CN105762157B - A kind of Ultraviolet sensor and preparation method thereof, electronic equipment - Google Patents
A kind of Ultraviolet sensor and preparation method thereof, electronic equipment Download PDFInfo
- Publication number
- CN105762157B CN105762157B CN201610252022.6A CN201610252022A CN105762157B CN 105762157 B CN105762157 B CN 105762157B CN 201610252022 A CN201610252022 A CN 201610252022A CN 105762157 B CN105762157 B CN 105762157B
- Authority
- CN
- China
- Prior art keywords
- electrode
- ultraviolet
- detection element
- semiconductor layer
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 238000000825 ultraviolet detection Methods 0.000 claims description 84
- 239000004065 semiconductor Substances 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000000059 patterning Methods 0.000 claims description 11
- 238000004806 packaging method and process Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000012806 monitoring device Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 11
- 229910002601 GaN Inorganic materials 0.000 description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 8
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- -1 Al (aluminum) Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000035418 detection of UV Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/50—Integrated devices comprising at least one photovoltaic cell and other types of semiconductor or solid-state components
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/10—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices being sensitive to infrared radiation, visible or ultraviolet radiation, and having no potential barriers, e.g. photoresistors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及电子设备制造领域,尤其涉及一种紫外传感器及其制备方法、电子设备。The invention relates to the field of electronic equipment manufacturing, in particular to an ultraviolet sensor, a preparation method thereof, and electronic equipment.
背景技术Background technique
穿戴式智能电子设备是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称。目前,穿戴式技术被广泛应用在各种电子设备中,例如穿戴式手表、手环、挂件、装饰品等。Wearable smart electronic device is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices. At present, wearable technology is widely used in various electronic devices, such as wearable watches, bracelets, pendants, decorations, etc.
其中,在穿戴式智能电子设备中,传感器是必不可少的器件,通过设置相应的传感器可实现例如紫外线、气体等的检测。Among them, in the wearable smart electronic device, the sensor is an indispensable device, and the detection of ultraviolet light, gas, etc. can be realized by setting the corresponding sensor.
然而,由于穿戴式智能电子设备的续航能力都靠其自身配置的电池,随着电子设备的小型化,为了节省空间,其电池的体积相应的也很小,这就导致目前电子产品的续航能力都较差。However, since the battery life of wearable smart electronic devices depends on their own configured batteries, with the miniaturization of electronic devices, in order to save space, the size of the battery is correspondingly small, which leads to the current battery life of electronic products. are poor.
发明内容SUMMARY OF THE INVENTION
本发明的实施例提供一种紫外传感器及其制备方法、电子设备,可提高电子设备的续航能力。Embodiments of the present invention provide an ultraviolet sensor, a preparation method thereof, and an electronic device, which can improve the battery life of the electronic device.
为达到上述目的,本发明的实施例采用如下技术方案:To achieve the above object, the embodiments of the present invention adopt the following technical solutions:
第一方面,提供一种紫外传感器,包括衬底、设置在所述衬底上的至少一个太阳能电池、以及至少一个紫外线检测元件;其中,所述太阳能电池和所述紫外线检测元件之间相互绝缘。In a first aspect, an ultraviolet sensor is provided, comprising a substrate, at least one solar cell disposed on the substrate, and at least one ultraviolet detection element; wherein, the solar cell and the ultraviolet detection element are insulated from each other .
优选的,所述紫外线检测元件设置在所述衬底的中部。Preferably, the ultraviolet detection element is arranged in the middle of the substrate.
进一步优选的,所述太阳能电池为多个;多个所述太阳能电池和至少一个所述紫外线检测元件阵列排布。Further preferably, there are a plurality of the solar cells; a plurality of the solar cells and at least one of the ultraviolet detection elements are arranged in an array.
优选的,所述紫外线检测元件的面积为2-8μm2。Preferably, the area of the ultraviolet detection element is 2-8 μm 2 .
优选的,所述太阳能电池包括第一电极、第二电极以及位于二者之间的第一N型半导体层和第一P型半导体层;所述紫外线检测元件包括第三电极、第四电极以及位于二者之间的第二N型半导体层和第二P型半导体层;其中,所述太阳能电池和所述紫外线检测元件的结构相同。Preferably, the solar cell includes a first electrode, a second electrode and a first N-type semiconductor layer and a first P-type semiconductor layer located therebetween; the ultraviolet detection element includes a third electrode, a fourth electrode and A second N-type semiconductor layer and a second P-type semiconductor layer located therebetween; wherein, the solar cell and the ultraviolet detection element have the same structure.
进一步优选的,所述第二电极包括电联接的第二电极的第一子部分和第二电极的第二子部分;所述第一电极和所述第二电极的第一子部分靠近所述衬底且间隔设置;第二电极的第二子部分远离所述衬底设置。Further preferably, the second electrode includes a first sub-section of the second electrode and a second sub-section of the second electrode that are electrically coupled; the first electrode and the first sub-section of the second electrode are close to the the substrate and spaced apart; a second sub-portion of the second electrode is disposed away from the substrate.
所述第四电极包括电联接的第四电极的第一子部分和第四电极的第二子部分;所述第三电极和所述第四电极的第一子部分靠近所述衬底且间隔设置;所述第四电极的第二子部分远离所述衬底设置。The fourth electrode includes a first sub-portion of the fourth electrode and a second sub-portion of the fourth electrode that are electrically coupled; the third electrode and the first sub-portion of the fourth electrode are adjacent to the substrate and spaced apart disposed; the second sub-portion of the fourth electrode is disposed away from the substrate.
第二方面,提供一种电子设备,包括控制电路板,所述控制电路板包括控制器,该电子设备还包括设置在所述控制电路板上的第一方面所述的紫外传感器,所述紫外传感器与所述控制器相连;其中,所述控制器用于控制所述紫外传感器中的紫外线检测元件工作,并在太阳能电池提供的电压小于所述紫外线检测元件的工作电压时,控制供电模块向所述紫外线检测元件供电。In a second aspect, an electronic device is provided, including a control circuit board, the control circuit board including a controller, the electronic device further including the ultraviolet sensor of the first aspect provided on the control circuit board, the ultraviolet sensor The sensor is connected with the controller; wherein, the controller is used to control the ultraviolet detection element in the ultraviolet sensor to work, and when the voltage provided by the solar cell is less than the working voltage of the ultraviolet detection element, control the power supply module to The ultraviolet detection element is powered.
