 2020-06-26 | 郑超 | 一种人工关节材料 |
CN110512249B (zh) * | 2018-05-22 | 2021-04-27 | 南京理工大学 | 碳氮化钛及羟基磷灰石复合涂层的制备方法 |
CN111041415A (zh) * | 2019-12-26 | 2020-04-21 | 湖南工业大学 | 一种生物医用金属表面多层涂层及其制备方法 |
CN116352233B (zh) * | 2023-05-30 | 2023-08-22 | 中镱新材料智能制造研究院(山西)有限公司 | 一种弹射式陶瓷颗粒增强复合材料熔融堆积增材制造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101549172A (zh) * | 2009-05-08 | 2009-10-07 | 山东大学 | 一种羟基磷灰石-生物玻璃薄膜及其制备工艺 |
CN104195517A (zh) * | 2014-08-29 | 2014-12-10 | 南京工程学院 | 一种降低生物医用镁合金表面涂层残余应力的方法 |
CN104224409A (zh) * | 2014-04-23 | 2014-12-24 | 中奥汇成科技有限公司 | 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITTO20070373A1 (it) * | 2007-05-29 | 2008-11-30 | Torino Politecnico | Coppa acetabolare ceramica monoblocco per protesi d'anca. |
-
2016
- 2016-03-10 CN CN201610136729.0A patent/CN105779955B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101549172A (zh) * | 2009-05-08 | 2009-10-07 | 山东大学 | 一种羟基磷灰石-生物玻璃薄膜及其制备工艺 |
CN104224409A (zh) * | 2014-04-23 | 2014-12-24 | 中奥汇成科技有限公司 | 一种人工关节臼杯、磁控溅射镀膜装置及其制备方法 |
CN104195517A (zh) * | 2014-08-29 | 2014-12-10 | 南京工程学院 | 一种降低生物医用镁合金表面涂层残余应力的方法 |
Non-Patent Citations (2)
Title |
---|
Silicon substitution in the calcium phosphate bioceramics;Alexis M. Pietak等;《Biomaterials》;20071231;第28卷;第4023–4032页 * |
Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition;D. Tanaskovic等;《Applied Surface Science》;20071231;第254卷;第1279–1282页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105779955A (zh) | 2016-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105779955B (zh) | 一种髋关节假体柄表面纳米生物活性涂层及其制备方法 | |
Zafar et al. | Bioactive surface coatings for enhancing osseointegration of dental implants | |
Hahn et al. | Preparation and in vitro characterization of aerosol-deposited hydroxyapatite coatings with different surface roughnesses | |
CN101532122B (zh) | 一种生物医用NiTi合金表面制备类金刚石涂层的方法 | |
CN102220551A (zh) | 镁合金表面等离子喷涂Ca-P生物活性涂层的方法 | |
KR20150131863A (ko) | Rf 마그네트론 스퍼터링을 이용한 수산화아파타이트 코팅막이 형성된 임플란트와 이의 제조방법 | |
CN113667938B (zh) | 一种超亲水金属/高熵陶瓷复合抗菌涂层的制备方法 | |
CN103882377B (zh) | 抗菌类金刚石/羟基磷灰石梯度多元纳米涂层的制备方法 | |
US20140255874A1 (en) | Method of manufacturing a functionalized implant, and functionalized implant | |
TW486374B (en) | Non-dissolvable hydroxyapatite/titanium coating for implant application | |
Wan et al. | RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates | |
CN103409715B (zh) | 一种多孔TiO2/SiO2复合涂层的制备方法 | |
CN108930023A (zh) | 一种镁合金表面磁控溅射制备钽生物涂层的方法 | |
CN1221683C (zh) | 一种钛合金表面共溅射沉积羟基磷灰石(HA)/钛(Ti)梯度生物活性层的方法及其制品 | |
CN104152840A (zh) | 一种制备具有特殊微纳结构TiO2/Ta2O5复合涂层的方法 | |
CN103911593B (zh) | 一种钛合金表面Ag掺杂TiO2薄膜的制备方法 | |
CN106967956A (zh) | 一种可屏蔽有害离子释放的多孔羟基磷灰石/氮化钛生物活性涂层及用途 | |
CN102808161B (zh) | 口腔烤瓷用钛瓷TiN/ZrTiSiN复合过渡阻挡层制备工艺 | |
CN109161859B (zh) | 一种表面有前驱梯度烧结保护C-Si-Al涂层的碳纤维及其制备方法和用途 | |
CN113636868A (zh) | 一种氧化锆陶瓷种植体材料的表面涂层方法及其应用 | |
CN105641741A (zh) | 高结晶度、纳米结构羟基磷灰石涂层及其制备方法 | |
CN116334542B (zh) | 一种表面镀覆钽镀层的骨科植入物及其制备方法 | |
Chandra et al. | Implant surface modifications: A review | |
CN100413545C (zh) | TiO2-羟基磷灰石生物医用纳米结构薄膜的制备方法 | |
Zhao et al. | The current techniques for preparing bioglass coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |