[go: up one dir, main page]

CN105763087A - 一种单相非隔离型光伏并网逆变器及其控制方法 - Google Patents

一种单相非隔离型光伏并网逆变器及其控制方法 Download PDF

Info

Publication number
CN105763087A
CN105763087A CN201610246182.XA CN201610246182A CN105763087A CN 105763087 A CN105763087 A CN 105763087A CN 201610246182 A CN201610246182 A CN 201610246182A CN 105763087 A CN105763087 A CN 105763087A
Authority
CN
China
Prior art keywords
tube
controlled
inductance
grid
controllable switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610246182.XA
Other languages
English (en)
Inventor
沈虹
孙磊
潘飞飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610246182.XA priority Critical patent/CN105763087A/zh
Publication of CN105763087A publication Critical patent/CN105763087A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

一种单相非隔离型光伏并网逆变器及其控制方法,所述逆变器由光伏电池阵列模块、六个可控开关管、两个二极管和两个电感组成。本发明的控制方法可以使逆变器在整个工作周期内共模电压处于或近似处于二分之一的电池电压,因此光伏系统对地寄生电容两端电压中不含高频分量,从而消除非隔离型并网逆变器的漏电流;该电路的六个可控开关管中任意时刻只有两个工作在高频模式,可以有效降低开关损耗,提高了变换效率;适用于无变压器隔离的光伏并网场合。

Description

一种单相非隔离型光伏并网逆变器及其控制方法
技术领域
本发明涉及电力电子变换领域的逆变器控制技术,尤其是一种单相非隔离型光伏并网逆变器及其控制方法。
背景技术
非隔离型光伏并网逆变器具有效率高、体积小、重量轻和成本低等绝对优势。但由于光伏电池板对地寄生电容的存在,使得并网逆变器开关器件的开关动作可能产生高频时变电压作用在寄生电容之上,由此产生的漏电流可能超出允许范围。高频漏电流的产生还会带来传导和辐射干扰、进网电流谐波及损耗增加,甚至威胁设备及人身安全。
单相全桥逆变器SPWM调制方法一般可分为单极性调制和双极性调制。采用单极性调制的单相非隔离型光伏并网逆变器具有输出电压纹波小、变换效率高等特点,但该方案存在较大漏电流;采用双极性调制方法虽然可以抑制漏电流,但输出电压纹波和开关损耗比单极性调制大,从而导致滤波电感大、系统效率低。目前解决漏电流的方案主要是通过改变逆变器拓扑结构,包括直流侧接地法、直流旁路法和交流旁路法等。
直流侧接地法:该方法一般采用半桥电路,将直流侧两个电容中点接地,使得光伏系统对地寄生电容两端电压维持在直流侧电压的二分之一,从而达到抑制漏电流的目的。但该方法要求直流侧电压较高,一般是全桥电路的两倍,需要较高耐压的开关器件,增加了系统成本。
直流旁路法和交流旁路法:此类方法的核心思想是在单相全桥电路的基础上进行改进的,通过加入辅助开关实现单极性调制的同时,保持系统共模电压恒定,从而达到抑制漏电流的目的。
专利EP1369985A2提出在全桥电路桥臂中点间加入双向可控开关组构造新的续流回路;专利US7411802B2仅在光伏电池侧正端引入一支高频开关,同样可以实现续流阶段光伏电池端与电网脱离,但电流通路始终存在三个开关器件,通态损耗大。且根据全桥电路高频等效模型,为了消除单极性SPWM调制产生的高频共模电压,必须使续流阶段的续流回路电压嵌位在光伏电池输入电压的一半,这样才能使漏电流消除,并非简单的使光伏电池板与电网脱离。
发明内容
本发明目的在于提供一种效率高、减小开关损耗、降低电磁干扰的单相非隔离型光伏并网逆变器及其控制方法。
为实现上述目的,采用了以下技术方案:本发明所述逆变器主要包括光伏电池阵列模块、可控开关管S1、可控开关管S2、可控开关管S3、可控开关管S4、可控开关管S5、可控开关管S6、二极管D1、二极管D2、电感L1和电感L2,光伏电池阵列模块作为直流电源与直流母线连接,直流母线的正极端与可控开关管S1的集电极、可控开关管S3的集电极分别连接;可控开关管S1的发射极分别与可控开关管S6的集电极、二极管D1的负极、电感L1的一端相连,电感L1另一端与电网的正极端相连;可控开关管S6的发射极分别与可控开关管S2的集电极、二极管D2的正极相连;可控开关管S3的发射极分别与二极管D2的负极、可控开关管S4的集电极、可控开关管S5的集电极、电感L2的一端相连,电感L2的另一端与电网的负极端连接;可控开关管S5的发射极与二极管D1的正极相连接;直流母线的负极端分别与可控开关管S2的发射极、可控开关管S4的发射极相连接。
本发明所述的单相非隔离型光伏并网逆变器的控制方法,其具体步骤如下:
步骤1,在电网电压正半周期内,可控开关管S5一直导通,可控开关管S1和可控开关管S4同时导通或关断,可控开关管S2、可控开关管S3和可控开关管S6一直关断;采用SPWM调制方法控制可控开关管S1和可控开关管S4导通或关断,当可控开关管S1、可控开关管S4导通时,并网电流的流通路径为直流母线正极端→可控开关管S1→电感L1→电网→电感L2→可控开关管S4→直流母线负极端→直流母线正极端;当可控开关管S1、可控开关管S4关断时,并网电流的流通路径为节点“a”→电感L1→电网→电感L2→可控开关管S5→二极管D1→节点“a”;
步骤2,在电网电压负半周期内,可控开关管S6一直导通,可控开关管S2和可控开关管S3同时导通或关断,而可控开关管S1、可控开关管S4和可控开关管S5一直关断;采用SPWM调制方法控制可控开关管S2和可控开关管S3导通或关断,当可控开关管S2、可控开关管S3导通时,并网电流的流通路径为直流母线正极端→可控开关管S3→电感L2→电网→电感L1→可控开关管S6→可控开关管S2→直流母线负极端→直流母线正极端;当可控开关管S2、可控开关管S3关断时,并网电流的流通路径为节点“b”→电感L2→电网→电感L1→可控开关管S6→二极管D2→节点“b”。
与现有技术相比,本发明具有如下优点:
1、所述并网逆变器输出电压三电平,可以有效减小电感体积和尺寸,减小电感电流纹波。
2、该拓扑及控制方法可保证共模电压恒定,从而有效抑制漏电流。
3、同一时刻仅有两个可控开关管高频工作,减小了开关损耗和电磁干扰。
附图说明
图1为本发明逆变器的电路原理图。
图2为本发明逆变器的开关控制逻辑图。
图3为电网电压正半周期时,可控开关管S1、可控开关管S4和可控开关管S5同时导通,直流侧向电网输送功率电路图。
图4为电网电压正半周期时,可控开关管S5导通和二极管D1导通而可控开关管S1和可控开关管S4关断时的电网续流电路图。
图5为电网电压负半周期时,可控开关管S2、可控开关管S3和可控开关管S6同时导通,直流侧向电网输送功率电路图。
图6为电网电压负半周期时,可控开关管S6导通和二极管D2导通而可控开关管S2和可控开关管S3关断时的电网续流电路图。
具体实施方式
下面结合附图对本发明做进一步说明:
如图1所示,本发明所述逆变器主要包括光伏电池阵列模块、可控开关管S1、可控开关管S2、可控开关管S3、可控开关管S4、可控开关管S5、可控开关管S6、二极管D1、二极管D2、电感L1和电感L2,光伏电池阵列模块作为直流电源与直流母线连接,直流母线的正极端与可控开关管S1的集电极、可控开关管S3的集电极分别连接;可控开关管S1的发射极分别与可控开关管S6的集电极、二极管D1的负极、电感L1的一端相连,电感L1另一端与电网的正极端相连;可控开关管S6的发射极分别与可控开关管S2的集电极、二极管D2的正极相连;可控开关管S3的发射极分别与二极管D2的负极、可控开关管S4的集电极、可控开关管S5的集电极、电感L2的一端相连,电感L2的另一端与电网的负极端连接;可控开关管S5的发射极与二极管D1的正极相连接;直流母线的负极端分别与可控开关管S2的发射极、可控开关管S4的发射极相连接。通过适当的控制方法,保证并网电流与并网电压同频同相,实现单位功率因数并网运行。Cpv为光伏电池阵列模块和大地之间的寄生电容,其容值与环境条件、光伏电池阵列模块尺寸结构等因素有关,一般为50~150nF/kW左右。
图2中,当本发明光伏逆变器工作在电网电压正半周期内时,可控开关管S5一直导通,可控开关管S1和可控开关管S4同时导通或关断,而可控开关管S2、可控开关管S3和可控开关管S6一直关断;采用SPWM调制方法控制可控开关管S1和可控开关管S4导通或关断。工作在电网电压负半周期内时,可控开关管S6一直导通,可控开关管S2和可控开关管S3同时导通或关断,而可控开关管S1、可控开关管S4和可控开关管S5一直关断;采用SPWM调制方法控制可控开关管S2和可控开关管S3导通或关断。
图3中,本发明光伏逆变器工作在电网电压正半周期内时,可控开关管S5一直导通,可控开关管S1和可控开关管S4同时导通或关断,而可控开关管S2、可控开关管S3和可控开关管S6一直关断;采用SPWM调制方法控制可控开关管S1和可控开关管S4导通或关断。当可控开关管S1、可控开关管S4导通时,即光伏系统寄生电容两端电压为而Uan=Udc,Ubn=0,则共模电压Ucm=Udc/2。
图4中,当可控开关管S1、可控开关管S4关断时,即光伏系统寄生电容两端电压为而Uan=Udc,Ubn=Udc,则共模电压Ucm=Udc/2,所以电网电压正半周期时,共模电压不变。
图5中,本发明光伏逆变器工作在电网电压负半周期内,可控开关管S6一直导通,可控开关管S2和可控开关管S3同时导通或关断,而可控开关管S1、可控开关管S4和可控开关管S5一直关断;采用SPWM调制方法控制可控开关管S2和可控开关管S3导通或关断。当可控开关管S2、可控开关管S3和可控开关管S6导通时,即光伏系统寄生电容两端电压为而Uan=0,Ubn=Udc,则共模电压Ucm=Udc/2。
图6中,当可控开关管S2、可控开关管S3关断、可控开关管S6导通时,即光伏系统寄生电容两端电压为而Uan=Udc,Ubn=Udc,则共模电压Ucm=Udc/2,所以电网电压负半周期时,共模电压不变。
根据上述分析可知,光伏系统对地寄生电容两端电压中不含高频分量,由于系统漏电流为可知该拓扑及其控制方案可有效减小漏电流。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (2)

1.一种单相非隔离型光伏并网逆变器,主要包括光伏电池阵列模块、可控开关管S1、可控开关管S2、可控开关管S3、可控开关管S4、可控开关管S5、可控开关管S6、二极管D1、二极管D2、电感L1和电感L2,光伏电池阵列模块作为直流电源与直流母线连接,其特征在于:直流母线的正极端与可控开关管S1的集电极、可控开关管S3的集电极分别连接;可控开关管S1的发射极分别与可控开关管S6的集电极、二极管D1的负极、电感L1的一端相连,电感L1另一端与电网的正极端相连;可控开关管S6的发射极分别与可控开关管S2的集电极、二极管D2的正极相连;可控开关管S3的发射极分别与二极管D2的负极、可控开关管S4的集电极、可控开关管S5的集电极、电感L2的一端相连,电感L2的另一端与电网的负极端连接;可控开关管S5的发射极与二极管D1的正极相连接;直流母线的负极端分别与可控开关管S2的发射极、可控开关管S4的发射极相连接。
2.一种基于权利要求1所述单相非隔离型光伏并网逆变器的控制方法,其特征在于,所述控制方法的具体步骤如下:
步骤1,在电网电压正半周期内,可控开关管S5一直导通,可控开关管S1和可控开关管S4同时导通或关断,可控开关管S2、可控开关管S3和可控开关管S6一直关断;采用SPWM调制方法控制可控开关管S1和可控开关管S4导通或关断,当可控开关管S1、可控开关管S4导通时,并网电流的流通路径为直流母线正极端→可控开关管S1→电感L1→电网→电感L2→可控开关管S4→直流母线负极端→直流母线正极端;当可控开关管S1、可控开关管S4关断时,并网电流的流通路径为节点“a”→电感L1→电网→电感L2→可控开关管S5→二极管D1→节点“a”;
步骤2,在电网电压负半周期内,可控开关管S6一直导通,可控开关管S2和可控开关管S3同时导通或关断,而可控开关管S1、可控开关管S4和可控开关管S5一直关断;采用SPWM调制方法控制可控开关管S2和可控开关管S3导通或关断,当可控开关管S2、可控开关管S3导通时,并网电流的流通路径为直流母线正极端→可控开关管S3→电感L2→电网→电感L1→可控开关管S6→可控开关管S2→直流母线负极端→直流母线正极端;当可控开关管S2、可控开关管S3关断时,并网电流的流通路径为节点“b”→电感L2→电网→电感L1→可控开关管S6→二极管D2→节点“b”。
CN201610246182.XA 2016-04-20 2016-04-20 一种单相非隔离型光伏并网逆变器及其控制方法 Pending CN105763087A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610246182.XA CN105763087A (zh) 2016-04-20 2016-04-20 一种单相非隔离型光伏并网逆变器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610246182.XA CN105763087A (zh) 2016-04-20 2016-04-20 一种单相非隔离型光伏并网逆变器及其控制方法