优选的,所述供电模块为蓄电池;所述控制器还用于在所述太阳能电池提供的电压大于所述紫外线检测元件的工作电压时,对所述蓄电池供电。Preferably, the power supply module is a battery; the controller is further configured to supply power to the battery when the voltage provided by the solar cell is greater than the working voltage of the ultraviolet detection element.
优选的,所述电子设备还包括设置在所述控制电路板上的无线传输模块,用于将所述紫外传感器采集的数据传输到外部终端上。Preferably, the electronic device further includes a wireless transmission module disposed on the control circuit board, for transmitting the data collected by the ultraviolet sensor to an external terminal.
优选的,所述电子设备还包括显示模块,用于显示所述紫外传感器采集的数据。Preferably, the electronic device further includes a display module for displaying the data collected by the ultraviolet sensor.
第三方面,提供一种紫外传感器的制备方法,包括:采用IC封装方式,将至少一个紫外线检测元件与至少一个太阳能电池封装在同一芯片中。In a third aspect, a method for preparing an ultraviolet sensor is provided, including: using IC packaging to package at least one ultraviolet detection element and at least one solar cell in the same chip.
优选的,形成所述太阳能电池包括:通过构图工艺在衬底上形成第一电极、第二电极以及位于二者之间的第一N型半导体层和第一P型半导体层;形成所述紫外线检测元件包括:通过构图工艺在所述衬底上形成第三电极、第四电极以及位于二者之间的第二N型半导体层和第二P型半导体层;其中,所述太阳能电池的所述第一电极和所述第二电极,以及所述紫外线检测元件的所述第三电极和所述第四电极同步形成。Preferably, forming the solar cell includes: forming a first electrode, a second electrode, and a first N-type semiconductor layer and a first P-type semiconductor layer between them on a substrate through a patterning process; forming the ultraviolet The detection element includes: forming a third electrode, a fourth electrode, and a second N-type semiconductor layer and a second P-type semiconductor layer between them on the substrate through a patterning process; wherein, all the solar cells are The first electrode and the second electrode, and the third electrode and the fourth electrode of the ultraviolet detection element are formed simultaneously.
进一步优选的,形成所述太阳能电池的所述第一电极和所述第二电极,以及所述紫外线检测元件的所述第三电极和所述第四电极,包括:通过一次构图工艺形成间隔的所述第一电极以及第二电极的第一子部分,并形成所述第三电极以及第四电极的第一子部分;在形成所述第一N型半导体层和所述第一P型半导体层、所述第二N型半导体层和所述第二P型半导体层后,通过一次构图工艺形成第二电极的第二子部分,并形成第四电极的第二子部分;其中,所述第二电极的第二子部分和所述第二电极的第一子部分电联接;所述第四电极的第二子部分和所述第四电极的第一子部分电联接。Further preferably, forming the first electrode and the second electrode of the solar cell, and the third electrode and the fourth electrode of the ultraviolet detection element, includes: forming spaced forming the first sub-section of the first electrode and the second electrode, and forming the third electrode and the first sub-section of the fourth electrode; after forming the first N-type semiconductor layer and the first P-type semiconductor layer, the second N-type semiconductor layer and the second P-type semiconductor layer, a second sub-section of the second electrode is formed through a patterning process, and a second sub-section of the fourth electrode is formed; wherein the The second subsection of the second electrode is electrically coupled with the first subsection of the second electrode; the second subsection of the fourth electrode is electrically coupled with the first subsection of the fourth electrode.
本发明实施例提供一种紫外传感器及其制备方法、电子设备,通过在紫外传感器中集成太阳能电池,可接收太阳能而转化为电能为紫外传感器中的紫外线检测元件供电,从而实现对紫外线强度的检测。当该紫外传感器应用在电子设备中时,由于该紫外传感器具有自供电功能,而且当太阳能电池转化的电能较多时,还可对电子设备的其他器件进行供电,因此,可提高电子设备的续航能力,从而提高用户体验。The embodiments of the present invention provide an ultraviolet sensor, a preparation method thereof, and an electronic device. By integrating a solar cell in the ultraviolet sensor, the solar energy can be received and converted into electric energy to supply power to the ultraviolet detection element in the ultraviolet sensor, thereby realizing the detection of ultraviolet intensity. . When the ultraviolet sensor is used in electronic equipment, because the ultraviolet sensor has a self-power supply function, and when the solar cell converts a lot of electric energy, it can also supply power to other components of the electronic equipment, so the battery life of the electronic equipment can be improved. , thereby improving the user experience.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例提供的一种紫外传感器中太阳能电池和紫外线检测元件的排布示意图一;1 is a schematic diagram 1 of the arrangement of solar cells and ultraviolet detection elements in an ultraviolet sensor provided by an embodiment of the present invention;
图2为本发明实施例提供的一种紫外传感器中太阳能电池和紫外线检测元件的排布示意图二;2 is a schematic diagram 2 of the arrangement of solar cells and ultraviolet detection elements in an ultraviolet sensor provided by an embodiment of the present invention;
图3为本发明实施例提供的一种紫外传感器中太阳能电池和紫外线检测元件的排布示意图三;3 is a schematic diagram 3 of the arrangement of solar cells and ultraviolet detection elements in an ultraviolet sensor provided by an embodiment of the present invention;
图4为本发明实施例提供的一种紫外传感器中太阳能电池和紫外线检测元件的排布示意图四;4 is a schematic diagram 4 of the arrangement of solar cells and ultraviolet detection elements in an ultraviolet sensor provided by an embodiment of the present invention;
图5为本发明实施例提供的一种紫外传感器中太阳能电池和紫外线检测元件的排布示意图五;5 is a schematic diagram 5 of the arrangement of solar cells and ultraviolet detection elements in an ultraviolet sensor provided by an embodiment of the present invention;
图6为本发明实施例提供的一种紫外传感器中太阳能电池和紫外线检测元件的结构示意图;6 is a schematic structural diagram of a solar cell and an ultraviolet detection element in an ultraviolet sensor provided by an embodiment of the present invention;
图7(a)为本发明实施例提供的一种电子设备中紫外传感器、蓄电池、充电电路及控制器的连接示意图;Figure 7 (a) is a schematic diagram of the connection of an ultraviolet sensor, a storage battery, a charging circuit and a controller in an electronic device provided by an embodiment of the present invention;
图7(b)为本发明实施例提供的一种电子设备中紫外传感器、蓄电池、充电电路、控制器及无线传输模块的连接示意图;7(b) is a schematic diagram of the connection of an ultraviolet sensor, a storage battery, a charging circuit, a controller, and a wireless transmission module in an electronic device provided by an embodiment of the present invention;
图7(c)为本发明实施例提供的一种电子设备中紫外传感器、蓄电池、充电电路、控制器及显示模块的连接示意图;Figure 7 (c) is a schematic diagram of the connection of an ultraviolet sensor, a storage battery, a charging circuit, a controller, and a display module in an electronic device provided by an embodiment of the present invention;
图7(d)为本发明实施例提供的一种电子设备中紫外传感器、蓄电池、充电电路、控制器及显示模块和无线传输模块的连接示意图;7(d) is a schematic diagram of the connection of an ultraviolet sensor, a storage battery, a charging circuit, a controller, a display module, and a wireless transmission module in an electronic device provided by an embodiment of the present invention;
图8为本发明实施例提供的手环的示意图;8 is a schematic diagram of a wristband provided by an embodiment of the present invention;
图9为本发明实施例提供的一种对紫外传感器进行封装的示意图;FIG. 9 is a schematic diagram of packaging an ultraviolet sensor according to an embodiment of the present invention;
图10(a)-10(c)为本发明实施例提供的制备紫外传感器中太阳能电池和紫外线检测元件的过程示意图。10(a)-10(c) are schematic diagrams of a process for preparing a solar cell and an ultraviolet detection element in an ultraviolet sensor according to an embodiment of the present invention.
附图标记:Reference number:
1-紫外传感器;10-衬底;20-太阳能电池;201-第一电极;202-第二电极;2021-第二电极的第一子部分;2022-第二电极的第二子部分;203-第一N型半导体层;204-第一P型半导体层;30-紫外线检测元件;301-第三电极;302-第四电极;3021-第四电极的第一子部分;3022-第四电极的第二子部分;303-第二N型半导体层;304-第二P型半导体层;40-充电电路;50-蓄电池;60-控制器;70-无线传输模块;80-显示模块;901-封装盖;902-金属键合引线;903-引脚。1-UV sensor; 10-substrate; 20-solar cell; 201-first electrode; 202-second electrode; 2021-first subsection of second electrode; 2022-second subsection of second electrode; 203 - first N-type semiconductor layer; 204 - first P-type semiconductor layer; 30 - UV detection element; 301 - third electrode; 302 - fourth electrode; 3021 - first subsection of fourth electrode; 3022 - fourth 303-second N-type semiconductor layer; 304-second P-type semiconductor layer; 40-charging circuit; 50-battery; 60-controller; 70-wireless transmission module; 80-display module; 901-package cover; 902-metal bond wire; 903-pin.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明实施例提供一种紫外传感器1,如图1-5所示,包括衬底10、设置在衬底10上的至少一个太阳能电池20、以及至少一个紫外线检测元件30;其中,太阳能电池20和紫外线检测元件30之间相互绝缘。An embodiment of the present invention provides an ultraviolet sensor 1, as shown in FIGS. 1-5, comprising a substrate 10, at least one solar cell 20 disposed on the substrate 10, and at least one ultraviolet detection element 30; wherein, the solar cell 20 and the ultraviolet detection element 30 are insulated from each other.
此处,紫外传感器1的长和宽可控制在3cm以下,例如可以将紫外传感器1做成1cm×1cm,或者1.5cm×1.5cm,或2cm×2cm的尺寸。Here, the length and width of the ultraviolet sensor 1 can be controlled to be less than 3 cm, for example, the ultraviolet sensor 1 can be made into a size of 1 cm×1 cm, or 1.5 cm×1.5 cm, or 2 cm×2 cm.
太阳能电池20可将接收的太阳能转化为电能,紫外线检测元件30可对外界环境的紫外线强度进行检测。The solar cell 20 can convert the received solar energy into electrical energy, and the ultraviolet detection element 30 can detect the ultraviolet intensity of the external environment.
其中,太阳能电池20接收的电能与其尺寸有关,太阳能电池20的数量越多,尺寸越大,接收的太阳能越多,转换的电能也越多。The electrical energy received by the solar cells 20 is related to its size. The more solar cells 20 are in number and the larger the size, the more solar energy they receive and the more electrical energy they convert.
紫外线检测元件30的尺寸无需太大,只要能对紫外线强度进行检测即可。紫外线检测元件30的个数越多,检测的紫外线强度越精确。The size of the ultraviolet detection element 30 does not need to be too large, as long as the ultraviolet intensity can be detected. The greater the number of ultraviolet detection elements 30, the more accurate the detected ultraviolet intensity.
基于上述描述,需要说明的是,对于紫外线检测元件30的个数,可根据要求的紫外线强度的检测精确进行合理设置。Based on the above description, it should be noted that the number of the ultraviolet detection elements 30 can be reasonably set according to the required detection accuracy of the ultraviolet intensity.
在此基础上,可合理设置太阳能电池20的数量和尺寸,以最大限度的转化电能为准。On this basis, the number and size of the solar cells 20 can be reasonably set, so as to maximize the conversion of electrical energy.
其中,当紫外线检测元件30为多个时,每个紫外线检测元件30独立工作。当太阳能电池20为多个时,多个太阳能电池20可串联在一起。Wherein, when there are multiple ultraviolet detection elements 30, each ultraviolet detection element 30 operates independently. When the solar cells 20 are plural, the plural solar cells 20 may be connected in series.
本发明实施例提供一种紫外传感器1,通过在紫外传感器1中集成太阳能电池20,可接收太阳能而转化为电能为紫外传感器1中的紫外线检测元件30供电,从而实现对紫外线强度的检测。当该紫外传感器1应用在电子设备中时,由于该紫外传感器1具有自供电功能,而且当太阳能电池20转化的电能较多时,还可对电子设备的其他器件进行供电,因此,可提高电子设备的续航能力,从而提高用户体验。The embodiment of the present invention provides an ultraviolet sensor 1. By integrating a solar cell 20 in the ultraviolet sensor 1, it can receive solar energy and convert it into electrical energy to supply power to the ultraviolet detection element 30 in the ultraviolet sensor 1, thereby realizing the detection of ultraviolet intensity. When the ultraviolet sensor 1 is applied in an electronic device, since the ultraviolet sensor 1 has a self-power supply function, and when the electric energy converted by the solar cell 20 is large, it can also supply power to other components of the electronic device, therefore, the electronic device can be improved. battery life, thereby improving the user experience.
