[go: up one dir, main page]

CN105773609A - Robot kinematics calibration method based on vision measurement and distance error model - Google Patents

Robot kinematics calibration method based on vision measurement and distance error model Download PDF

Info

Publication number
CN105773609A
CN105773609A CN201610157552.2A CN201610157552A CN105773609A CN 105773609 A CN105773609 A CN 105773609A CN 201610157552 A CN201610157552 A CN 201610157552A CN 105773609 A CN105773609 A CN 105773609A
Authority
CN
China
Prior art keywords
robot
model
calibration
matrix
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610157552.2A
Other languages
Chinese (zh)
Inventor
嵇保健
沈健
洪磊
凌超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201610157552.2A priority Critical patent/CN105773609A/en
Publication of CN105773609A publication Critical patent/CN105773609A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种基于视觉测量及距离误差模型的机器人运动学标定方法,包括:建立修正的机器人D‑H模型;距离误差模型;建立机器人运动学标定模型;手眼关系与运动学参数同时标定;末端实际坐标位置测量;修正机器人D‑H参数;实验验证。本发明提供的基于视觉测量及距离误差模型的机器人运动学标定方法具有简单、高效、快捷的优点,采取了视觉检测的非接触测量方式,同时考虑了手眼标定的重复误差,并利用等距离模型的方式简化了标定模型,可大大提高工业机器人定位精度和距离精度,普遍适用于串联关节型机器人,具有一定的实际意义。

The invention discloses a robot kinematics calibration method based on visual measurement and a distance error model, comprising: establishing a corrected robot D-H model; a distance error model; establishing a robot kinematics calibration model; simultaneously calibrating hand-eye relationship and kinematic parameters ; Measuring the actual coordinate position of the end; Correcting the D-H parameters of the robot; Experimental verification. The robot kinematics calibration method based on visual measurement and distance error model provided by the present invention has the advantages of simplicity, high efficiency and quickness. The method simplifies the calibration model, which can greatly improve the positioning accuracy and distance accuracy of industrial robots. It is generally applicable to series articulated robots and has certain practical significance.

Description

一种基于视觉测量及距离误差模型的机器人运动学标定方法A Robot Kinematics Calibration Method Based on Vision Measurement and Distance Error Model

技术领域technical field

本发明涉及机器人运动学标定技术领域,特别是涉及一种基于视觉测量及距离误差模型的工业机器人运动学标定方法。The invention relates to the technical field of robot kinematics calibration, in particular to an industrial robot kinematics calibration method based on visual measurement and a distance error model.

背景技术Background technique

自世界上第一个机器人产生以来,机器人在人们的生活和生产领域发挥着越来越重要的作用。在实际工作中,通过控制软件得到的机器人末端位姿和机器人末端到达的实际的位姿之间存在着误差。一般来说,机器人的重复定位精度很高,而机器人的绝对定位精度不太高。导致机器人绝对定位精度不高的原因有生产、搬运、装配的误差以及关节传动误差等等。然而,在机器人应用的不少领域,比如复杂装配、维修、焊接等,由于它们本身的特点,要求机器人必须能够达到足够的精度。因此,如何克服各种因素的影响并尽可能地提高机器人的绝对定位精度成为了机器人技术中一个关键的部分。Since the world's first robot was produced, robots have played an increasingly important role in people's lives and production fields. In actual work, there is an error between the end pose of the robot obtained by the control software and the actual pose reached by the end of the robot. Generally speaking, the repetitive positioning accuracy of the robot is very high, while the absolute positioning accuracy of the robot is not too high. The reasons for the low absolute positioning accuracy of the robot include errors in production, handling, assembly, and joint transmission errors. However, in many areas of robot application, such as complex assembly, maintenance, welding, etc., due to their own characteristics, robots must be able to achieve sufficient precision. Therefore, how to overcome the influence of various factors and improve the absolute positioning accuracy of the robot as much as possible has become a key part of robot technology.

绝对定位精度主要受到机器人运动学模型中连杆参数精度的影响,标定技术能够通过对机器人运动学参数的修正来提高机器人的绝对定位精度。因此,在机器人使用前需要对其进行标定。目前机器人运动学标定的方法主要有两种:运动学回路法和轴线测量法。运动学回路法是通过测量装置获取机器人末端的位姿,通过求解机器人的运动学方程获得机器人关节参数的方法。与轴线测量法相比,运动学回路法过程简单,可操作性强,精度更高。The absolute positioning accuracy is mainly affected by the accuracy of the connecting rod parameters in the robot kinematics model. Calibration technology can improve the absolute positioning accuracy of the robot by correcting the robot kinematics parameters. Therefore, it needs to be calibrated before the robot is used. At present, there are two main methods of robot kinematics calibration: kinematics loop method and axis measurement method. The kinematic loop method is a method to obtain the pose of the end of the robot through the measuring device, and obtain the joint parameters of the robot by solving the kinematic equation of the robot. Compared with the axis measurement method, the kinematic loop method has simple process, strong operability and higher precision.

传统标定方法中,在获取机器人末端位姿时,一般使用激光测量仪、三坐标测量仪等测量装置,价格昂贵,操作复杂。使用视觉测量具有测量速度快、非接触测量等优点。但在进行视觉手眼标定时,由于使用了机器人的运动学参数的名义值,所以导致标定出来的位姿存在重复误差。In traditional calibration methods, measuring devices such as laser measuring instruments and three-coordinate measuring instruments are generally used to obtain the robot's end pose, which is expensive and complicated to operate. The use of visual measurement has the advantages of fast measurement speed and non-contact measurement. However, when the visual hand-eye calibration is performed, due to the use of the nominal value of the kinematic parameters of the robot, there is a repetition error in the calibrated pose.

发明内容Contents of the invention

本发明针对现有技术中的上述问题,提出了一种基于视觉测量及距离误差模型的机器人运动学标定方法,有效提高了工业机器人的绝对定位精度。Aiming at the above-mentioned problems in the prior art, the present invention proposes a robot kinematics calibration method based on visual measurement and a distance error model, which effectively improves the absolute positioning accuracy of industrial robots.