Publications (1)

Publication Number Publication Date
CN105763087A true CN105763087A (zh) 2016-07-13

Family

ID=56325227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610246182.XA Pending CN105763087A (zh) 2016-04-20 2016-04-20 一种单相非隔离型光伏并网逆变器及其控制方法

Country Status (1)

Country Link
CN (1) CN105763087A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369985A2 (de) * 2002-05-15 2003-12-10 Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wechselrichter zum Umwandeln einer elektrischen Gleichspannung in einen Wechselstrom oder eine Wechselspannung
CN202930961U (zh) * 2012-10-24 2013-05-08 西安理工大学 共模电压恒定的单相光伏并网发电电路
CN103972906A (zh) * 2014-05-06 2014-08-06 中国电子科技集团公司第四十一研究所 一种非隔离单相光伏并网逆变器的无功控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369985A2 (de) * 2002-05-15 2003-12-10 Frauenhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wechselrichter zum Umwandeln einer elektrischen Gleichspannung in einen Wechselstrom oder eine Wechselspannung
CN202930961U (zh) * 2012-10-24 2013-05-08 西安理工大学 共模电压恒定的单相光伏并网发电电路
CN103972906A (zh) * 2014-05-06 2014-08-06 中国电子科技集团公司第四十一研究所 一种非隔离单相光伏并网逆变器的无功控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王建华,等: "单相非隔离光伏并网逆变器拓扑研究", 《太阳能学报》 *

Similar Documents

Publication Publication Date Title
CN107968572B (zh) 一种具有故障穿越能力的直流固态变压器及其控制方法
CN101814856B (zh) 一种非隔离光伏并网逆变器及其开关控制时序
CN103051233B (zh) 一种非隔离型单相光伏并网逆变器及其开关控制时序
CN103326606B (zh) 一种单相五电平逆变器
WO2018171767A1 (zh) 五电平低共模漏电流单相光伏并网逆变器及光伏并网系统
CN105939126B (zh) 一种开关电感型混合准z源逆变器
CN106059356A (zh) 一种可抑制漏电流无电解电容型光伏逆变器及其控制方法
CN104410310A (zh) 用于抑制共模漏电流的中点箝位型h桥光伏逆变器及方法
CN104467506B (zh) 一种基于电压电流极性检测的高效h桥光伏逆变器
CN103259442B (zh) 一种高增益电流型逆变器
CN105186919A (zh) 非隔离并网变换器、空调系统及变换器控制方法
CN204947610U (zh) 一种非隔离全桥光伏并网发电系统
CN102882228A (zh) 一种单相非隔离型光伏并网逆变器
CN104065293A (zh) 一种电压混合钳位的无变压器型单相光伏逆变器
CN104467501B (zh) 防直通中点箝位型单相非隔离光伏逆变器拓扑
CN106452152A (zh) 一种开关升压型高增益准z源逆变器
CN206117540U (zh) 一种开关升压型高增益准z源逆变器
CN105471300B (zh) H5‑d型非隔离光伏并网逆变器及其调制方法
CN107834888A (zh) 一种电压混合钳位的无变压器型单相光伏逆变器
WO2021103842A1 (zh) 一种选通单元和高效非隔离型三电平并网逆变器
CN107579675B (zh) 一种可抑制漏电流六开关电流型光伏逆变器拓扑及方法
CN204859029U (zh) 一种新型单相光伏逆变漏电流抑制拓扑结构
CN102412748B (zh) 一种光伏并网逆变器及其控制方法
CN104539180A (zh) 一种减小系统漏电流的单相无变压器结构逆变器
CN104167946A (zh) 带续流开关的中点箝位型单相非隔离光伏逆变器主电路拓扑

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160713