[go: up one dir, main page]

CN105769359B - Bioactive glass fiber dental implant - Google Patents

Bioactive glass fiber dental implant Download PDF

Info

Publication number
CN105769359B
CN105769359B CN201410804261.9A CN201410804261A CN105769359B CN 105769359 B CN105769359 B CN 105769359B CN 201410804261 A CN201410804261 A CN 201410804261A CN 105769359 B CN105769359 B CN 105769359B
Authority
CN
China
Prior art keywords
bioactive
layer
fiber
dental implant
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410804261.9A
Other languages
Chinese (zh)
Other versions
CN105769359A (en
Inventor
吕路可
常沢俊弘
吕官谕
吕宜静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aigumei America Science And Technology Co Ltd
Original Assignee
Aigumei America Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aigumei America Science And Technology Co Ltd filed Critical Aigumei America Science And Technology Co Ltd
Priority to CN201410804261.9A priority Critical patent/CN105769359B/en
Publication of CN105769359A publication Critical patent/CN105769359A/en
Application granted granted Critical
Publication of CN105769359B publication Critical patent/CN105769359B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种生物活性玻璃纤维牙植体。该生物活性玻璃纤维牙植体包括固定件及周边接合件,固定件用于与颌骨或颅骨进行骨整合,周边接合件连接至固定件并且用于连接、支撑牙科赝复物的牙墩,固定件及周边接合件由强化纤维树脂所制成,强化纤维树脂中的纤维形成纤维编织结构,其包括笔直地穿过纤维编织结构的中央纤维轴及多个交错环绕中央纤维轴的辫状纤维轴,强化纤维树脂中的每一纤维具有一或多层。本发明的生物活性玻璃纤维牙植体具有纤维编织结构,可以同时具有高张力强度以及齿质弹性。

The invention provides a bioactive glass fiber dental implant. The bioactive fiberglass dental implant comprises a fixture for osseointegration with the jawbone or skull, and a peripheral joint connected to the fixture and used for connecting and supporting a dental abutment of a dental prosthesis, The fixing and peripheral joints are made of reinforced fiber resin, the fibers in the reinforcing fiber resin form a fiber weave structure, which includes a central fiber shaft passing straight through the fiber weave structure and a plurality of braided fibers interlaced around the central fiber shaft Shaft, each fiber in the reinforced fiber resin has one or more layers. The bioactive glass fiber dental implant of the present invention has a fiber weaving structure and can simultaneously have high tensile strength and dentin elasticity.

Description

生物活性玻璃纤维牙植体Bioactive Fiberglass Dental Implants

技术领域technical field

本发明是有关于一种牙植体,特别是关于一种生物活性玻璃纤维牙植体。The present invention relates to a dental implant, in particular to a bioactive glass fiber dental implant.

背景技术Background technique

牙植体(也可以称之为骨内植入体或固定物)是一种与颌骨或颅骨接合以支撑牙科赝复物,例如牙冠、牙桥、义齿、脸部赝复物的外科组件,或是作为一种牙齿矫正固定器。现今,植牙的基础是一种称为骨整合的生物过程,其材料例如钛,可形成与骨头的密切结合。植牙固定物首先被置放以进行骨整合,然后再附加牙科赝复物。而在牙科赝复物(牙齿、牙桥、义齿)接触植入体前,或是支撑牙科赝复物的牙墩置入前,需要不定的痊愈时间。A dental implant (also called an intraosseous implant or fixture) is a surgical procedure that engages the jawbone or skull to support a dental prosthesis such as a crown, bridge, denture, or facial prosthesis. component, or as an orthodontic retainer. Today, dental implants are based on a biological process called osseointegration, in which materials such as titanium form an intimate bond with bone. Implant fixtures are placed first for osseointegration, and then the dental prosthesis is attached. A variable healing time is required before the dental prosthesis (teeth, bridge, denture) contacts the implant, or before the abutments supporting the dental prosthesis are placed.

牙植体主要是用来支撑牙科赝复物。现今牙植体使骨整合以及骨紧固融合至例如钛或陶瓷等特定材料的生物过程。牙植体和骨头的整合可以在十年内支撑物理负载而不会损坏。Dental implants are primarily used to support dental prostheses. Dental implants today enable the biological process of osseointegration and bone fastening fused to specific materials such as titanium or ceramics. The integration of dental implants and bone can support physical loads without failure for a decade.

对于个别的牙齿置换,首先以牙墩螺钉将植入牙墩固定至牙植体。然后,以牙科用粘固剂、小螺钉将牙冠(牙科赝复物)连接至牙墩,或于牙冠制造时与牙墩熔合。同样地,牙植体也可以通过固定牙桥或活动式假牙的方式而被使用来维持多个牙科赝复物。For individual tooth replacements, the implanted abutment is first secured to the dental implant with an abutment screw. The crown (dental prosthesis) is then attached to the abutment with dental cement, small screws, or fused to the abutment during crown fabrication. Likewise, dental implants can also be used by way of fixed bridges or removable dentures to maintain multiple dental prostheses.

部分来说,牙植体的长期成功是以其可以支撑的力量来定义的。当牙植体没有牙周韧带,在咬合时没有压力感,所以产生的力量会较高。为了抵消这些力量,牙植体的位置必须平均地分布力量于其所支撑的赝复物。应力集中可能造成假牙架子及植牙构件的断裂,或是造成相邻于牙植体的骨头的损失。牙植体的根本位置是取决于生物因素(骨类型、生命结构、健康)以及力学因素。In part, the long-term success of dental implants is defined by the strength they can hold. When the dental implant has no periodontal ligament, there is no sense of pressure when occlusal, so the force generated will be higher. To counteract these forces, the position of the dental implant must evenly distribute the forces to the prosthesis it supports. Stress concentrations can cause fractures of denture frameworks and implant components, or loss of bone adjacent to dental implants. The fundamental position of a dental implant is determined by biological factors (bone type, vital structure, health) as well as mechanical factors.

因此,牙植体的设计必须提供高张力强度以及相似于自然齿的齿质弹性,以应付人类口腔现实生活中的使用。钛或氧化锆(陶瓷)由于其高张力强度而被广泛地作为牙植体来使用。然而,钛或氧化锆(陶瓷)材料缺乏齿质弹性且容易在撞击时破碎。Therefore, the design of dental implants must provide high tensile strength and dentin elasticity similar to natural teeth to cope with the real-life use of the human oral cavity. Titanium or zirconia (ceramics) are widely used as dental implants due to their high tensile strength. However, titanium or zirconia (ceramic) materials lack dentin elasticity and tend to shatter on impact.