为了实现上述目的,本发明实施例提供的技术方案如下:In order to achieve the above object, the technical solutions provided by the embodiments of the present invention are as follows:

一种基于视觉测量及距离误差模型的机器人运动学标定方法,所述方法包括以下步骤:A kind of robot kinematics calibration method based on visual measurement and distance error model, described method comprises the following steps:

S1、建立修正的机器人D-H模型;S1, establish the corrected robot D-H model;

S2、距离误差模型;S2, distance error model;

S3、建立机器人运动学标定模型;S3. Establishing a robot kinematics calibration model;

S4、手眼关系与运动学参数同时标定;S4. Simultaneous calibration of hand-eye relationship and kinematic parameters;

S5、末端实际坐标位置测量;S5. Measurement of the actual coordinate position of the end;

S6、修正机器人D-H参数和手眼关系;S6, correcting robot D-H parameters and hand-eye relationship;

S7、实验验证,判断是否满足精度要求,若满足,则标定结束,若否,重新选取位置点,将实 验结果迭代,再次进行标定实验。S7. Experimental verification, judging whether the accuracy requirements are met, if so, then the calibration ends, if not, re-select the position point, iterate the experimental results, and perform the calibration experiment again.

作为本发明的进一步改进,所述步骤S1建立修正的机器人D-H运动学模型中,传统D-H模型相邻关节坐标系齐次变换关系矩阵为:As a further improvement of the present invention, in the modified D-H kinematics model of the robot established in the step S1, the homogeneous transformation relationship matrix of the adjacent joint coordinate systems of the traditional D-H model is:

当相邻两个关节的旋转轴近似平行时,需要引入在y轴上的旋转量β来表示,构成修正的D-H模型,即MDH模型,则相邻关节坐标系的转换矩阵为:When the rotation axes of two adjacent joints are approximately parallel, it is necessary to introduce the rotation amount β on the y-axis to represent the modified D-H model, that is, the MDH model. The transformation matrix of the adjacent joint coordinate system is:

其中,a为连杆长度,α为连杆转角,d为连杆偏距,θ为关节角,β为绕y轴旋转角。Among them, a is the length of the connecting rod, α is the rotation angle of the connecting rod, d is the offset distance of the connecting rod, θ is the joint angle, and β is the rotation angle around the y-axis.

作为本发明的进一步改进,所述步骤S2建立距离误差模型具体包括:机器人末端被测点在基础坐标系中的坐标为PR(i),在测量坐标系中的坐标为PRW(i),任意两点的距离误差可以表示为:As a further improvement of the present invention, the step S2 to establish a distance error model specifically includes: the coordinates of the measured point at the end of the robot in the basic coordinate system are P R (i), and the coordinates in the measurement coordinate system are P RW (i) , the distance error between any two points can be expressed as:

Δd(i+1)=|IR(i+1)|-|IRW(i+1)|Δd(i+1)=|I R (i+1)|-|I RW (i+1)|

这里,|IR(i+1)|表示机器人实际轨迹上点PR(i)到PR(i+1)的距离;|IRW(i+1)|表示机器人指令轨迹上点PRW(i)到PRW(i+1)的距离。Here, |I R (i+1)| represents the distance from point PR (i) to PR (i+1) on the actual trajectory of the robot; |I RW (i+1)| represents the point PRW on the robot command trajectory (i) Distance to P RW (i+1).

相邻两点间的距离误差和位置误差的关系可表示成:The relationship between the distance error and position error between two adjacent points can be expressed as:

dp(i)为某一点在基础坐标系中的位置偏差向量,dp(i)=PR(i)-PRW(i)。d p (i) is the position deviation vector of a certain point in the basic coordinate system, d p (i)=P R (i)-P RW (i).

在连杆几何参数误差影响下,相邻连杆坐标系的齐次变换矩阵将变为微分扰动齐次矩阵为:The homogeneous transformation matrix of adjacent connecting rod coordinate system under the influence of connecting rod geometric parameter error will become The differential perturbation homogeneous matrix is:

则机器人末端连杆相对于基础坐标系的变换矩阵为:Then the transformation matrix of the connecting rod at the end of the robot relative to the base coordinate system is:

其中, in,

计算化简获得误差矩阵为:The calculation simplification obtains the error matrix as:

其中第四列的前三项为机器人定位误差dp[dx dy dz]TThe first three items in the fourth column are robot positioning error dp[d x d y d z ] T .

作为本发明的进一步改进,所述步骤S3中机器人运动学标定模型的公式为:As a further improvement of the present invention, the formula of the robot kinematics calibration model in the step S3 is:

这里,Δd(i+1)为距离误差,Δq为机器人运动学参数误差。Here, Δd(i+1) is the distance error, and Δq is the robot kinematics parameter error.

作为本发明的进一步改进,所述步骤S4中手眼关系与运动学参数同时标定包括:As a further improvement of the present invention, the simultaneous calibration of hand-eye relationship and kinematic parameters in step S4 includes:

机器人实际运动到的位置点之间的实际距离dW(i+1)与使用标定出来的有误差的手眼关系矩阵X计算出的机器人实际运动到的位置的点之间的距离d′W(i+1)的关系式为:The distance between the actual distance d W (i+1) between the position points where the robot actually moves and the distance d′ W ( The relational expression of i+1) is:

机器人指令轨迹上点的距离dR(i+1)与机器人实际运动到的位置的点之间的距离dW(i+1)之间的关系式为:The relationship between the distance d R (i+1) of the point on the command trajectory of the robot and the distance d W (i+1) between the point where the robot actually moves is:

手眼关系与运动学参数同时标定公式为:The simultaneous calibration formula of hand-eye relationship and kinematic parameters is:

作为本发明的进一步改进,所述步骤S5具体为:As a further improvement of the present invention, the step S5 is specifically:

在机器人工作空间内,取任意n个点,记录每个点的坐标值,即所述的指令轨迹点PRW(i)。同时利用CCD相机求出每幅图片的外参数矩阵M,然后求出手眼标定矩阵X。则机器人末端执行器坐标系相对于世界坐标系的位姿矩阵为A=M-1*X-1,位姿矩阵A的第四列前三个元素即为机器人末端执行器的世界坐标,即所述的实际轨迹点PR(i)。In the working space of the robot, any n points are taken, and the coordinate value of each point is recorded, that is, the command track point P RW (i). At the same time, the external parameter matrix M of each picture is obtained by using the CCD camera, and then the hand-eye calibration matrix X is obtained. Then the pose matrix of the robot end effector coordinate system relative to the world coordinate system is A=M -1 *X -1 , and the first three elements in the fourth column of the pose matrix A are the world coordinates of the robot end effector, namely The actual trajectory point P R (i).

为了减少计算舍入误差,取点时采用等距离标定模型,使机器人运动轨迹上相邻两点之间的距离 相等,则距离误差标定模型简化为:In order to reduce calculation rounding errors, an equidistance calibration model is used when taking points, so that the distance between two adjacent points on the robot trajectory is equal, then the distance error calibration model is simplified as:

作为本发明的进一步改进,所述步骤S6具体为:As a further improvement of the present invention, the step S6 is specifically:

将步骤S5中的每一个指定点对应的指令轨迹坐标值及其对应的由CCD相机测量得到的机器人末端的实际轨迹坐标值代入到步骤S4中的机器人手眼关系与运动学参数同时标定公式,组成一个方程组,将方程组改写成矩阵形式,采用广义逆矩阵的基本理论求得最小二乘解,即机器人各连杆几何参数误差值Δai-1,Δαi-1,Δdi,Δθi,Δβi,以及手眼关系参数误差。将连杆几何参数误差带入各连杆进行修正,将手眼参数误差带入手眼矩阵进行修正。Substituting the command trajectory coordinate value corresponding to each specified point in step S5 and the corresponding actual trajectory coordinate value of the robot end measured by the CCD camera into the simultaneous calibration formula of the robot's hand-eye relationship and kinematic parameters in step S4, the composition A system of equations, rewrite the system of equations into a matrix form, and use the basic theory of generalized inverse matrix to obtain the least squares solution, that is, the error values of the geometric parameters of the robot's connecting rods Δa i-1 , Δα i-1 , Δd i , Δθ i , Δβ i , and hand-eye relationship parameter error. The geometric parameter errors of the connecting rods are brought into each connecting rod for correction, and the hand-eye parameter errors are brought into the hand-eye matrix for correction.

作为本发明的进一步改进,所述步骤S7为:As a further improvement of the present invention, the step S7 is:

运用修正的连杆几何参数和修正的手眼关系矩阵求出修正过的距离误差,进行实验验证,对实验后的结果进行分析计算,判断是否满足精度要求,若是,则标定结束,若否,则重新选取位置点,再次进行标定实验。Use the corrected geometric parameters of the connecting rod and the corrected hand-eye relationship matrix to obtain the corrected distance error, conduct experimental verification, analyze and calculate the results after the experiment, and judge whether the accuracy requirements are met. If yes, the calibration is over. If not, then Re-select the position point and perform the calibration experiment again.

附图说明Description of drawings

图1为本发明基于视觉测量及距离误差模型的机器人运动学标定方法的具体流程图;Fig. 1 is the specific flowchart of the robot kinematics calibration method based on vision measurement and distance error model of the present invention;

图2为本发明具体实施方式中六轴工业机器人的D-H运动学模型图;Fig. 2 is the D-H kinematics model diagram of six-axis industrial robot in the specific embodiment of the present invention;

图3为本发明具体实施方式中机器人的距离误差模型示意图;Fig. 3 is the schematic diagram of the distance error model of the robot in the specific embodiment of the present invention;

图4为本发明具体实施方式中机器人的视觉测量过程示意图;Fig. 4 is the schematic diagram of the visual measurement process of the robot in the specific embodiment of the present invention;

图5为本发明具体实施方式中机器人视觉采点时的等距离模型示意图;Fig. 5 is the schematic diagram of the equidistance model when the robot vision collects points in the specific embodiment of the present invention;

具体实施方式detailed description

如图1所示为基于视觉测量及距离误差模型的机器人运动学标定方法的流程框图,下面根据附图及具体实例对本发明的实施作进一步说明:As shown in Figure 1, it is a flow chart of the robot kinematics calibration method based on visual measurement and distance error model, and the implementation of the present invention will be further described below according to the accompanying drawings and specific examples:

S1、建立修正的机器人D-H模型;S1, establish the corrected robot D-H model;

D-H模型是最基本的机器人运动学模型,它是描述如何对机器人的连杆和关节进行建模的方法,广泛适用于任何机器人的构型。图2所示为6轴机器人的D-H运动学模型图,包含4个几何参数:连杆长度a,连杆转角α,连杆偏距d,关节角θ。传统D-H模型连杆i-1和连杆i的相邻关节坐标系齐次变换关系矩阵如下(1)公式所示:The D-H model is the most basic robot kinematics model. It is a method to describe how to model the connecting rods and joints of the robot, and is widely applicable to any robot configuration. Figure 2 shows the D-H kinematics model diagram of a 6-axis robot, which contains four geometric parameters: link length a, link rotation angle α, link offset distance d, and joint angle θ. The homogeneous transformation relationship matrix of the adjacent joint coordinate system of the traditional D-H model connecting rod i-1 and connecting rod i is shown in the following formula (1):

但是当相邻两个关节的旋转轴近似平行时,会存在一定的误差,理想中的绝对平行在实际中是不存在,即使两关节旋转轴离绝对平行偏差很小,都会导致它们的公垂线与理想的绝对平行时任意取的公垂 线之间存在极大的误差。所以需要引入在y轴上的旋转量β来表示,构成修正的D-H模型,即MDH模型,则相邻关节坐标系的转换矩阵如下(2)公式所示:However, when the rotation axes of two adjacent joints are approximately parallel, there will be certain errors. The ideal absolute parallelism does not exist in practice. Even if the rotation axes of the two joints have a small deviation from absolute parallelism, their common There is a huge error between the arbitrarily taken public perpendiculars when the line is absolutely parallel to the ideal. Therefore, it is necessary to introduce the rotation amount β on the y-axis to represent it to form a modified D-H model, that is, the MDH model. The transformation matrix of the adjacent joint coordinate system is shown in the following formula (2):

其中,a为连杆长度,α为连杆转角,d为连杆偏距,θ为关节角,β为绕y轴旋转角。Among them, a is the length of the connecting rod, α is the rotation angle of the connecting rod, d is the offset distance of the connecting rod, θ is the joint angle, and β is the rotation angle around the y-axis.

S2、距离误差模型;S2, distance error model;

图3所示为距离误差模型示意图,机器人末端被测点在基坐标系中的坐标为PR(i),在测量坐标系中的坐标为PRW(i),公式(3)为任意两点的距离误差模型:Figure 3 is a schematic diagram of the distance error model. The coordinates of the measured point at the end of the robot in the base coordinate system are P R (i), and the coordinates in the measurement coordinate system are P RW (i). Formula (3) is any two Point distance error model:

Δd(i+1)=|IR(i+1)|-|IRW(i+1)| (3)Δd(i+1)=|I R (i+1)|-|I RW (i+1)| (3)

这里,|IR(i+1)|表示机器人实际轨迹上点PR(i)到PR(i+1)的距离;|IRW(i+1)|表示机器人指令轨迹上点PRW(i)到PRW(i+1)的距离。Here, |I R (i+1)| represents the distance from point PR (i) to PR (i+1) on the actual trajectory of the robot; |I RW (i+1)| represents the point PRW on the robot command trajectory (i) Distance to P RW (i+1).

相邻两点间的距离误差和位置误差的关系如下(4)公式所示:The relationship between the distance error and position error between two adjacent points is shown in the following formula (4):

dp(i)为某一点在基础坐标系中的位置偏差向量,dp(i)=PR(i)-PRW(i)。d p (i) is the position deviation vector of a certain point in the basic coordinate system, d p (i)=P R (i)-P RW (i).

由于制造和安装过程中机器人关节的实际几何参数与理论参数值之间存在偏差,,相邻连杆坐标系的齐次变换矩阵将变为公式(5)为相邻连杆的微分扰动齐次矩阵:Due to the deviation between the actual geometric parameters of the robot joints and the theoretical parameter values during the manufacturing and installation process, the homogeneous transformation matrix of the adjacent link coordinate system will become Formula (5) is the differential perturbation homogeneous matrix of adjacent connecting rods:

这里, here,

机器人末端连杆相对于基础坐标系的变换矩阵如下(6)公式所示:The transformation matrix of the connecting rod at the end of the robot relative to the base coordinate system is shown in the following formula (6):

其中, in,

计算化简获得误差矩阵如下(7)式所示:Calculate and simplify to obtain the error matrix as shown in the following formula (7):

其中第四列的前三项为机器人定位误差dp=[dx dy dz]T The first three items in the fourth column are robot positioning error dp=[d x d y d z ] T

S3、建立机器人运动学标定模型;S3. Establishing a robot kinematics calibration model;

如图3所示为机器人距离误差模型示意图,对于机器人在三维空间中任意两点,虽然它们在机器人基坐标系和测量坐标系中的坐标值是不同的,但是这两点在机器人基坐标系中的距离和在测量坐标系中的距离是相同的。利用这一特点,建立了机器人距离误差标定模型,公式如下(8)所示:Figure 3 is a schematic diagram of the distance error model of the robot. For any two points of the robot in the three-dimensional space, although their coordinate values in the robot base coordinate system and the measurement coordinate system are different, the two points in the robot base coordinate system The distance in is the same as the distance in the survey coordinate system. Taking advantage of this feature, a robot distance error calibration model is established, and the formula is shown in (8):

这里,Δd(i+1)为距离误差,Δq为机器人运动学参数误差,Bi为系数矩阵,可通过S2求解。Here, Δd( i +1) is the distance error, Δq is the robot kinematics parameter error, and Bi is the coefficient matrix, which can be solved by S2.

S4、手眼关系与运动学参数同时标定;S4. Simultaneous calibration of hand-eye relationship and kinematic parameters;

在进行视觉测量手眼标定时,由于使用了机器人运动学参数的名义值,所以导致标定出来的位姿存在重复误差,求得的机器人末端执行器实际轨迹上与指令轨迹上的点对应的机器人实际运动到的位置的点的世界坐标并不精确,必须要把该误差考虑在内。在实际运动中机器人两位置点之间的实际距离dW(i+1)与使用标定出来的有误差的手眼关系矩阵X计算出的机器人实际运动到的位置的点之间的距离d′W(i+1)的关系式为:When performing visual measurement hand-eye calibration, due to the use of the nominal value of the robot kinematics parameters, there is a repetition error in the calibrated pose. The world coordinates of the point at the moved position are not exact, and this error must be taken into account. In the actual movement, the actual distance d W (i+1) between the two positions of the robot and the distance d′ W between the point where the robot actually moves to is calculated using the calibrated error hand-eye relationship matrix X The relational expression of (i+1) is:

机器人指令轨迹上点的距离dR(i+1)与机器人实际运动到的位置的点之间的距离dW(i+1)之间的关系式为:The relationship between the distance d R (i+1) of the point on the command trajectory of the robot and the distance d W (i+1) between the point where the robot actually moves is:

则手眼关系与运动学参数同时标定公式如下(9)公式所示:Then the simultaneous calibration formula of hand-eye relationship and kinematic parameters is shown in formula (9):

S5、末端实际坐标位置测量;S5. Measurement of the actual coordinate position of the end;

在机器人工作空间内,任意选取n个点,记录每个点的坐标值,即所述的指令轨迹点PRW(i)。同时利用CCD相机求出每幅图片的外参数矩阵M,然后求出手眼标定结果X。则机器人末端执行器坐标系相对于世界坐标系的位姿矩阵为A=M-1*X-1,位姿矩阵A的第四列前三个元素即为机器人末端执行器的世界坐标,即所述的实际轨迹点PR(i),图4为机器人视觉测量示意图。In the working space of the robot, randomly select n points, and record the coordinate value of each point, that is, the command trajectory point P RW (i). At the same time, the external parameter matrix M of each picture is obtained by using the CCD camera, and then the hand-eye calibration result X is obtained. Then the pose matrix of the robot end effector coordinate system relative to the world coordinate system is A=M -1 *X -1 , and the first three elements in the fourth column of the pose matrix A are the world coordinates of the robot end effector, namely The actual trajectory point P R (i), Fig. 4 is a schematic diagram of robot vision measurement.