优选的,如图1-5所示,紫外线检测元件30设置在衬底10的中部。Preferably, as shown in FIGS. 1-5 , the ultraviolet detection element 30 is arranged in the middle of the substrate 10 .
本发明实施例中,将紫外线检测元件30设置在衬底10的中部,可保证紫外线检测元件30接收到太阳能而对紫外线进行检测,保证对紫外线强度检测的准确性。此外,还可以在紫外线检测元件30应用在电子设备中时,避免由于在电子设备的边角被遮挡而导致对紫外线强度检测的不准确。In the embodiment of the present invention, the ultraviolet detection element 30 is arranged in the middle of the substrate 10, which can ensure that the ultraviolet detection element 30 receives solar energy to detect ultraviolet rays, and ensures the accuracy of ultraviolet intensity detection. In addition, when the ultraviolet detection element 30 is applied in an electronic device, inaccurate detection of the ultraviolet intensity due to being blocked at the corners of the electronic device can be avoided.
进一步优选的,如图3-5所示,太阳能电池20为多个;多个太阳能电池20和至少一个紫外线检测元件30阵列排布。Further preferably, as shown in FIGS. 3-5 , there are multiple solar cells 20 ; the multiple solar cells 20 and at least one ultraviolet detection element 30 are arranged in an array.
其中,为了保证对紫外线强度检测的精度,优选紫外线检测元件30的个数设置为两个以上,例如可以为4个或5个。Wherein, in order to ensure the accuracy of ultraviolet intensity detection, the number of ultraviolet detection elements 30 is preferably set to two or more, for example, four or five.
这样,一方面,有利于将紫外线检测元件30设置在中间位置,充分接受光照,提高检测的准确性,另一方面,太阳能电池20的数量越多,可转换的光能也越多。In this way, on the one hand, it is beneficial to set the ultraviolet detection element 30 in the middle position, so as to fully receive light and improve the detection accuracy.
考虑到紫外线检测元件30的尺寸无需太大即可实现对紫外线强度的检测,因此,优选的,紫外线检测元件30的面积为2-8μm2。Considering that the size of the ultraviolet detection element 30 does not need to be too large to realize the detection of ultraviolet intensity, it is preferable that the area of the ultraviolet detection element 30 is 2-8 μm 2 .
示例的,紫外线检测元件30的尺寸可以为2um×2um,或者可以为3um×3um。For example, the size of the ultraviolet detection element 30 may be 2um×2um, or may be 3um×3um.
这样,可将紫外传感器1的更多面积用来设置太阳能电池20,从而最大化的转化电能。In this way, more area of the ultraviolet sensor 1 can be used for disposing the solar cell 20, thereby maximizing the conversion of electric energy.
优选的,如图6所示,太阳能电池20包括第一电极201、第二电极202以及位于二者之间的第一N型半导体层203和第一P型半导体层204。Preferably, as shown in FIG. 6 , the solar cell 20 includes a first electrode 201 , a second electrode 202 and a first N-type semiconductor layer 203 and a first P-type semiconductor layer 204 located therebetween.
紫外线检测元件30包括第三电极301、第四电极302以及位于二者之间的第二N型半导体层303和第二P型半导体层304。The ultraviolet detection element 30 includes a third electrode 301, a fourth electrode 302, and a second N-type semiconductor layer 303 and a second P-type semiconductor layer 304 located therebetween.
其中,太阳能电池20和紫外线检测元件30的结构相同。The structures of the solar cell 20 and the ultraviolet detection element 30 are the same.
具体的,第一电极201例如可以为负极,第二电极202为正极,在此情况下,第一N型半导体层203靠近第一电极201设置,第一P型半导体层204靠近第二电极202设置。当然,也可以是第一电极201为正极,第二电极202为负极,此时第一N型半导体层203则靠近第二电极202设置,第一P型半导体层204靠近第一电极201设置。Specifically, the first electrode 201 can be, for example, a negative electrode, and the second electrode 202 can be a positive electrode. In this case, the first N-type semiconductor layer 203 is disposed close to the first electrode 201 , and the first P-type semiconductor layer 204 is disposed close to the second electrode 202 set up. Of course, the first electrode 201 can also be the positive electrode, and the second electrode 202 can be the negative electrode.
第三电极301例如可以为负极,第四电极302为正极,在此情况下,第二N型半导体层303靠近第三电极301设置,第二P型半导体层304靠近第四电极302设置。当然,也可以是第三电极301为正极,第四电极302为负极,此时第二N型半导体层303则靠近第四电极302设置,第二P型半导体层304靠近第三电极301设置。For example, the third electrode 301 can be a negative electrode, and the fourth electrode 302 can be a positive electrode. Of course, the third electrode 301 can also be the positive electrode, and the fourth electrode 302 can be the negative electrode.
其中,第一电极201、第二电极202、第三电极301和第四电极302的材料可以为金属,例如Al(铝)、Cu(铜)、Ag(银)等,也可以为合金,例如Mg(镁)-Ag合金等。The materials of the first electrode 201, the second electrode 202, the third electrode 301 and the fourth electrode 302 may be metals, such as Al (aluminum), Cu (copper), Ag (silver), etc., or alloys, such as Mg (magnesium)-Ag alloy, etc.
第一N型半导体层203和第一P型半导体层204的材料可以为N型单晶硅和P型单晶硅。第二N型半导体层303和第二P型半导体层304的材料可以为N型GaN(氮化镓)和P型GaN。Materials of the first N-type semiconductor layer 203 and the first P-type semiconductor layer 204 may be N-type single crystal silicon and P-type single crystal silicon. Materials of the second N-type semiconductor layer 303 and the second P-type semiconductor layer 304 may be N-type GaN (gallium nitride) and P-type GaN.