因此,需要牙植体的创新设计,以提供现实生活使用的生命周期维持性。Therefore, innovative designs of dental implants are needed to provide life cycle sustainability for real life use.

发明内容Contents of the invention

为了解决上述的缺点和不足,本发明的目的在于提供一种生物活性玻璃纤维牙植体,该生物活性玻璃纤维牙植体为一种具有纤维材料及结构的生物活性玻璃纤维牙植体。In order to solve the above shortcomings and deficiencies, the object of the present invention is to provide a bioactive glass fiber dental implant, which is a bioactive glass fiber dental implant with fiber material and structure.

本发明提供了一种生物活性玻璃纤维牙植体,包含:固定件,用于与颌骨或颅骨进行骨整合;以及The present invention provides a bioactive fiberglass dental implant comprising: a fixture for osseointegration with the jaw or skull; and

周边接合件,连接至所述固定件,该周边接合件用于连接、支撑牙科赝复物的牙墩,a peripheral joint, connected to said fixture, for connecting and supporting the abutment of the dental prosthesis,

所述固定件及周边接合件由强化纤维树脂所制成,该强化纤维树脂中的纤维形成有纤维编织结构;上述强化纤维树脂是指一种将纤维固定于树脂中的材料。The fixing part and the peripheral joint part are made of reinforced fiber resin, and the fibers in the reinforced fiber resin form a fiber weaving structure; the above-mentioned reinforced fiber resin refers to a material that fixes fibers in the resin.

根据本发明所述的生物活性玻璃纤维牙植体,所述纤维编织结构包含:According to the bioactive glass fiber dental implant of the present invention, the fiber weaving structure comprises:

中央纤维轴,笔直地穿过该纤维编织结构;以及a central fiber axis running straight through the fiber weave; and

多个辫状纤维轴交错环绕所述中央纤维轴。A plurality of braided fiber shafts are staggered around the central fiber shaft.

根据本发明所述的生物活性玻璃纤维牙植体,所述强化纤维树脂中的纤维为多层纤维。According to the bioactive glass fiber dental implant of the present invention, the fibers in the reinforced fiber resin are multilayer fibers.

根据本发明所述的生物活性玻璃纤维牙植体,所述多层纤维包括核心层及壳体层,该壳体层围绕于所述核心层的周围表面,According to the bioactive glass fiber dental implant of the present invention, the multi-layer fiber includes a core layer and a shell layer, and the shell layer surrounds the peripheral surface of the core layer,

或所述多层纤维包括核心层、中间层、及壳体层,所述中间层围绕于所述核心层的周围表面,所述壳体层围绕于所述中间层的周围表面。Or the multilayer fiber includes a core layer, an intermediate layer, and a shell layer, the intermediate layer surrounds the peripheral surface of the core layer, and the shell layer surrounds the peripheral surface of the intermediate layer.

根据本发明所述的生物活性玻璃纤维牙植体,所述壳体层的外表面具有点状涂层。According to the bioactive glass fiber dental implant of the present invention, the outer surface of the shell layer has a point-like coating.

根据本发明所述的生物活性玻璃纤维牙植体,所述多层纤维的其中至少一层是由生物惰性材料所制成,且所述多层纤维的其中至少一层是由生物活性材料所制成。According to the bioactive glass fiber dental implant of the present invention, at least one layer of the multi-layer fibers is made of biologically inert materials, and at least one layer of the multi-layer fibers is made of bioactive materials production.

根据本发明所述的生物活性玻璃纤维牙植体,所述生物惰性材料为生物惰性玻璃纤维。According to the bioactive fiberglass dental implant of the present invention, the bioinert material is bioinert glass fiber.

根据本发明所述的生物活性玻璃纤维牙植体,所述生物活性材料为生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙。According to the bioactive glass fiber dental implant of the present invention, the bioactive material is bioactive glass, collagen, hydroxide apatite, or calcium phosphate.

根据本发明所述的生物活性玻璃纤维牙植体,所述多层纤维的每一层为圆形长纤维、六边形长纤维、或条形长纤维所形成。According to the bioactive glass fiber dental implant of the present invention, each layer of the multi-layer fibers is formed by circular long fibers, hexagonal long fibers, or strip long fibers.

根据本发明所述的生物活性玻璃纤维牙植体,所述多层纤维的各层的热膨胀系数由内层往外层逐层降低。According to the bioactive glass fiber dental implant of the present invention, the thermal expansion coefficient of each layer of the multilayer fiber decreases layer by layer from the inner layer to the outer layer.

根据本发明所述的生物活性玻璃纤维牙植体,所述强化纤维树脂为具有生物惰性的强化纤维树脂。According to the biologically active glass fiber dental implant of the present invention, the reinforcing fiber resin is biologically inert reinforcing fiber resin.

根据本发明所述的生物活性玻璃纤维牙植体,所述强化纤维树脂为具有生物分解性的强化纤维树脂。According to the bioactive glass fiber dental implant of the present invention, the reinforcing fiber resin is a biodegradable reinforcing fiber resin.

根据本发明所述的生物活性玻璃纤维牙植体,所述强化纤维树脂为热固性的强化纤维树脂。According to the bioactive glass fiber dental implant of the present invention, the reinforcing fiber resin is a thermosetting reinforcing fiber resin.

根据本发明所述的生物活性玻璃纤维牙植体,所述强化纤维树脂为热可塑性的强化纤维树脂。According to the bioactive glass fiber dental implant of the present invention, the reinforcing fiber resin is a thermoplastic reinforcing fiber resin.

具体而言,本发明提供一种生物活性玻璃纤维牙植体,包含:固定件,用于与颌骨或颅骨进行骨整合;以及Specifically, the present invention provides a bioactive fiberglass dental implant comprising: a fixture for osseointegration with the jaw or skull; and

周边接合件,连接至所述固定件,该周边接合件用于连接、支撑牙科赝复物的牙墩,a peripheral joint, connected to said fixture, for connecting and supporting the abutment of the dental prosthesis,

其中,所述固定件及周边接合件由强化纤维树脂所制成,该强化纤维树脂中的纤维形成有纤维编织结构,以使生物活性玻璃纤维牙植体可同时具有高张力强度以及齿质弹性。也就是说,对于在牙植体上的集中应力,纤维编织结构比传统的单片结构更好,并且通过使用纤维编织结构可避免断裂。Wherein, the fixing part and the peripheral joint part are made of reinforced fiber resin, and the fibers in the reinforced fiber resin form a fiber weaving structure, so that the bioactive glass fiber dental implant can simultaneously have high tensile strength and dentin elasticity . That is, fiber braided structures are better than conventional monolithic structures for concentrated stress on dental implants, and fractures can be avoided by using fiber braided structures.

在本发明的优选实施例中,纤维编织结构包括中央纤维轴及多个辫状纤维轴。中央纤维轴笔直地穿过纤维编织结构,而辫状纤维轴交错环绕中央纤维轴。中央纤维轴作为支撑构件而对辫状纤维轴提供额外的固定力。因此,通过这样的中央加强机制,相较于传统的交叉编织机制,中央纤维轴在此方向上的张力强度较高。除了圆形纤维,每一纤维可为六角形以提供更高的张力强度。在本发明的一个特定实施例中,每一纤维只有一层,其可由生物活性纤维所形成,诸如生物活性玻璃纤维、胶原蛋白、氢氧基磷灰石、或磷酸钙。或者是,纤维也可由具有X光不透性的生物惰性玻璃纤维或生物惰性材料所制成。当植入生物活性玻璃纤维牙植体后,骨整合过程可开始于生物活性玻璃纤维牙植体与骨头之间。换句话说,骨整合过程可开始于生物活性玻璃纤维牙植体的纤维与骨头之间。因为,生物活性玻璃纤维牙植体的纤维包含生物活性材料,相较于传统的涂覆方法,通过纤维编织方法可以提供更紧密的骨整合。In a preferred embodiment of the invention, the fiber weave structure includes a central fiber shaft and a plurality of braided fiber shafts. The central fiber axis runs straight through the fiber weave structure, while the braided fiber axis alternates around the central fiber axis. The central fiber shaft acts as a support member to provide additional anchorage to the braided fiber shaft. Thus, with such a central reinforcement mechanism, the central fiber axis has a higher tensile strength in this direction than with conventional cross-braiding mechanisms. In addition to round fibers, each fiber can be hexagonal to provide higher tensile strength. In a particular embodiment of the invention, each fiber has only one layer, which may be formed from bioactive fibers, such as bioactive glass fibers, collagen, hydroxide apatite, or calcium phosphate. Alternatively, the fibers may also be made of x-ray opaque bioinert glass fibers or bioinert materials. When a bioactive fiberglass dental implant is implanted, the osseointegration process can begin between the bioactive fiberglass dental implant and the bone. In other words, the osseointegration process can start between the fibers of the bioactive fiberglass dental implant and the bone. Because the fibers of bioactive fiberglass dental implants contain bioactive materials, the fiber weaving method can provide tighter osseointegration compared to traditional coating methods.

在本发明的优选的实施例中,强化纤维树脂中的纤维可为多层纤维,且多层纤维的各层的热膨胀系数由内层往外层逐层降低。例如,每一纤维包括核心层及壳体层。壳体层围绕核心层的周围表面,且具有低于核心层的热膨胀系数。由于纤维力学的自然性质,如此设置对于纤维轴的好处是可以承担高张力,因此可提供高张力强度的生物活性玻璃纤维牙植体。高张力强度对于生物活性玻璃纤维牙植体是重要的,因为生物活性玻璃纤维牙植体经常性地使用,并且施加于其上的外力方向不一致。多层纤维的每一层可由圆形长纤维、六边形长纤维、或条形长纤维所形成。在本实施例中,核心层可以由圆形长纤维或六边形长纤维所形成,而壳体层由圆形长纤维、六边形长纤维、或条形长纤维所形成,以加强纤维编织结构的强度。多层纤维的其中至少一层由生物惰性材料所制成,且多层纤维的其中至少一层由生物活性材料所制成。在本发明的特定实施例中,壳体层是由生物活性材料所制成的,诸如生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙。当壳体层与骨头接触时,生物活性材料可自壳体层释放出进而与骨头中的成骨细胞接触,而进行骨整合。而在本实施例中,核心层可为生物惰性材料所制成,以维持生物活性玻璃纤维牙植体的结构。In a preferred embodiment of the present invention, the fibers in the reinforced fiber resin may be multi-layer fibers, and the thermal expansion coefficient of each layer of the multi-layer fibers decreases layer by layer from the inner layer to the outer layer. For example, each fiber includes a core layer and a shell layer. The shell layer surrounds the peripheral surface of the core layer and has a lower coefficient of thermal expansion than the core layer. Due to the natural nature of fiber mechanics, the benefit of such an arrangement for the fiber shaft is that it can withstand high tension, thus providing a high tensile strength bioactive fiberglass dental implant. High tensile strength is important for bioactive fiberglass dental implants because bioactive fiberglass dental implants are frequently used and the direction of external force applied thereto is inconsistent. Each layer of multiple layers of fibers may be formed of round long fibers, hexagonal long fibers, or strip-shaped long fibers. In this embodiment, the core layer may be formed of round long fibers or hexagonal long fibers, and the shell layer may be formed of round long fibers, hexagonal long fibers, or strip long fibers to reinforce the fibers The strength of the braided structure. At least one of the layers of fibers is made of a biologically inert material, and at least one of the layers of fibers is made of a bioactive material. In a particular embodiment of the invention, the shell layer is made of a bioactive material, such as bioactive glass, collagen, hydroxyapatite, or calcium phosphate. When the shell layer is in contact with the bone, the bioactive material can be released from the shell layer and then contact with osteoblasts in the bone to perform osseointegration. In this embodiment, however, the core layer can be made of bioinert material to maintain the structure of the bioactive fiberglass dental implant.

在本发明的优选的实施例中,每一纤维可包括核心层、中间层、及壳体层。中间层围绕于核心层的周围表面,而壳体层围绕于中间层的周围表面。壳体层的热膨胀系数低于中间层的热膨胀系数,且中间层的热膨胀系数低于核心层的热膨胀系数。如此三层结构的好处是,当壳体层与骨头骨整合时,由其余的核心层及中间层所建构的两层结构仍然维持着,因此相较于单层结构可以提供更大的张力强度。多层纤维的其中至少一层由生物惰性材料所制成,且多层纤维的其中至少一层由生物活性材料所制成。例如,在特定实施例中,核心层及/或中间层可由具有X光不透性的生物惰性玻璃纤维或生物惰性材料所制成,而壳体层由生物活性材料所制成,诸如生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙。在本发明的一特定实施例中,核心层及/或中间层可由生物活性材料所制成,诸如生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙,而壳体层可由具有X光不透性的生物惰性玻璃纤维或生物惰性材料所制成。在本发明一特定的实施例中,核心层及/或中间层可以由圆形长纤维、或六边形长纤维所形成,而壳体层可以由圆形长纤维、六边形长纤维、或条形长纤维所形成,以加强纤维编织结构的强度。In a preferred embodiment of the present invention, each fiber may include a core layer, an intermediate layer, and a shell layer. The middle layer surrounds the peripheral surface of the core layer, and the shell layer surrounds the peripheral surface of the middle layer. The shell layer has a lower coefficient of thermal expansion than the middle layer, and the middle layer has a lower coefficient of thermal expansion than the core layer. The advantage of such a three-layer structure is that when the shell layer is osseointegrated with the bone, the two-layer structure constructed by the remaining core layer and the middle layer is still maintained, so it can provide greater tensile strength than a single-layer structure . At least one of the layers of fibers is made of a biologically inert material, and at least one of the layers of fibers is made of a bioactive material. For example, in certain embodiments, the core layer and/or intermediate layer may be made of x-ray opaque bioinert fiberglass or bioinert material, while the shell layer is made of bioactive material, such as bioactive Glass, collagen, hydroxide apatite, or calcium phosphate. In a specific embodiment of the present invention, the core layer and/or the middle layer can be made of bioactive materials, such as bioactive glass, collagen, hydroxide apatite, or calcium phosphate, while the shell layer can be made of Made of X-ray opaque bio-inert fiberglass or bio-inert material. In a specific embodiment of the present invention, the core layer and/or the middle layer can be formed by round long fibers or hexagonal long fibers, and the shell layer can be formed by round long fibers, hexagonal long fibers, Or formed by strips of long fibers to strengthen the strength of the fiber weave structure.

本发明的生物活性玻璃纤维牙植体可提供强健的结构。本发明通过纤维力学以及使用纤维编织方法以提供所述结构。建议的纤维可为加强张力的以及具有一层或多层的纤维。以此方式,所提供的生物活性玻璃纤维牙植体可以改善骨整合过程。The bioactive fiberglass dental implants of the present invention can provide a strong structure. The present invention uses fiber mechanics and uses fiber weaving methods to provide the structure. Suggested fibers may be tension-enhancing and have one or more layers. In this way, the provided bioactive fiberglass dental implant can improve the osseointegration process.

附图说明Description of drawings

图1为本发明的一概括实施例的生物活性玻璃纤维牙植体的示意图;1 is a schematic diagram of a bioactive fiberglass dental implant according to a generalized embodiment of the present invention;

图2A及图2B为本发明的第一实施例及第二实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;2A and 2B are schematic diagrams of fibers used in bioactive glass fiber dental implants according to the first embodiment and the second embodiment of the present invention;

图3A及图3B为本发明的第三实施例及第四实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;3A and 3B are schematic diagrams of fibers used in bioactive glass fiber dental implants according to the third embodiment and the fourth embodiment of the present invention;

图4A及图4B为本发明的第五实施例及第六实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;4A and 4B are schematic diagrams of fibers used in bioactive glass fiber dental implants according to the fifth embodiment and the sixth embodiment of the present invention;

图5A及图5B为本发明的第七实施例及第八实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;5A and 5B are schematic diagrams of fibers used in bioactive glass fiber dental implants according to the seventh embodiment and the eighth embodiment of the present invention;

图6A及图6B为本发明的第九实施例及第十实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;6A and 6B are schematic diagrams of fibers used in bioactive glass fiber dental implants according to the ninth embodiment and the tenth embodiment of the present invention;

图7A及图7B为本发明的第十一实施例及第十二实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;7A and 7B are schematic diagrams of fibers used in bioactive glass fiber dental implants according to the eleventh embodiment and the twelfth embodiment of the present invention;

图8为本发明的第十三实施例的使用于生物活性玻璃纤维牙植体中的纤维的示意图;8 is a schematic diagram of fibers used in bioactive fiberglass dental implants according to a thirteenth embodiment of the present invention;

图9为本发明的另一概括实施例的生物活性玻璃纤维牙植体的示意图。9 is a schematic diagram of a bioactive fiberglass dental implant according to another generalized embodiment of the present invention.

主要附图标号说明:Explanation of main figures and symbols:

1 壳体层 20 辫状纤维轴1 shell layer 20 braided fiber shaft

11 点状涂层 100 生物活性玻璃纤维牙植体11 Spot Coated 100 Bioactive Fiberglass Dental Implants

2 核心层 110 固定件2 Core 110 Fixings

3 中间层 120 周边接合件3 Intermediate layer 120 Peripheral joints

10 中央纤维轴 F 纤维 R 树脂。10 Central Fiber Shaft F Fiber R Resin.

具体实施方式Detailed ways

为使本发明所运用的技术内容、发明目的及其达成的功效有更完整且清楚地揭露,现对本发明进行以下详细说明,并请一并参阅附图及主要附图标号说明。In order to fully and clearly disclose the technical content used by the present invention, the purpose of the invention and the effects it achieves, the present invention is now described in detail below, and please refer to the accompanying drawings and descriptions of main figures.

某些用语参照特定的构件经由实施方式以及以下的专利范围使用。本领域技术人员应当知道,制造者可参照构件使用不同的命名。本申请文件并不意欲分别名称不同而非功能不同的构件。在以下实施方式及专利范围中,用语“包括”及“包含”为开放式使用,因此应被解释为“包括,而不限于”。Certain terms are used with reference to specific components through the embodiments and the following claims. Those skilled in the art will appreciate that manufacturers may use different nomenclature to refer to components. This document does not intend to separate components that differ in name but not in function. In the following embodiments and scope of patents, the words "include" and "include" are used openly, and therefore should be interpreted as "including, but not limited to".

请参阅图1所示,其为本发明的一概括实施例的生物活性玻璃纤维牙植体100的示意图。生物活性玻璃纤维牙植体100包括固定件110及周边接合件120。固定件110用于在生物活性玻璃纤维牙植体100植入后与颌骨或颅骨进行骨整合。周边接合件120连接至固定件110,并且用于连接、支撑牙科赝复物(图未示,例如牙冠)的牙墩(图未示)。固定件110及周边接合件120都由强化纤维树脂所制成。请参阅图1的子图A所示,其为生物活性玻璃纤维牙植体100的俯视图。在子图A中,可见在生物活性玻璃纤维牙植体100中,纤维F是固定于树脂R中的。继续参阅图1的子图B所示,可见纤维F被编织而形成纤维编织结构。纤维编织结构有利于生物活性玻璃纤维牙植体100同时具有高张力强度以及齿质弹性。Please refer to FIG. 1 , which is a schematic diagram of a bioactive glass fiber dental implant 100 according to a general embodiment of the present invention. The bioactive fiberglass dental implant 100 includes a fixation element 110 and a peripheral engagement element 120 . The fixture 110 is used for osseointegration with the jawbone or skull after the implantation of the bioactive fiberglass dental implant 100 . The peripheral joint 120 is connected to the fixture 110 and is used to connect and support an abutment (not shown) of a dental prosthesis (not shown, eg a crown). Both the fixing part 110 and the peripheral joint part 120 are made of reinforced fiber resin. Please refer to sub-figure A of FIG. 1 , which is a top view of the bioactive fiberglass dental implant 100 . In panel A, it can be seen that the fibers F are fixed in the resin R in the bioactive fiberglass dental implant 100 . Continuing to refer to the sub-figure B of FIG. 1 , it can be seen that the fibers F are woven to form a fiber weaving structure. The fiber weave structure facilitates the bioactive fiberglass dental implant 100 to have both high tensile strength and dentin elasticity.

子图B显示的纤维编织结构包括中央纤维轴10及多个辫状纤维轴20。中央纤维轴10笔直地穿过纤维编织结构,而多个辫状纤维轴20交错环绕中央纤维轴。子图B的图案“*”可为辫状纤维轴20提供额外固定以及垂直方向的高张力强度,因此产生比传统的图案“x”更强健的结构。The fiber weaving structure shown in sub-figure B includes a central fiber shaft 10 and a plurality of braided fiber shafts 20 . The central fiber shaft 10 runs straight through the fiber weaving structure, while a plurality of braided fiber shafts 20 alternately surround the central fiber shaft. The pattern "*" of subfigure B can provide additional fixation and high tensile strength in the vertical direction for the braided fiber shaft 20, thus resulting in a more robust structure than the conventional pattern "x".

树脂R可为生物惰性或生物分解性材料所制成的,以促进骨整合过程,并且依照实际实施而定,树脂R可为热固性或热可塑性。纤维F可为单层纤维或多层纤维,并且可由生物惰性或生物活性材料所制成。以下将进一步详细叙述。The resin R can be made of bioinert or biodegradable materials to facilitate the osseointegration process, and depending on actual implementation, the resin R can be thermosetting or thermoplastic. The fibers F can be single-layer fibers or multi-layer fibers, and can be made of biologically inert or biologically active materials. It will be described in further detail below.

参阅图2A及图2B所示,其分别为本发明的第一实施例及第二实施例的使用于生物活性玻璃纤维牙植体100的纤维的示意图。由图2A及图2B可见,使用于生物活性玻璃纤维牙植体100的纤维为单层纤维。然而,纤维可形成为圆形或六边形。形成六边形纤维的目的是为生物活性玻璃纤维牙植体100的纤维编织结构提供高张力强度。在这些实施例中,纤维可为生物活性材料所制成,诸如生物活性玻璃纤维、胶原蛋白、氢氧基磷灰石、或磷酸钙。所以当生物活性玻璃纤维牙植体100植入后,纤维可开始骨整合于骨头。由于本实施例使用的纤维是具有生物活性的,树脂应该以生物惰性材料制成,以维持生物活性玻璃纤维牙植体100的结构。然而,本发明不限于此,纤维也可为具有X光不透性的生物惰性玻璃纤维或生物惰性材料所制成。Referring to FIG. 2A and FIG. 2B , they are schematic diagrams of fibers used in the bioactive glass fiber dental implant 100 according to the first embodiment and the second embodiment of the present invention, respectively. It can be seen from FIG. 2A and FIG. 2B that the fibers used in the bioactive fiberglass dental implant 100 are single-layer fibers. However, the fibers may be formed as circular or hexagonal. The purpose of forming the hexagonal fibers is to provide high tensile strength to the fiber weave structure of the bioactive fiberglass dental implant 100 . In these embodiments, the fibers may be made of bioactive materials, such as bioactive glass fibers, collagen, hydroxide apatite, or calcium phosphate. So when the bioactive fiberglass dental implant 100 is implanted, the fibers can start to osseointegrate into the bone. Since the fibers used in this embodiment are bioactive, the resin should be made of bioinert materials to maintain the structure of the bioactive fiberglass dental implant 100 . However, the present invention is not limited thereto, and the fiber can also be made of X-ray opaque bioinert glass fiber or bioinert material.

参阅图3A及图3B所示,其分别为本发明的第三实施例及第四实施例的使用于生物活性玻璃纤维牙植体100的纤维的示意图。在这些实施例中,生物活性玻璃纤维牙植体100的强化纤维树脂中的纤维为多层纤维,且多层纤维的各层的热膨胀系数由内层往外层逐层降低。由图3A及图3B可见,使用于生物活性玻璃纤维牙植体100的纤维为双层纤维。在这些实施例中,多层纤维包括核心层2及壳体层1,壳体层1围绕于核心层2的周围表面,并且具有低于核心层2的热膨胀系数。双层纤维的设置的好处为可以提供高张力强度,因此可为生物活性玻璃纤维牙植体100提供高张力强度。多层纤维的每一层分别为圆形长纤维、六边形长纤维、或条形长纤维所形成。在这些实施例中,核心层2以圆形长纤维或六边形长纤维所形成,而壳体层1以圆形长纤维所形成。多层纤维的其中至少一层由生物惰性材料所制成,且多层纤维的其中至少一层由生物活性材料所制成。本实施例的壳体层1由生物活性材料所制成,诸如生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙。当壳体层1与骨头接触,生物活性材料可自壳体层1释放出而与骨头中的成骨细胞接触,而进行骨整合。而本实施例的核心层2可由生物惰性材料所制成,例如生物惰性玻璃纤维,以维持生物活性玻璃纤维牙植体100的结构。Referring to FIG. 3A and FIG. 3B , they are schematic diagrams of fibers used in the bioactive glass fiber dental implant 100 according to the third embodiment and the fourth embodiment of the present invention, respectively. In these embodiments, the fibers in the reinforced fiber resin of the bioactive glass fiber dental implant 100 are multi-layer fibers, and the thermal expansion coefficient of each layer of the multi-layer fibers decreases layer by layer from the inner layer to the outer layer. It can be seen from FIG. 3A and FIG. 3B that the fibers used in the bioactive fiberglass dental implant 100 are double-layered fibers. In these embodiments, the multilayer fiber includes a core layer 2 and a shell layer 1 , the shell layer 1 surrounds the peripheral surface of the core layer 2 and has a lower thermal expansion coefficient than the core layer 2 . The advantage of the arrangement of double layers of fibers is that it can provide high tensile strength, so the bioactive glass fiber dental implant 100 can provide high tensile strength. Each layer of the multi-layer fibers is formed of circular long fibers, hexagonal long fibers, or strip-shaped long fibers. In these embodiments, the core layer 2 is formed with round long fibers or hexagonal long fibers, and the shell layer 1 is formed with round long fibers. At least one of the layers of fibers is made of a biologically inert material, and at least one of the layers of fibers is made of a bioactive material. The shell layer 1 of this embodiment is made of bioactive materials, such as bioactive glass, collagen, hydroxyapatite, or calcium phosphate. When the shell layer 1 is in contact with the bone, the bioactive material can be released from the shell layer 1 and contact with the osteoblasts in the bone to perform osseointegration. In this embodiment, the core layer 2 can be made of bioinert material, such as bioinert glass fiber, so as to maintain the structure of the bioactive glass fiber dental implant 100 .

参阅图4A及图4B所示,其分别为本发明的第五实施例及第六实施例的使用于生物活性玻璃纤维牙植体100的纤维的示意图。由图4A及图4B可见,核心层2及壳体层1的设置与第三实施例及第四实施例相似。在第五实施例及第六实施例中,壳体层1是以条形长纤维所形成。条形设置的功能可为纤维间提供更多的固定力。参阅图5A及图5B所示,其分别为本发明的第七实施例及第八实施例的使用于生物活性玻璃纤维牙植体100的纤维的示意图。由图5A及图5B可见,核心层2及壳体层1的设置与第三实施例及第四实施例相似。在第七实施例及第八实施例中,壳体层1的外表面还具有额外的点状涂层11。点状涂层11的功能也是可以为纤维间提供更多的固定力。Refer to FIG. 4A and FIG. 4B , which are schematic diagrams of fibers used in the bioactive glass fiber dental implant 100 according to the fifth embodiment and the sixth embodiment of the present invention, respectively. It can be seen from FIG. 4A and FIG. 4B that the arrangement of the core layer 2 and the shell layer 1 is similar to that of the third embodiment and the fourth embodiment. In the fifth embodiment and the sixth embodiment, the casing layer 1 is formed of strip-shaped long fibers. The function of the strip setting can provide more fixing force between the fibers. Referring to FIG. 5A and FIG. 5B , they are schematic diagrams of fibers used in the bioactive glass fiber dental implant 100 according to the seventh embodiment and the eighth embodiment of the present invention, respectively. It can be seen from FIG. 5A and FIG. 5B that the arrangement of the core layer 2 and the shell layer 1 is similar to that of the third embodiment and the fourth embodiment. In the seventh and eighth embodiments, the outer surface of the housing layer 1 also has an additional dot-like coating 11 . The function of the point coating 11 is also to provide more fixing force between fibers.

参阅图6A及图6B所示,其分别为本发明的第九实施例及第十实施例的使用于生物活性玻璃纤维牙植体100的纤维的示意图。在这些实施例中,生物活性玻璃纤维牙植体100的强化纤维树脂中的纤维为多层纤维,且多层纤维的各层的热膨胀系数由内层往外层逐层降低。由图6A及图6B可见,使用于生物活性玻璃纤维牙植体100的纤维为三层纤维。在这些实施例中,多层纤维包括核心层2、中间层3、及壳体层1,中间层3围绕于核心层2的周围表面,而壳体层1围绕于中间层3的周围表面。壳体层1的热膨胀系数低于中间层3的热膨胀系数,且中间层3的热膨胀系数低于核心层1的热膨胀系数。多层纤维的其中至少一层由生物惰性材料所制成,且多层纤维的其中至少一层由生物活性材料所制成。在这些实施例中,核心层2及/或中间层3可由具有X光不透性的生物惰性玻璃纤维或生物惰性材料所制成,而壳体层1由生物活性材料所制成,诸如生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙。如此三层设置的目的是,当壳体层1与骨头骨整合时,由其余的核心层2及中间层3所建构的两层结构仍然维持着。此外,比起两层设置,三层设置可承担更大的张力。在本实施例中,核心层2可以由圆形长纤维或六边形长纤维所形成,而中间层3及壳体层1可以由圆形长纤维所形成。当然,本发明不限于此,在其他实施例中,核心层2及/或中间层3可由生物活性材料所制成,诸如生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙,而壳体层1可由具有X光不透性的生物惰性玻璃纤维或生物惰性材料所制成,如此,使生物活性材料自核心层2或中间层3释放出,而与骨头中的成骨细胞接触,而进行骨整合。Refer to FIG. 6A and FIG. 6B , which are schematic diagrams of fibers used in the bioactive glass fiber dental implant 100 according to the ninth embodiment and the tenth embodiment of the present invention, respectively. In these embodiments, the fibers in the reinforced fiber resin of the bioactive glass fiber dental implant 100 are multi-layer fibers, and the thermal expansion coefficient of each layer of the multi-layer fibers decreases layer by layer from the inner layer to the outer layer. It can be seen from FIG. 6A and FIG. 6B that the fibers used in the bioactive fiberglass dental implant 100 are three-layer fibers. In these embodiments, the multilayer fiber includes a core layer 2 , an intermediate layer 3 , and a shell layer 1 , the intermediate layer 3 surrounds the peripheral surface of the core layer 2 , and the shell layer 1 surrounds the peripheral surface of the intermediate layer 3 . The thermal expansion coefficient of the shell layer 1 is lower than that of the intermediate layer 3 , and the thermal expansion coefficient of the intermediate layer 3 is lower than that of the core layer 1 . At least one of the layers of fibers is made of a biologically inert material, and at least one of the layers of fibers is made of a bioactive material. In these embodiments, the core layer 2 and/or the middle layer 3 can be made of X-ray opaque bioinert glass fibers or bioinert materials, while the shell layer 1 is made of bioactive materials, such as biological Activated glass, collagen, hydroxide apatite, or calcium phosphate. The purpose of such three-layer arrangement is that when the shell layer 1 is osseointegrated with the bone, the two-layer structure constructed by the rest of the core layer 2 and the middle layer 3 is still maintained. Additionally, a three-ply setup can accommodate greater tension than a two-ply setup. In this embodiment, the core layer 2 may be formed of round long fibers or hexagonal long fibers, and the middle layer 3 and the shell layer 1 may be formed of round long fibers. Of course, the present invention is not limited thereto. In other embodiments, the core layer 2 and/or the intermediate layer 3 may be made of bioactive materials, such as bioactive glass, collagen, HA, or calcium phosphate, The shell layer 1 can be made of bioinert glass fiber or bioinert material with X-ray opacity, so that the bioactive material can be released from the core layer 2 or the middle layer 3 and interact with the osteoblasts in the bone Contact for osseointegration.

参阅图7A、图7B、及图8所示,其分别为本发明的第十一实施例、第十二实施例、及第十三实施例的使用于生物活性玻璃纤维牙植体100的纤维的示意图。由图7A及图7B可见,核心层2、中间层3、及壳体层1的设置与第九实施例及第十实施例相似。在第十一实施例及第十二实施例中,壳体层由条形长纤维所形成。在图8中,核心层2、中间层3、及壳体层1的设置与第十一实施例及第十二实施例相似。在第十三实施例中,中间层3是由六边形长纤维所形成。壳体层1以条形设置的功能是可以为纤维间提供更多的固定力。在本实施例中,壳体层1及中间层3由生物惰性材料所制成,且核心层2由生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙所制成。Referring to Fig. 7A, Fig. 7B, and Fig. 8, they are respectively the fibers used in the bioactive glass fiber dental implant 100 of the eleventh embodiment, the twelfth embodiment, and the thirteenth embodiment of the present invention schematic diagram. It can be seen from FIG. 7A and FIG. 7B that the arrangement of the core layer 2 , the middle layer 3 , and the shell layer 1 is similar to that of the ninth embodiment and the tenth embodiment. In the eleventh embodiment and the twelfth embodiment, the casing layer is formed of strip-shaped long fibers. In FIG. 8, the arrangement of the core layer 2, the intermediate layer 3, and the shell layer 1 is similar to that of the eleventh embodiment and the twelfth embodiment. In the thirteenth embodiment, the middle layer 3 is formed of hexagonal long fibers. The function of the shell layer 1 being arranged in a strip shape is to provide more fixing force between the fibers. In this embodiment, the shell layer 1 and the middle layer 3 are made of biologically inert materials, and the core layer 2 is made of bioactive glass, collagen, HA, or calcium phosphate.

参阅图9所示,其为本发明的另一概括实施例的生物活性玻璃纤维牙植体100的示意图。生物活性玻璃纤维牙植体100根据实际实施,可制造为双螺纹设置。在子图C中,可见纤维F固定于树脂R中,并以此设置在双螺纹设置的生物活性玻璃纤维牙植体100之中;继续参阅图9的子图D所示,可见纤维F被编织而形成纤维编织结构。在子图E中,其为纤维编织结构的断面图。此外,至少一核心层及壳体层可由具有X光不透光性的材料所制成,如此使得生物活性玻璃纤维牙植体100可于X光扫描中显现。请注意上述实施例仅以描述为目的,而不是限制本发明。在其他实施例中,生物活性玻璃纤维牙植体100可为三层以上的结构,而每一层可为各种形状以及由各种材料所制成,只要其中一层由生物惰性材料制成即可,以维持生物活性玻璃纤维牙植体100的结构,而只要其中一层由生物活性材料所制成即可,以促进骨整合。举例来说,使用在生物活性玻璃纤维牙植体100的纤维为十层纤维,其各层形状可分别由圆形长纤维、六边形长纤维、或条形长纤维所形成,而其各层材料可分别由生物活性材料(生物活性玻璃、胶原蛋白、氢氧基磷灰石、磷酸钙)、具有X光不透光性的材料、或生物惰性材料所制成,其中至少一层由生物惰性材料所制成,而至少一层由生物活性材料所制成。Referring to FIG. 9 , it is a schematic diagram of a bioactive glass fiber dental implant 100 according to another general embodiment of the present invention. The bioactive fiberglass dental implant 100 can be manufactured as a double-thread arrangement according to actual implementation. In the sub-figure C, it can be seen that the fiber F is fixed in the resin R, and thus arranged in the bioactive glass fiber dental implant 100 with double threads; continue to refer to the sub-figure D of FIG. braided to form a fiber braided structure. In sub-figure E, it is a cross-sectional view of the fiber braided structure. In addition, at least one core layer and the shell layer can be made of X-ray opaque materials, so that the bioactive glass fiber dental implant 100 can be visualized in X-ray scans. Please note that the above-mentioned embodiments are for the purpose of illustration only, rather than limiting the present invention. In other embodiments, the bioactive fiberglass dental implant 100 can have a structure of more than three layers, and each layer can be in various shapes and made of various materials, as long as one layer is made of bioinert material That is, to maintain the structure of the bioactive fiberglass dental implant 100, only one layer is made of bioactive materials to promote osseointegration. For example, the fibers used in the bioactive fiberglass dental implant 100 are ten-layer fibers, and the shapes of each layer can be formed by circular long fibers, hexagonal long fibers, or strip-shaped long fibers, and each of them The layer materials can be made of bioactive materials (bioactive glass, collagen, hydroxide apatite, calcium phosphate), X-ray opaque materials, or biologically inert materials, at least one layer of which is made of made of biologically inert material, and at least one layer is made of biologically active material.

Claims (12)