为了减少计算舍入误差,取点时采用等距离标定模型,图5为等距离采点模型示意图,使机器人运动轨迹上相邻两点之间的距离相等,则距离误差标定模型可简化为公式(10):In order to reduce calculation rounding errors, an equidistant calibration model is used when taking points. Figure 5 is a schematic diagram of the equidistant point collection model, so that the distance between two adjacent points on the robot trajectory is equal, and the distance error calibration model can be simplified into the formula (10):

S6、修正机器人D-H参数和手眼关系;S6, correcting robot D-H parameters and hand-eye relationship;

将步骤S5中的每一个指定点对应的指令轨迹坐标值及其对应的由CCD相机测量得到的机器人末端的实际轨迹坐标值代入到步骤S4中的机器人手眼关系与运动学参数同时标定公式。Substitute the command trajectory coordinate value corresponding to each designated point in step S5 and the corresponding actual trajectory coordinate value of the end of the robot measured by the CCD camera into the simultaneous calibration formula of robot hand-eye relationship and kinematic parameters in step S4.

由n个点得到n-1个方程,组成一个方程组;Obtain n-1 equations from n points to form an equation system;

将方程组改写成矩阵形式,采用广义逆矩阵的基本理论求得最小二乘解,即机器人各连杆几何参数误差值Δai-1,Δαi-1,Δdi,Δθi,Δβi,以及手眼关系参数误差。将连杆几何参数误差带入各连杆进行修正,将手眼参数误差带入手眼矩阵进行修正。Rewrite the equations into a matrix form, and use the basic theory of generalized inverse matrices to obtain the least squares solution, that is, the error values of the geometric parameters of each connecting rod of the robot Δa i-1 , Δα i-1 , Δd i , Δθ i , Δβ i , And hand-eye relationship parameter error. The geometric parameter errors of the connecting rods are brought into each connecting rod for correction, and the hand-eye parameter errors are brought into the hand-eye matrix for correction.

S7、实验验证S7. Experimental verification

运用修正的连杆几何参数和修正的手眼关系矩阵求出修正过的距离误差,进行实验验证,对实验后的结果进行分析计算,距离误差是否满足要求,判断机器人是否满足精度要求,若是,则标定结束,若否,返回步骤S5,求取另外的实验数据点,再次进行标定实验,直到达到精度要求。Calculate the corrected distance error by using the corrected connecting rod geometric parameters and the corrected hand-eye relationship matrix, conduct experimental verification, analyze and calculate the results after the experiment, determine whether the distance error meets the requirements, and judge whether the robot meets the accuracy requirements, and if so, then The calibration is finished, if not, return to step S5, obtain another experimental data point, and perform the calibration experiment again until the accuracy requirement is met.

上述基于视觉测量及距离误差模型的机器人运动学标定方法,通过构建修正过的5参数D-H模型,使运动学模型更加精确。采用了运动学回路法构建机器人误差模型,简单,高效,通用性强。在求取实际点位置坐标的时候,采用了视觉测量的方式,具有测量速度快、非接触测量等优点。手眼关系和运动学参数同时标定的方式,避免了重复误差,大大提高了标定的精度。The above robot kinematics calibration method based on visual measurement and distance error model makes the kinematics model more accurate by constructing a modified 5-parameter D-H model. The kinematics loop method is used to construct the robot error model, which is simple, efficient and highly versatile. When obtaining the coordinates of the actual point position, the method of visual measurement is adopted, which has the advantages of fast measurement speed and non-contact measurement. The simultaneous calibration of hand-eye relationship and kinematic parameters avoids repeated errors and greatly improves the calibration accuracy.

综上所述,本发明提供的基于视觉测量及距离误差模型的机器人运动学标定方法具有简单、实用、高效、快捷的优点,普遍适用于串联关节型机器人,可大大提高工业机器人定位精度和距离精度。In summary, the robot kinematics calibration method based on visual measurement and distance error model provided by the present invention has the advantages of simplicity, practicality, high efficiency, and quickness, and is generally applicable to serial joint robots, which can greatly improve the positioning accuracy and distance of industrial robots. precision.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention; for those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (8)