需要说明的是,由于太阳能电池20和紫外线检测元件30中P型半导体层和N型半导体层中设置方式一定,均为层叠设置,因此,上述太阳能电池20和紫外线检测元件30的结构相同,即为,太阳能电池20的第一电极202和第二电极202、紫外线检测元件30中第三电极301和第四电极的设置方式相同。It should be noted that, since the arrangement of the P-type semiconductor layer and the N-type semiconductor layer in the solar cell 20 and the ultraviolet detection element 30 is constant, they are both stacked and arranged. Therefore, the structures of the solar cell 20 and the ultraviolet detection element 30 are the same, that is, Therefore, the first electrode 202 and the second electrode 202 of the solar cell 20 and the third electrode 301 and the fourth electrode of the ultraviolet detection element 30 are arranged in the same manner.
本发明实施例中,将太阳能电池20和紫外线检测元件30的结构设置为相同,在工艺制作上更简单。In the embodiment of the present invention, the structures of the solar cell 20 and the ultraviolet detection element 30 are set to be the same, which is simpler in manufacturing process.
进一步优选的,如图6所示,第二电极202包括电联接的第二电极的第一子部分2021和第二电极的第二子部分2022;在此基础上,第一电极201和第二电极的第一子部分2021靠近衬底10且间隔设置;第二电极的第二子部分2022远离衬底10设置。Further preferably, as shown in FIG. 6 , the second electrode 202 includes a first sub-section 2021 of the second electrode and a second sub-section 2022 of the second electrode that are electrically connected; The first sub-portions 2021 of the electrodes are disposed close to the substrate 10 and spaced apart; the second sub-portions 2022 of the second electrodes are disposed away from the substrate 10 .
第四电极302包括电联接的第四电极的第一子部分3021和第四电极的第二子部分3022;在此基础上,第三电极301和第四电极的第一子部分3021靠近衬底10且间隔设置;第四电极的第二子部分3022远离衬底10设置。The fourth electrode 302 includes a first subsection 3021 of the fourth electrode and a second subsection 3022 of the fourth electrode that are electrically coupled; on this basis, the third electrode 301 and the first subsection 3021 of the fourth electrode are close to the substrate 10 and spaced apart; the second sub-portion 3022 of the fourth electrode is disposed away from the substrate 10 .
本发明实施例中,通过将第二电极的第一子部分2021和第四电极的第一子部分3021靠近衬底10设置,可方便引出各电极的引线(也可称为键合引线),从而在对太阳能电池20和紫外线检测元件30封装时,可将第一电极201、第二电极202、第三电极301和第四电极302与芯片的引脚相连。In the embodiment of the present invention, by arranging the first sub-portion 2021 of the second electrode and the first sub-portion 3021 of the fourth electrode close to the substrate 10, the leads (also referred to as bonding wires) of each electrode can be easily drawn out. Therefore, when the solar cell 20 and the ultraviolet detection element 30 are packaged, the first electrode 201 , the second electrode 202 , the third electrode 301 and the fourth electrode 302 can be connected to the pins of the chip.
本发明实施例还提供一种电子设备,包括控制电路板,该控制电路板包括控制器,所述电子设备还包括设置在该控制电路板上的紫外传感器1,紫外传感器1与所述控制器相连。其中,所述控制器用于控制紫外传感器1中的紫外线检测元件30工作,并在太阳能电池20提供的电压小于紫外线检测元件30的工作电压时,控制供电模块向紫外线检测元件30供电。An embodiment of the present invention further provides an electronic device, including a control circuit board, the control circuit board including a controller, the electronic device further including an ultraviolet sensor 1 disposed on the control circuit board, the ultraviolet sensor 1 and the controller connected. Wherein, the controller is used to control the ultraviolet detection element 30 in the ultraviolet sensor 1 to work, and when the voltage provided by the solar cell 20 is lower than the working voltage of the ultraviolet detection element 30, it controls the power supply module to supply power to the ultraviolet detection element 30.
此处,当紫外线检测元件30的个数为多个时,多个紫外线检测元件30可响应不同的紫外线强度而得到不同的电压信号,传给控制器进行处理后得到紫外线强度值。Here, when the number of ultraviolet detection elements 30 is multiple, the multiple ultraviolet detection elements 30 can obtain different voltage signals in response to different ultraviolet intensities, and transmit them to the controller for processing to obtain ultraviolet intensity values.
需要说明的是,当太阳能电池20提供的电压小于紫外线检测元件30的工作电压时,控制器可控制供电模块向紫外线检测元件30提供不足的那部分电量。It should be noted that when the voltage provided by the solar cell 20 is lower than the working voltage of the ultraviolet detection element 30 , the controller can control the power supply module to provide the insufficient amount of electricity to the ultraviolet detection element 30 .
本发明实施例提供一种电子设备,通过在紫外传感器1中集成太阳能电池20,可接收太阳能而转化为电能为紫外传感器1中的紫外线检测元件30供电,从而实现对紫外线强度的检测。其中,由于该紫外传感器1具有自供电功能,而且当太阳能电池20转化的电能较多时,还可对电子设备的其他器件进行供电,因此,可提高电子设备的续航能力,从而提高用户体验。The embodiment of the present invention provides an electronic device. By integrating the solar cell 20 in the ultraviolet sensor 1, it can receive solar energy and convert it into electric energy to supply power to the ultraviolet detection element 30 in the ultraviolet sensor 1, thereby realizing the detection of ultraviolet intensity. Among them, because the ultraviolet sensor 1 has a self-power supply function, and when the solar cell 20 converts a lot of electric energy, it can also supply power to other components of the electronic device, therefore, the battery life of the electronic device can be improved, thereby improving the user experience.
优选的,所述供电模块为蓄电池;在此情况下,所述控制器还用于在太阳能电池20提供的电压大于紫外线检测元件30的工作电压时,对所述蓄电池供电。Preferably, the power supply module is a battery; in this case, the controller is further configured to supply power to the battery when the voltage provided by the solar cell 20 is greater than the working voltage of the ultraviolet detection element 30 .