1.一种生物活性玻璃纤维牙植体,包含:1. A bioactive fiberglass dental implant comprising: 固定件,用于与颌骨或颅骨进行骨整合;以及Fixtures for osseointegration with the jaw or skull; and 周边接合件,连接至所述固定件,该周边接合件用于连接、支撑牙科赝复物的牙墩,a peripheral joint, connected to said fixture, for connecting and supporting the abutment of the dental prosthesis, 其中,所述固定件及周边接合件由强化纤维树脂所制成,该强化纤维树脂中的纤维形成有纤维编织结构;Wherein, the fixing part and the peripheral joint part are made of reinforced fiber resin, and the fibers in the reinforced fiber resin form a fiber weaving structure; 所述强化纤维树脂中的纤维为多层纤维;The fibers in the reinforced fiber resin are multilayer fibers; 所述多层纤维的其中至少一层是由生物惰性材料所制成,且所述多层纤维的其中至少一层是由生物活性材料所制成。At least one of the layers of fibers is made of a biologically inert material, and at least one of the layers of fibers is made of a bioactive material. 2.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述纤维编织结构包含:2. The bioactive fiberglass dental implant of claim 1, wherein the fiber weave structure comprises: 中央纤维轴,笔直地穿过该纤维编织结构;以及a central fiber axis running straight through the fiber weave; and 多个辫状纤维轴交错环绕所述中央纤维轴。A plurality of braided fiber shafts are staggered around the central fiber shaft. 3.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述多层纤维包括核心层及壳体层,该壳体层围绕于所述核心层的周围表面,3. The bioactive fiberglass dental implant of claim 1, wherein the multilayer fiber comprises a core layer and a shell layer surrounding the peripheral surface of the core layer, 或所述多层纤维包括核心层、中间层、及壳体层,所述中间层围绕于所述核心层的周围表面,所述壳体层围绕于所述中间层的周围表面。Or the multilayer fiber includes a core layer, an intermediate layer, and a shell layer, the intermediate layer surrounds the peripheral surface of the core layer, and the shell layer surrounds the peripheral surface of the intermediate layer. 4.根据权利要求3所述的生物活性玻璃纤维牙植体,其中,所述壳体层的外表面具有点状涂层。4. The bioactive fiberglass dental implant of claim 3, wherein the outer surface of the shell layer has a dotted coating. 5.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述生物惰性材料为生物惰性玻璃纤维。5. The bioactive fiberglass dental implant of claim 1, wherein the bioinert material is bioinert fiberglass. 6.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述生物活性材料为生物活性玻璃、胶原蛋白、氢氧基磷灰石、或磷酸钙。6. The bioactive fiberglass dental implant of claim 1, wherein the bioactive material is bioactive glass, collagen, hydroxyapatite, or calcium phosphate. 7.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述多层纤维的每一层为圆形长纤维、六边形长纤维、或条形长纤维所形成。7. The bioactive fiberglass dental implant according to claim 1, wherein each layer of the multi-layer fibers is formed by round long fibers, hexagonal long fibers, or strip long fibers. 8.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述多层纤维的各层的热膨胀系数由内层往外层逐层降低。8. The bioactive fiberglass dental implant according to claim 1, wherein the coefficient of thermal expansion of each layer of the multilayer fiber decreases layer by layer from the inner layer to the outer layer. 9.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述强化纤维树脂为具有生物惰性的强化纤维树脂。9. The bioactive fiberglass dental implant of claim 1, wherein the reinforcing fiber resin is a biologically inert reinforcing fiber resin. 10.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述强化纤维树脂为具有生物分解性的强化纤维树脂。10. The bioactive fiberglass dental implant according to claim 1, wherein the reinforcing fiber resin is a biodegradable reinforcing fiber resin. 11.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述强化纤维树脂为热固性的强化纤维树脂。11. The bioactive fiberglass dental implant of claim 1, wherein the reinforcing fiber resin is a thermoset reinforcing fiber resin. 12.根据权利要求1所述的生物活性玻璃纤维牙植体,其中,所述强化纤维树脂为热可塑性的强化纤维树脂。12. The bioactive fiberglass dental implant of claim 1, wherein the reinforcing fiber resin is a thermoplastic reinforcing fiber resin.
CN201410804261.9A 2014-12-19 2014-12-19 Bioactive glass fiber dental implant Expired - Fee Related CN105769359B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410804261.9A CN105769359B (en) 2014-12-19 2014-12-19 Bioactive glass fiber dental implant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410804261.9A CN105769359B (en) 2014-12-19 2014-12-19 Bioactive glass fiber dental implant

Publications (2)

Publication Number Publication Date
CN105769359A CN105769359A (en) 2016-07-20
CN105769359B true CN105769359B (en) 2018-08-28

Family

ID=56385230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410804261.9A Expired - Fee Related CN105769359B (en) 2014-12-19 2014-12-19 Bioactive glass fiber dental implant

Country Status (1)

Country Link
CN (1) CN105769359B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201831973U (en) * 2010-09-16 2011-05-18 吕·路克 Fiber abutment material and structure of artificial tooth root implant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8459994B2 (en) * 2004-03-11 2013-06-11 Martin A. Freilich Immediate implant system
US7673550B2 (en) * 2005-03-21 2010-03-09 Pentron Clincal Technologies, LLC Fiber-reinforced composites for dental materials
US7997901B2 (en) * 2008-03-25 2011-08-16 Pentron Clinical Technologies, Llc Fiber reinforced composite post

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201831973U (en) * 2010-09-16 2011-05-18 吕·路克 Fiber abutment material and structure of artificial tooth root implant

Also Published As

Publication number Publication date
CN105769359A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
Atsü et al. Fracture Resistance of Titanium, Zirconia, and Ceramic-Reinforced Polyetheretherketone Implant Abutments Supporting CAD/CAM Monolithic Lithium Disilicate Ceramic Crowns After Aging.
Edelhoff et al. Metal-free implant-supported single-tooth restorations. Part II: Hybrid abutment crowns and material selection.
Çağlar et al. Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants.
Pérez-Pevida et al. Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis
KR101669893B1 (en) The dual structure abutments of the implant
US8057230B1 (en) Ceramic and metal composite dental implant
KR101139962B1 (en) Dental implant having plate
US20150320525A1 (en) Methods for fabricating dental prostheses
Georgiopoulos et al. The effects of implant length and diameter prior to and after osseointegration: a 2-D finite element analysis
KR100662583B1 (en) Crown Temporary Implant Unit
WO2009142429A3 (en) Dental implant fixture
Byrne Fundamentals of implant dentistry
Bonfante et al. Digitally produced fiber-reinforced composite substructures for three-unit implant-supported fixed dental prostheses.
Patankar et al. Immediate, non submerged root analog zirconia implant in single rooted tooth replacement: Case report with 2 years follow up
Joda et al. Ultimate force and stiffness of 2-piece zirconium dioxide implants with screw-retained monolithic lithium-disilicate reconstructions
TWI624250B (en) Bioglass fiber dental implant
Molinero-Mourelle et al. Load bearing capacity of 3-unit screw-retained implant-supported fixed dental prostheses with a mesial and distal cantilever on a single implant: A comparative in vitro study
CN105769359B (en) Bioactive glass fiber dental implant
EP3042628B1 (en) Bioglass fiber dental implant
Hussein A CT-based 3D-Finite element analysis of using zirconia prosthetic material as a full-arch hybrid fixed detachable mandibular prosthesis
AU2012364474B2 (en) Dental implant
US20160175075A1 (en) Bioglass Fiber Dental Implant
KR101603474B1 (en) Bioglass fiber dental implant
KR101608169B1 (en) Implant unit
KR101645357B1 (en) Lithium Disilicate implant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180828