1. A robot kinematics calibration method based on visual measurement and a distance error model is characterized by comprising the following steps:
s1, establishing a corrected D-H model of the robot;
s2, a distance error model;
s3, establishing a robot kinematics calibration model;
s4, calibrating the hand-eye relationship and the kinematic parameters at the same time;
s5, measuring the actual coordinate position of the tail end;
s6, correcting the D-H parameters and the hand-eye relationship of the robot;
and S7, performing experimental verification, judging whether the precision requirement is met, if so, finishing calibration, otherwise, reselecting the position point, and performing the calibration experiment again.
2. The method according to claim 1, wherein in the step S1, in the modified D-H kinematics model of the robot, the homogeneous transformation relation matrix of the coordinate systems of the adjacent joints in the conventional D-H model is:
when the rotation axes of two adjacent joints are approximately parallel, the rotation amount beta on the y axis needs to be introduced to represent, and a modified D-H model, namely an MDH model, is formed, then the transformation matrix of the coordinate systems of the adjacent joints is:
wherein a is the length of the connecting rod, alpha is the rotating angle of the connecting rod, d is the offset distance of the connecting rod, theta is the joint angle, and beta is the rotating angle around the y axis.
3. The method according to claim 1, wherein the step S2 of establishing the distance error model specifically includes: the coordinate of the measured point at the tail end of the robot in the basic coordinate system is PR(i) The coordinate in the measuring coordinate system is PRW(i) The distance error between any two points can be expressed as:
Δd(i+1)=|IR(i+1)|-|IRW(i+1)|
here, | IR(i +1) | represents a point P on the actual trajectory of the robotR(i) To PR(i + 1). IRW(i +1) | represents a point P on the robot instruction trackRW(i) To PRW(i + 1).
The relationship between the distance error and the position error between two adjacent points can be expressed as:
wherein d isp(i) For a positional deviation vector of a point in the base coordinate system, dp(i)=PR(i)-PRW(i)。
Homogeneous transformation matrix of adjacent connecting rod coordinate systems under influence of geometric parameter errors of connecting rodsWill become intoThe differential perturbation homogeneous matrix is:
the transformation matrix of the robot end link with respect to the base coordinate system is:
dT0 i=T0 1Δ1T1 i+T0 2Δ2T2 i+T0 3Δ3T3 i+T0 4Δ4T4 i+T0 5Δ5T5 i+...+T0 iΔi
here, ,
the error matrix obtained by calculation simplification is:
wherein the first three terms in the fourth column are robot positioning errors dp ═ dxdydz]T
4. The method according to claim 3, wherein the formula of the robot kinematics calibration model in the step S3 is as follows:
here, Δ d (i +1) is a distance error, and Δ q is a robot kinematic parameter error.
5. The method according to claim 4, wherein the calibrating the hand-eye relationship and the kinematic parameters in step S4 simultaneously comprises: actual distance d between the points to which the robot actually movesW(i +1) and a distance d 'from a point at which the robot actually moves, which is calculated using the calibrated error hand-eye relationship matrix X'W(i +1) is represented by the following relationship:
distance d of points on robot command trackR(i +1) distance d from the point of the position to which the robot actually movesWThe relationship between (i +1) is:
the simultaneous calibration formula of the hand-eye relationship and the kinematic parameters is as follows:
6. the method according to claim 5, wherein the step S5 is specifically: in the working space of the robot, selecting n points, recording the coordinate value of each point, namely the command trackLocus PRW(i) In that respect And simultaneously, solving an external parameter matrix M of each picture by using a CCD camera, and then solving a hand-eye calibration result X. The pose matrix of the robot end effector coordinate system relative to the world coordinate system is a ═ M-1*X-1The first three elements in the fourth column of the pose matrix A are the world coordinates of the robot end effector, namely the actual track point PR(i)。
In order to reduce the calculation rounding error, an equidistant calibration model is adopted during point taking, so that the distances between two adjacent points on the motion trail of the robot are equal, and the distance error calibration model can be simplified as follows:
7. the method according to claim 6, wherein the step S6 is specifically: substituting the instruction track coordinate value corresponding to each designated point in the step S5 and the actual track coordinate value of the robot tail end obtained by the measurement of the CCD camera corresponding to the instruction track coordinate value in the step S4 into the robot eye relation and kinematic parameter simultaneous calibration formula in the step S4 to form an equation set, rewriting the equation set into a matrix form, and solving a least square solution by adopting the basic theory of a generalized inverse matrix, namely solving the least square solution, namely the error value delta a of the geometric parameter of each connecting rod of the roboti-1,Δαi-1,Δdi,Δθi,ΔβiAnd hand-eye relationship parameter errors. And the geometric parameter errors of the connecting rods are brought into each connecting rod for correction, and the hand-eye parameter errors are brought into the hand-eye matrix for correction.
8. The method according to claim 7, wherein the step S7 is: and (3) solving the corrected distance error by using the corrected geometric parameters of the connecting rod and the corrected hand-eye relation matrix, carrying out experimental verification, analyzing and calculating the result after the experiment, judging whether the precision requirement is met, if so, finishing the calibration, otherwise, reselecting the position point, and carrying out the calibration experiment again.
CN201610157552.2A 2016-03-16 2016-03-16 Robot kinematics calibration method based on vision measurement and distance error model Pending CN105773609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610157552.2A CN105773609A (en) 2016-03-16 2016-03-16 Robot kinematics calibration method based on vision measurement and distance error model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610157552.2A CN105773609A (en) 2016-03-16 2016-03-16 Robot kinematics calibration method based on vision measurement and distance error model

Publications (1)

Publication Number Publication Date
CN105773609A true CN105773609A (en) 2016-07-20

Family

ID=56393078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610157552.2A Pending CN105773609A (en) 2016-03-16 2016-03-16 Robot kinematics calibration method based on vision measurement and distance error model

Country Status (1)

Country Link
CN (1) CN105773609A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106272444A (en) * 2016-08-31 2017-01-04 山东中清智能科技有限公司 A kind of realize trick relation and method that dual robot relation is demarcated simultaneously
CN106335061A (en) * 2016-11-11 2017-01-18 福州大学 Hand-eye relation calibration method based on four-freedom-degree robot
CN106514636A (en) * 2016-12-16 2017-03-22 宁波帝洲自动化科技有限公司 Robot tail end position and gesture analysis method
CN107053216A (en) * 2017-04-25 2017-08-18 苏州蓝斯视觉系统股份有限公司 The automatic calibration method and system of robot and end effector
CN107053176A (en) * 2017-04-09 2017-08-18 北京工业大学 A kind of error modeling method of six-DOF robot end spaces curvilinear path
CN107175660A (en) * 2017-05-08 2017-09-19 同济大学 A kind of six-freedom degree robot kinematics scaling method based on monocular vision
CN107214703A (en) * 2017-07-11 2017-09-29 江南大学 A kind of robot self-calibrating method of view-based access control model auxiliary positioning
CN108656116A (en) * 2018-05-18 2018-10-16 南京邮电大学 Serial manipulator kinematic calibration method based on dimensionality reduction MCPC models
CN108808547A (en) * 2018-06-01 2018-11-13 南京理工大学 A kind of method for fast reconstruction of charged for replacement arrester operation field
CN108927807A (en) * 2018-08-14 2018-12-04 河南工程学院 A kind of robot vision control method based on point feature
CN109591052A (en) * 2018-12-10 2019-04-09 珠海格力智能装备有限公司 Robot positioning accuracy design method and device, storage medium and processor
CN109737902A (en) * 2016-07-25 2019-05-10 珞石(北京)科技有限公司 Kinematics Calibration Method of Industrial Robot Based on Coordinate Measuring Instrument
CN109960284A (en) * 2017-12-22 2019-07-02 广州中国科学院先进技术研究所 A high-precision parallel platform and its controller
CN110065072A (en) * 2019-05-21 2019-07-30 西南交通大学 The verification method of robot repetitive positioning accuracy
CN110181509A (en) * 2019-05-14 2019-08-30 浙江树人学院(浙江树人大学) A kind of industrial robot motion control method based on error compensation
CN110202581A (en) * 2019-06-28 2019-09-06 南京博蓝奇智能科技有限公司 Compensation method, device and the electronic equipment of end effector of robot operating error
CN110253629A (en) * 2019-04-12 2019-09-20 牧今科技 For updating the method and control system that are used for the camera calibrated of robot control
CN110815204A (en) * 2018-08-14 2020-02-21 中国科学院沈阳自动化研究所 A Kinematics Calibration Method for Industrial Robots
CN111203881A (en) * 2020-01-16 2020-05-29 河北工业大学 An online feedback hand-eye calibration method based on weighted least squares
CN111438688A (en) * 2020-02-28 2020-07-24 广东拓斯达科技股份有限公司 Robot correction method, robot correction device, computer equipment and storage medium
CN111604907A (en) * 2020-05-26 2020-09-01 珠海格力智能装备有限公司 Method and device for determining motion parameters
CN111890354A (en) * 2020-06-29 2020-11-06 北京大学 A robot hand-eye calibration method, device and system
CN112318498A (en) * 2020-09-23 2021-02-05 天津大学 Industrial robot calibration method considering parameter coupling
CN112764414A (en) * 2019-11-04 2021-05-07 北京京东乾石科技有限公司 Data processing method, device, system and computer readable storage medium
CN112767493A (en) * 2020-12-30 2021-05-07 浙江大学 Machine vision calibration method for kinematic parameters of Stewart platform
CN112781498A (en) * 2021-02-09 2021-05-11 南京景曜智能科技有限公司 Robot actuator pose repetition precision measuring method and device
CN112847441A (en) * 2021-01-20 2021-05-28 广东工业大学 Six-axis robot coordinate offset detection method and device based on gradient descent method
CN113211449A (en) * 2021-06-10 2021-08-06 哈工大机器人集团股份有限公司 Robot calibration method and system based on path analysis
CN113580137A (en) * 2021-08-12 2021-11-02 天津大学 Mobile robot base-workpiece relative pose determination method based on vision measurement
CN113793391A (en) * 2021-09-03 2021-12-14 苏州汇川控制技术有限公司 Method, device and terminal equipment for establishing actual kinematic transformation relationship of multi-axis motion system
CN113894794A (en) * 2021-11-12 2022-01-07 长春理工大学 Robot closed-loop kinematic chain establishment method for robot self-calibration
CN113997295A (en) * 2021-12-30 2022-02-01 湖南视比特机器人有限公司 Hand-eye calibration method and device for mechanical arm, electronic equipment and storage medium
CN115091456A (en) * 2022-07-01 2022-09-23 武汉理工大学 Robot hand-eye calibration method based on matrix solution
CN115107024A (en) * 2022-06-27 2022-09-27 北京工业大学 A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology
CN116277000A (en) * 2023-03-16 2023-06-23 浙江大学 A Kinematics Calibration Method of Serial Manipulator Based on Improved Condor Search Algorithm
CN117400256A (en) * 2023-11-21 2024-01-16 扬州鹏顺智能制造有限公司 Industrial robot continuous track control method based on visual images

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737902A (en) * 2016-07-25 2019-05-10 珞石(北京)科技有限公司 Kinematics Calibration Method of Industrial Robot Based on Coordinate Measuring Instrument
CN106272444B (en) * 2016-08-31 2018-11-13 山东中清智能科技股份有限公司 A method of realizing that trick relationship and dual robot relationship are demarcated simultaneously
CN106272444A (en) * 2016-08-31 2017-01-04 山东中清智能科技有限公司 A kind of realize trick relation and method that dual robot relation is demarcated simultaneously
CN106335061A (en) * 2016-11-11 2017-01-18 福州大学 Hand-eye relation calibration method based on four-freedom-degree robot
CN106514636A (en) * 2016-12-16 2017-03-22 宁波帝洲自动化科技有限公司 Robot tail end position and gesture analysis method
CN107053176A (en) * 2017-04-09 2017-08-18 北京工业大学 A kind of error modeling method of six-DOF robot end spaces curvilinear path
CN107053216A (en) * 2017-04-25 2017-08-18 苏州蓝斯视觉系统股份有限公司 The automatic calibration method and system of robot and end effector
CN107175660A (en) * 2017-05-08 2017-09-19 同济大学 A kind of six-freedom degree robot kinematics scaling method based on monocular vision
CN107214703A (en) * 2017-07-11 2017-09-29 江南大学 A kind of robot self-calibrating method of view-based access control model auxiliary positioning
CN109960284A (en) * 2017-12-22 2019-07-02 广州中国科学院先进技术研究所 A high-precision parallel platform and its controller
CN108656116A (en) * 2018-05-18 2018-10-16 南京邮电大学 Serial manipulator kinematic calibration method based on dimensionality reduction MCPC models
CN108656116B (en) * 2018-05-18 2021-09-28 南京邮电大学 Series robot kinematic parameter calibration method based on dimension reduction MCPC model
CN108808547A (en) * 2018-06-01 2018-11-13 南京理工大学 A kind of method for fast reconstruction of charged for replacement arrester operation field
CN108927807A (en) * 2018-08-14 2018-12-04 河南工程学院 A kind of robot vision control method based on point feature
CN110815204A (en) * 2018-08-14 2020-02-21 中国科学院沈阳自动化研究所 A Kinematics Calibration Method for Industrial Robots
CN110815204B (en) * 2018-08-14 2023-06-06 中国科学院沈阳自动化研究所 Industrial robot kinematics calibration method
CN108927807B (en) * 2018-08-14 2020-08-07 河南工程学院 Robot vision control method based on point characteristics
CN109591052A (en) * 2018-12-10 2019-04-09 珠海格力智能装备有限公司 Robot positioning accuracy design method and device, storage medium and processor
CN110253629A (en) * 2019-04-12 2019-09-20 牧今科技 For updating the method and control system that are used for the camera calibrated of robot control
US11571816B2 (en) 2019-04-12 2023-02-07 Mujin, Inc. Method and control system for updating camera calibration for robot control
US12186918B2 (en) 2019-04-12 2025-01-07 Mujin, Inc. Method and control system for and updating camera calibration for robot control
CN110181509A (en) * 2019-05-14 2019-08-30 浙江树人学院(浙江树人大学) A kind of industrial robot motion control method based on error compensation
CN110065072A (en) * 2019-05-21 2019-07-30 西南交通大学 The verification method of robot repetitive positioning accuracy
CN110202581A (en) * 2019-06-28 2019-09-06 南京博蓝奇智能科技有限公司 Compensation method, device and the electronic equipment of end effector of robot operating error
CN112764414A (en) * 2019-11-04 2021-05-07 北京京东乾石科技有限公司 Data processing method, device, system and computer readable storage medium
CN111203881A (en) * 2020-01-16 2020-05-29 河北工业大学 An online feedback hand-eye calibration method based on weighted least squares
CN111203881B (en) * 2020-01-16 2022-02-08 河北工业大学 On-line feedback hand-eye calibration method based on weighted least square method
CN111438688A (en) * 2020-02-28 2020-07-24 广东拓斯达科技股份有限公司 Robot correction method, robot correction device, computer equipment and storage medium
CN111604907A (en) * 2020-05-26 2020-09-01 珠海格力智能装备有限公司 Method and device for determining motion parameters
CN111604907B (en) * 2020-05-26 2022-01-28 珠海格力智能装备有限公司 Method and device for determining motion parameters
CN111890354A (en) * 2020-06-29 2020-11-06 北京大学 A robot hand-eye calibration method, device and system
CN111890354B (en) * 2020-06-29 2022-01-11 北京大学 Robot hand-eye calibration method, device and system
CN112318498A (en) * 2020-09-23 2021-02-05 天津大学 Industrial robot calibration method considering parameter coupling
CN112318498B (en) * 2020-09-23 2022-06-24 天津大学 Industrial robot calibration method considering parameter coupling
CN112767493A (en) * 2020-12-30 2021-05-07 浙江大学 Machine vision calibration method for kinematic parameters of Stewart platform
CN112847441A (en) * 2021-01-20 2021-05-28 广东工业大学 Six-axis robot coordinate offset detection method and device based on gradient descent method
CN112847441B (en) * 2021-01-20 2022-02-15 广东工业大学 Six-axis robot coordinate offset detection method and device based on gradient descent method
CN112781498A (en) * 2021-02-09 2021-05-11 南京景曜智能科技有限公司 Robot actuator pose repetition precision measuring method and device
CN113211449B (en) * 2021-06-10 2022-06-17 哈工大机器人集团股份有限公司 Robot calibration method and system based on path analysis
CN113211449A (en) * 2021-06-10 2021-08-06 哈工大机器人集团股份有限公司 Robot calibration method and system based on path analysis
CN113580137A (en) * 2021-08-12 2021-11-02 天津大学 Mobile robot base-workpiece relative pose determination method based on vision measurement
CN113580137B (en) * 2021-08-12 2023-09-22 天津大学 Mobile robot base-workpiece relative pose determination method based on visual measurement
CN113793391A (en) * 2021-09-03 2021-12-14 苏州汇川控制技术有限公司 Method, device and terminal equipment for establishing actual kinematic transformation relationship of multi-axis motion system
CN113894794A (en) * 2021-11-12 2022-01-07 长春理工大学 Robot closed-loop kinematic chain establishment method for robot self-calibration
CN113894794B (en) * 2021-11-12 2023-08-25 长春理工大学 Robot closed loop motion chain establishment method for self-calibration of robot
CN113997295B (en) * 2021-12-30 2022-04-12 湖南视比特机器人有限公司 Hand-eye calibration method and device for mechanical arm, electronic equipment and storage medium
CN113997295A (en) * 2021-12-30 2022-02-01 湖南视比特机器人有限公司 Hand-eye calibration method and device for mechanical arm, electronic equipment and storage medium
CN115107024A (en) * 2022-06-27 2022-09-27 北京工业大学 A kinematic parameter identification method of industrial robot based on laser tracker multi-station technology
CN115091456A (en) * 2022-07-01 2022-09-23 武汉理工大学 Robot hand-eye calibration method based on matrix solution
CN115091456B (en) * 2022-07-01 2025-02-11 武汉理工大学 Robot hand-eye calibration method based on matrix solution
CN116277000A (en) * 2023-03-16 2023-06-23 浙江大学 A Kinematics Calibration Method of Serial Manipulator Based on Improved Condor Search Algorithm
CN116277000B (en) * 2023-03-16 2025-06-17 浙江大学 A kinematic calibration method for serial manipulators based on improved vulture search algorithm
CN117400256A (en) * 2023-11-21 2024-01-16 扬州鹏顺智能制造有限公司 Industrial robot continuous track control method based on visual images
CN117400256B (en) * 2023-11-21 2024-05-31 扬州鹏顺智能制造有限公司 Industrial robot continuous track control method based on visual images

Similar Documents

Publication Publication Date Title
CN105773609A (en) Robot kinematics calibration method based on vision measurement and distance error model
CN109859275B (en) Monocular vision hand-eye calibration method of rehabilitation mechanical arm based on S-R-S structure
CN107589934B (en) Solving method for inverse kinematics analytic solution of joint type mechanical arm
CN104608129B (en) Robot Calibration Method Based on Plane Constraints
CN108789404B (en) A vision-based method for calibrating kinematic parameters of serial robots
CN108673509B (en) Motion control method of six-degree-of-freedom wrist offset type serial mechanical arm
CN110815206B (en) Kinematics calibration method for Stewart parallel robot
CN109773786A (en) A kind of industrial robot plane precision scaling method
CN107214703A (en) A kind of robot self-calibrating method of view-based access control model auxiliary positioning
CN107042528A (en) A kind of Kinematic Calibration system and method for industrial robot
CN112318498B (en) Industrial robot calibration method considering parameter coupling
CN107214692A (en) The automatic calibration method of robot system
CN113001535A (en) Automatic correction system and method for robot workpiece coordinate system
CN103231375A (en) Industrial robot calibration method based on distance error models
CN106799745A (en) A kind of industrial machinery arm precision calibration method based on collocating kriging
CN110148187A (en) A kind of the high-precision hand and eye calibrating method and system of SCARA manipulator Eye-in-Hand
CN110962127B (en) Auxiliary calibration device for tail end pose of mechanical arm and calibration method thereof
TWI701123B (en) Automated calibration system and method for workpiece coordinate frame of a robot
CN106777656A (en) A kind of industrial robot absolute precision calibration method based on PMPSD
CN111590566A (en) On-orbit calibration method for kinematic parameters of fully-configured space manipulator
CN110253574A (en) A Multi-task Manipulator Pose Detection and Error Compensation Method
CN113160334A (en) Double-robot system calibration method based on hand-eye camera
CN108656116A (en) Serial manipulator kinematic calibration method based on dimensionality reduction MCPC models
CN108942918A (en) A kind of solid locating method based on line-structured light
CN113843804B (en) Robot kinematics calibration method and system based on plane constraint

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160720