具体的,如图7(a)所示,控制电路板上可包括充电电路40,在控制器60的控制下,通过该充电电路40,紫外传感器1中的太阳能电池20可向蓄电池50供电。其中,控制器60例如可以为单片机,蓄电池50可向控制器60供电。Specifically, as shown in FIG. 7( a ), the control circuit board may include a charging circuit 40 , and under the control of the controller 60 , the solar cell 20 in the ultraviolet sensor 1 can supply power to the battery 50 through the charging circuit 40 . The controller 60 can be, for example, a single-chip microcomputer, and the battery 50 can supply power to the controller 60 .
优选的,如图7(b)所示,所述电子设备还包括设置在控制电路板上的无线传输模块70,用于将紫外传感器1采集的数据传输到外部终端上。Preferably, as shown in FIG. 7( b ), the electronic device further includes a wireless transmission module 70 disposed on the control circuit board for transmitting the data collected by the ultraviolet sensor 1 to an external terminal.
具体的,当紫外传感器1中的紫外线检测元件30对紫外线强度进行检测而得到相应的电压信号时,通过AD(模数)转换之后,控制器60进行处理得到紫外线强度值,并且控制器60通过无线传输模块70将得到的紫外线强度值传输到外部终端上。Specifically, when the ultraviolet detection element 30 in the ultraviolet sensor 1 detects the ultraviolet intensity to obtain a corresponding voltage signal, after AD (analog-to-digital) conversion, the controller 60 processes and obtains the ultraviolet intensity value, and the controller 60 passes the The wireless transmission module 70 transmits the obtained ultraviolet intensity value to the external terminal.
其中,无线传输模块70可以为低功耗的蓝牙模块,或低功耗的Wi-Fi模块等。蓄电池50也可向无线传输模块70供电。The wireless transmission module 70 may be a low-power Bluetooth module, or a low-power Wi-Fi module, or the like. The battery 50 may also supply power to the wireless transmission module 70 .
本发明实施例通过无线传输模块70将紫外传感器1采集并经控制器60处理后得到的紫外线强度值传输到外部终端上,可使用户实时了解外界环境的紫外线强度,从而据此采用相应的应对措施。此外,通过无线传输模块70还可以将该电子设备接入物联网,通过积累更多的数据可以供给大数据分析以及智能分析。In the embodiment of the present invention, the ultraviolet intensity value collected by the ultraviolet sensor 1 and processed by the controller 60 is transmitted to the external terminal through the wireless transmission module 70, so that the user can know the ultraviolet intensity of the external environment in real time, so as to take corresponding measures accordingly. measure. In addition, the electronic device can also be connected to the Internet of Things through the wireless transmission module 70, which can provide big data analysis and intelligent analysis by accumulating more data.
进一步优选的,如图7(c)和7(d)所示,所述电子设备还包括显示模块80,用于显示紫外传感器1采集的数据。Further preferably, as shown in FIGS. 7( c ) and 7 ( d ), the electronic device further includes a display module 80 for displaying the data collected by the ultraviolet sensor 1 .
具体的,当紫外传感器1中的紫外线检测元件30对紫外线强度进行检测而得到相应的电压信号时,通过AD转换之后,控制器60进行处理得到紫外线强度值,并且控制器60通过显示模块80显示该紫外线强度值。Specifically, when the ultraviolet detection element 30 in the ultraviolet sensor 1 detects the ultraviolet intensity to obtain a corresponding voltage signal, after AD conversion, the controller 60 processes and obtains the ultraviolet intensity value, and the controller 60 displays the ultraviolet intensity value through the display module 80 The UV intensity value.
其中,蓄电池50也可向显示模块80供电。The battery 50 can also supply power to the display module 80 .
本发明实施例通过显示模块80显示紫外传感器1采集并经控制器60处理后得到的紫外线强度值,可使用户实时了解外界环境的紫外线强度,从而据此采用相应的应对措施。In the embodiment of the present invention, the display module 80 displays the ultraviolet intensity value collected by the ultraviolet sensor 1 and processed by the controller 60, so that the user can know the ultraviolet intensity of the external environment in real time, and accordingly take corresponding countermeasures.
基于上述,所述电子设备可以为胸针、指环、手环、智能挂件等智能穿戴电子设备。Based on the above, the electronic device may be a smart wearable electronic device such as a brooch, a finger ring, a wristband, and a smart pendant.
以手环为例,如图8所示,其可以包括控制电路板以及显示模块80,控制电路板上包括充电电路和单片机(图8中未标识出),此外还可设置蓄电池50和紫外传感器1。其中,控制电路板可采用柔性电路板,在此基础上,蓄电池50也可选用柔性电池。Taking the wristband as an example, as shown in FIG. 8 , it may include a control circuit board and a display module 80 , the control circuit board includes a charging circuit and a single-chip microcomputer (not shown in FIG. 8 ), and a battery 50 and an ultraviolet sensor can also be provided. 1. The control circuit board can be a flexible circuit board, and on this basis, the battery 50 can also be a flexible battery.
其工作过程为:当紫外传感器1中的太阳能电池20接收太阳能时,向紫外传感器1中的紫外线检测元件30供电,以使紫外线检测元件30对紫外线强度进行检测而得到相应的电压信号时,通过单片机的AD转换后,进行处理得到紫外线强度值,之后发送到显示模块80显示该紫外线强度值。与此同时,太阳能电池20还有多余的电能,则可通过充电电路向蓄电池50供电。Its working process is: when the solar cell 20 in the ultraviolet sensor 1 receives solar energy, it supplies power to the ultraviolet detection element 30 in the ultraviolet sensor 1, so that the ultraviolet detection element 30 detects the intensity of the ultraviolet rays and obtains a corresponding voltage signal. After AD conversion of the single-chip microcomputer, processing is performed to obtain an ultraviolet intensity value, which is then sent to the display module 80 to display the ultraviolet intensity value. At the same time, if the solar cell 20 has excess electric energy, the battery 50 can be supplied with power through the charging circuit.
本发明实施例还提供一种紫外传感器的制备方法,包括:采用IC(集成电路)封装方式,将至少一个紫外线检测元件30与至少一个太阳能电池20封装在同一芯片中。An embodiment of the present invention also provides a method for preparing an ultraviolet sensor, including: using an IC (integrated circuit) packaging method to package at least one ultraviolet detection element 30 and at least one solar cell 20 in the same chip.
具体的,如图9所示,在衬底10上先形成至少一个紫外线检测元件30与至少一个太阳能电池20,然后采用封装盖901进行封装,在此过程中,可通过金属键合引线902使紫外线检测元件30的电极以及太阳能电池20的电极与芯片的引脚903相连。Specifically, as shown in FIG. 9 , at least one ultraviolet detection element 30 and at least one solar cell 20 are firstly formed on the substrate 10 , and then encapsulated by a packaging cover 901 . The electrodes of the ultraviolet detection element 30 and the electrodes of the solar cell 20 are connected to the pins 903 of the chip.
本发明实施例提供一种紫外传感器的制备方法,通过采用IC封装方式,在紫外传感器1中集成太阳能电池20,可接收太阳能而转化为电能为紫外传感器1中的紫外线检测元件30供电,从而实现对紫外线强度的检测。当该紫外传感器1应用在电子设备中时,由于该紫外传感器1具有自供电功能,而且当太阳能电池20转化的电能较多时,还可对电子设备的其他器件进行供电,因此,可提高电子设备的续航能力,从而提高用户体验。The embodiment of the present invention provides a preparation method of an ultraviolet sensor. By adopting an IC packaging method, a solar cell 20 is integrated in the ultraviolet sensor 1, which can receive solar energy and convert it into electric energy to supply power to the ultraviolet detection element 30 in the ultraviolet sensor 1, thereby realizing Detection of UV intensity. When the ultraviolet sensor 1 is applied in an electronic device, since the ultraviolet sensor 1 has a self-power supply function, and when the electric energy converted by the solar cell 20 is large, it can also supply power to other components of the electronic device, therefore, the electronic device can be improved. battery life, thereby improving the user experience.
优选的,如图6所示,形成太阳能电池20包括:通过构图工艺在衬底10上形成第一电极201、第二电极202以及位于二者之间的第一N型半导体层203和第一P型半导体层204。Preferably, as shown in FIG. 6 , forming the solar cell 20 includes: forming a first electrode 201 , a second electrode 202 and a first N-type semiconductor layer 203 and a first electrode between them on the substrate 10 through a patterning process P-type semiconductor layer 204 .
形成紫外线检测元件30包括:通过构图工艺在衬底10上形成第三电极301、第四电极302以及位于二者之间的第二N型半导体层303和第二P型半导体层304。Forming the ultraviolet detection element 30 includes: forming a third electrode 301 , a fourth electrode 302 and a second N-type semiconductor layer 303 and a second P-type semiconductor layer 304 on the substrate 10 through a patterning process.
其中,太阳能电池20的第一电极201和第二电极202,以及紫外线检测元件30的第三电极301和第四电极302同步形成。The first electrode 201 and the second electrode 202 of the solar cell 20 and the third electrode 301 and the fourth electrode 302 of the ultraviolet detection element 30 are formed simultaneously.
此处,第一电极201例如可以为负极,第二电极202为正极,在此情况下,第一N型半导体层203靠近第一电极201形成,第一P型半导体层204靠近第二电极202形成。当然,也可以是第一电极201为正极,第二电极202为负极,此时第一N型半导体层203则靠近第二电极202形成,第一P型半导体层204靠近第一电极201形成。Here, the first electrode 201 can be, for example, a negative electrode, and the second electrode 202 can be a positive electrode. In this case, the first N-type semiconductor layer 203 is formed close to the first electrode 201 , and the first P-type semiconductor layer 204 is formed close to the second electrode 202 form. Of course, the first electrode 201 can also be the positive electrode, and the second electrode 202 can be the negative electrode.
第三电极301例如可以为负极,第四电极302为正极,在此情况下,第二N型半导体层303靠近第三电极301形成,第二P型半导体层304靠近第四电极302形成。当然,也可以是第三电极301为正极,第四电极302为负极,此时第二N型半导体层303则靠近第四电极302形成,第二P型半导体层304靠近第三电极301形成。For example, the third electrode 301 can be a negative electrode, and the fourth electrode 302 can be a positive electrode. Of course, the third electrode 301 can also be the positive electrode, and the fourth electrode 302 can be the negative electrode.
其中,第一电极201、第二电极202、第三电极301和第四电极302的材料可以为金属,例如Al(铝)、Cu(铜)、Ag(银)等,也可以为合金,例如Mg(镁)-Ag合金等。The materials of the first electrode 201, the second electrode 202, the third electrode 301 and the fourth electrode 302 may be metals, such as Al (aluminum), Cu (copper), Ag (silver), etc., or alloys, such as Mg (magnesium)-Ag alloy, etc.
第一N型半导体层203和第一P型半导体层204的材料可以为N型单晶硅和P型单晶硅。第二N型半导体层303和第二P型半导体层304的材料可以为N型GaN和P型GaN。Materials of the first N-type semiconductor layer 203 and the first P-type semiconductor layer 204 may be N-type single crystal silicon and P-type single crystal silicon. Materials of the second N-type semiconductor layer 303 and the second P-type semiconductor layer 304 may be N-type GaN and P-type GaN.
本发明实施例中,将太阳能电池20的第一电极201和第二电极202,以及紫外线检测元件30的第三电极301和第四电极302同步形成,在工艺制作上更简单。In the embodiment of the present invention, the first electrode 201 and the second electrode 202 of the solar cell 20 and the third electrode 301 and the fourth electrode 302 of the ultraviolet detection element 30 are formed simultaneously, which is simpler in fabrication.
下面提供一具体实施例以详细描述一种紫外传感器的制备方法,包括如下步骤:A specific embodiment is provided below to describe in detail a preparation method of an ultraviolet sensor, comprising the following steps:
S10、如图10(a)所示,在衬底10通过一次构图工艺形成间隔的第一电极201以及第二电极的第一子部分2021,并形成第三电极301以及第四电极的第一子部分3021。S10. As shown in FIG. 10( a ), the first electrode 201 and the first sub-portion 2021 of the second electrode are formed at intervals on the substrate 10 through a patterning process, and the third electrode 301 and the first sub-portion of the fourth electrode are formed. Subsection 3021.
其中,衬底10可采用陶瓷衬底、玻璃衬底等。Among them, the substrate 10 can be a ceramic substrate, a glass substrate, or the like.
S11、如图10(b)所示,在第一电极201和第二电极的第一子部分2021之间形成单晶硅的PN结结构,在第三电极301和第四电极的第一子部分3021之间形成GaN的PN结结构。S11. As shown in FIG. 10(b), a PN junction structure of single crystal silicon is formed between the first electrode 201 and the first sub-portion 2021 of the second electrode, and a PN junction structure of the third electrode 301 and the first sub-portion of the fourth electrode is formed. A PN junction structure of GaN is formed between the parts 3021 .
其中,单晶硅的PN结结构与第一电极201接触,与第二电极的第一子部分2021不接触;GaN的PN结结构与第三电极301接触,与第四电极的第一子部分3021不接触。The PN junction structure of single crystal silicon is in contact with the first electrode 201 and not in contact with the first sub-section 2021 of the second electrode; the PN junction structure of GaN is in contact with the third electrode 301 and is in contact with the first sub-section of the fourth electrode 3021 does not touch.
单晶硅的PN结结构包括第一N型半导体层203和第一P型半导体层204;GaN的PN结结构包括第二N型半导体层303和第二P型半导体层304。The PN junction structure of single crystal silicon includes a first N-type semiconductor layer 203 and a first P-type semiconductor layer 204 ; the PN junction structure of GaN includes a second N-type semiconductor layer 303 and a second P-type semiconductor layer 304 .
S12、如图10(c)所示,形成绝缘层,该绝缘层包括露出第二电极的第一子部分2021和第四电极的第一子部分3021的过孔。S12 , as shown in FIG. 10( c ), an insulating layer is formed, and the insulating layer includes via holes exposing the first sub-portion 2021 of the second electrode and the first sub-portion 3021 of the fourth electrode.
S13、参考图6所示,通过一次构图工艺形成第二电极的第二子部分2022,并形成第四电极的第二子部分3022。S13. Referring to FIG. 6, the second sub-section 2022 of the second electrode is formed by one patterning process, and the second sub-section 3022 of the fourth electrode is formed.
其中,第二电极的第二子部分2022通过S12中的过孔与第二电极的第一子部分2021电联接;第四电极的第二子部分3022通过S12中的过孔与第四电极的第一子部分3021电联接。The second sub-portion 2022 of the second electrode is electrically connected to the first sub-portion 2021 of the second electrode through the via hole in S12; the second sub-portion 3022 of the fourth electrode is electrically connected to the The first subsection 3021 is electrically coupled.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610252022.6A CN105762157B (en) | 2016-04-21 | 2016-04-21 | A kind of Ultraviolet sensor and preparation method thereof, electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610252022.6A CN105762157B (en) | 2016-04-21 | 2016-04-21 | A kind of Ultraviolet sensor and preparation method thereof, electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105762157A CN105762157A (en) | 2016-07-13 |
CN105762157B true CN105762157B (en) | 2019-07-09 |
Family
ID=56325481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610252022.6A Active CN105762157B (en) | 2016-04-21 | 2016-04-21 | A kind of Ultraviolet sensor and preparation method thereof, electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105762157B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0596488A1 (en) * | 1992-11-04 | 1994-05-11 | Reliant Technologies, Inc. | Liquid-crystal sunglasses indicating overexposure to UV-radiation |
CN1945239A (en) * | 2005-10-08 | 2007-04-11 | 环宇中华积体电路设计股份有限公司 | UV detection device |
CN105277279A (en) * | 2015-10-21 | 2016-01-27 | 上海应用技术学院 | ARM-chip-based wearable ultraviolet monitoring device and processing method thereof |
CN205542783U (en) * | 2016-04-21 | 2016-08-31 | 京东方科技集团股份有限公司 | Ultraviolet sensor and electronic equipment |
-
2016
- 2016-04-21 CN CN201610252022.6A patent/CN105762157B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0596488A1 (en) * | 1992-11-04 | 1994-05-11 | Reliant Technologies, Inc. | Liquid-crystal sunglasses indicating overexposure to UV-radiation |
CN1945239A (en) * | 2005-10-08 | 2007-04-11 | 环宇中华积体电路设计股份有限公司 | UV detection device |
CN105277279A (en) * | 2015-10-21 | 2016-01-27 | 上海应用技术学院 | ARM-chip-based wearable ultraviolet monitoring device and processing method thereof |
CN205542783U (en) * | 2016-04-21 | 2016-08-31 | 京东方科技集团股份有限公司 | Ultraviolet sensor and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN105762157A (en) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11652179B2 (en) | Methods and systems for real time UV monitoring for tracking and maintaining required vitamin D dosage | |
TWI462266B (en) | Wafer stack structure and manufacturing method thereof | |
JP5398908B2 (en) | Sensor used | |
TWI641285B (en) | Light-emitting module and light-emitting unit manufacturing method | |
TW201205836A (en) | Solar panel tracking and performance monitoring through wireless communication | |
CN107340927B (en) | Display panel and display device | |
CN107389214A (en) | A kind of wireless monitor system based on flexible extending blade face sensor | |
US9379265B2 (en) | Integrated circuit combination of a target integrated circuit, photovoltaic cells and light sensitive diodes connected to enable a self-sufficient light detector device | |
US20120240984A1 (en) | Solar cell module and method for manufacturing the same | |
WO2018057196A1 (en) | Multi-surface solar cell packaging for self-powered electronic devices | |
CN117409676A (en) | Display assembly for wearable device | |
CN105762157B (en) | A kind of Ultraviolet sensor and preparation method thereof, electronic equipment | |
US10109602B2 (en) | Package integrated with a power source module | |
CN205542783U (en) | Ultraviolet sensor and electronic equipment | |
CN207095727U (en) | A kind of wireless monitor system based on flexible extending blade face sensor | |
CN104064612B (en) | Solar powered IC chip | |
WO2011011348A3 (en) | Method of manufacturing a photovoltaic device | |
EP4181217A1 (en) | Semiconductor packaging including photovoltaic particles having a core-shell structure | |
CN206069358U (en) | A kind of flexible substrates towards extending electronics | |
CN110459672A (en) | A kind of piezoelectric ceramic sensor and its preparation method | |
CN110663172A (en) | Circuit and use of the circuit | |
JPS6173386A (en) | Method of manufacturing a photovoltaic device | |
CN106361303A (en) | Blood vessel detection integrated chip and implementation method thereof | |
Perlaky et al. | Sensor powering with integrated MOS compatible solar cell array | |
JP2019125658A (en) | Photoelectric conversion element, photoelectric conversion module, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |