[go: up one dir, main page]

CN105759431B - A kind of 3 d light fields display system - Google Patents

A kind of 3 d light fields display system Download PDF

Info

Publication number
CN105759431B
CN105759431B CN201410779720.2A CN201410779720A CN105759431B CN 105759431 B CN105759431 B CN 105759431B CN 201410779720 A CN201410779720 A CN 201410779720A CN 105759431 B CN105759431 B CN 105759431B
Authority
CN
China
Prior art keywords
lens
array
msub
center
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410779720.2A
Other languages
Chinese (zh)
Other versions
CN105759431A (en
Inventor
桑新柱
高鑫
于迅博
颜玢玢
陈铎
王鹏
陈志东
苑金辉
王葵如
余重秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201410779720.2A priority Critical patent/CN105759431B/en
Publication of CN105759431A publication Critical patent/CN105759431A/en
Application granted granted Critical
Publication of CN105759431B publication Critical patent/CN105759431B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)

Abstract

本发明公开一种三维光场显示系统,所述系统包括:显示器、透镜阵列、全息功能屏;所述显示器用于显示预设的视差子图阵列;所述透镜阵列用于将所述预设的视差子图阵列投射到所述全息功能屏;所述全息功能屏用于提供具有全视差立体效果的光场;其中,所述透镜阵列中的透镜为具有偏心光瞳的透镜,所述透镜阵列满足如下条件:所述预设的视差子图阵列中位于第i行第j列的视差子图的中心相对于所述透镜阵列中相应位置的透镜Lij的通光圆孔的张角为U,i为不大于视差子图阵列行数的正整数,j为不大于视差子图阵列列数的正整数。

The invention discloses a three-dimensional light field display system. The system includes: a display, a lens array, and a holographic function screen; the display is used to display a preset parallax sub-image array; the lens array is used to display the preset The parallax sub-image array is projected onto the holographic functional screen; the holographic functional screen is used to provide a light field with a full parallax stereoscopic effect; wherein, the lens in the lens array is a lens with an off-center pupil, and the lens The array satisfies the following conditions: the opening angle of the center of the parallax sub-image located in the i-th row and the j-th column in the preset parallax sub-image array relative to the light-through circular hole of the lens L ij at the corresponding position in the lens array is U, i is a positive integer not greater than the number of rows of the disparity sub-image array, and j is a positive integer not greater than the number of columns of the disparity sub-image array.

Description

一种三维光场显示系统A three-dimensional light field display system

技术领域technical field

本发明涉及显示技术领域,具体涉及一种基于球面基底偏心光瞳菲涅尔透镜阵列的三维光场显示系统。The invention relates to the field of display technology, in particular to a three-dimensional light field display system based on a spherical base eccentric pupil Fresnel lens array.

背景技术Background technique

传统的基于狭缝光栅和柱透镜光栅的显示方式由于视点的限制无法提供一个连续平滑的视差,而基于高密度视点的显示方式也只能在一个较小的观看角范围内提供连续平滑的视差。The traditional display method based on slit grating and cylindrical lens grating cannot provide a continuous and smooth parallax due to the limitation of viewpoint, and the display method based on high-density viewpoint can only provide continuous and smooth parallax in a small viewing angle range .

多投影光场显示方式的提出解决了上述问题,它是一种基于像素的能够重构目标物体光场的显示方式,这种显示方法可以在一个较大的观看角范围内提供连续平滑的视差。然而,这种显示方式需要的设备比较复杂且又占用较大的空间。The multi-projection light field display method solves the above problems. It is a pixel-based display method that can reconstruct the light field of the target object. This display method can provide continuous and smooth parallax in a large viewing angle range. . However, the equipment required by this display method is relatively complicated and takes up a large space.

基于液晶显示器(Liquid Crystal Display,LCD)的光场显示方式的提出解决了上述问题,这种显示方式中,LCD上显示的每一个视差子图及其相应的成像透镜组成了一个类似于投影仪的单元,通过缩小成像透镜的通光孔径来减小因为成像透镜的像差带来的成像模糊的问题。The proposed light field display method based on Liquid Crystal Display (LCD) solves the above problems. In this display method, each parallax sub-image displayed on the LCD and its corresponding imaging lens form a projector-like The unit reduces the problem of imaging blur caused by the aberration of the imaging lens by reducing the clear aperture of the imaging lens.

现有的基于LCD的光场显示方式存在的问题如下:由于成像透镜的通光孔径(即通光圆孔的孔径)减小,如图1所示,对于LCD边缘部分的视差子图(如1中最左侧的视差子图),该视差子图的中心与其相应的成像透镜中心有一偏移距离d1,成像透镜的通光孔径为D,D满足:S=N×D,N为视差子图阵列的行数,S为视差子图阵列中同行相邻视差子图的间距,图1中D1为LCD与透镜阵列的间距,最左侧的视差子图的中心相对于透镜阵列中最左侧的透镜的通光圆孔的张角为U2,中间的视差子图的中心相对于透镜阵列中间的透镜的通光圆孔的张角为U1,U1与U2满足下式:The problems existing in the existing LCD-based light field display methods are as follows: due to the reduction of the clear aperture of the imaging lens (that is, the aperture of the clear circular hole), as shown in FIG. 1), the center of the parallax subgraph has an offset distance d 1 from the center of the corresponding imaging lens, the clear aperture of the imaging lens is D, and D satisfies: S=N×D, N is The number of rows of the parallax sub-image array, S is the spacing between adjacent parallax sub-images in the same row in the parallax sub-image array, D1 in Figure 1 is the distance between the LCD and the lens array, and the center of the leftmost parallax sub-image is relative to the lens array The opening angle of the light-passing circular hole of the leftmost lens is U 2 , and the opening angle of the center of the parallax sub-image relative to the light-passing circular hole of the lens in the middle of the lens array is U 1 , and U 1 and U 2 satisfy The following formula:

像面中心(即全息功能屏中心)的照度满足:The illuminance at the center of the image plane (that is, the center of the holographic function screen) satisfies:

其中,E1为中间的视差子图的像面中心照度,E2为最左侧的视差子图的像面中心照度,k为吸收系数,β为放大倍数,L为LCD的亮度。Among them, E 1 is the central illuminance of the image plane of the middle disparity sub-image, E 2 is the illuminance of the image plane center of the leftmost disparity sub-image, k is the absorption coefficient, β is the magnification, and L is the brightness of the LCD.

可见,由于U2<U1,所以E2小于E1,所以在像面上的照度被降低。It can be seen that since U 2 < U 1 , E 2 is smaller than E 1 , so the illuminance on the image plane is reduced.

发明内容Contents of the invention

本发明所要解决的技术问题是现有的基于LCD的光场显示方式由于成像透镜的通光孔径减小,对于LCD边缘部分的视差子图,这些视差子图中心与其相应的成像透镜中心有一定距离的偏移,所以在像面上的照度被降低了很多的问题。The technical problem to be solved by the present invention is that in the existing LCD-based light field display mode, due to the reduction of the light aperture of the imaging lens, for the parallax sub-images at the edge of the LCD, the centers of these parallax sub-images have a certain distance from the center of the corresponding imaging lens. The distance shifts, so the illuminance on the image plane is reduced a lot.

为此目的,第一方面,本发明提供一种三维光场显示系统,所述系统包括:显示器、透镜阵列、全息功能屏;For this purpose, in a first aspect, the present invention provides a three-dimensional light field display system, said system comprising: a display, a lens array, and a holographic functional screen;

所述显示器用于显示预设的视差子图阵列;The display is used for displaying a preset disparity sprite array;

所述透镜阵列用于将所述预设的视差子图阵列投射到所述全息功能屏;The lens array is used to project the preset parallax sprite array onto the holographic functional screen;

所述全息功能屏用于提供具有全视差立体效果的光场;The holographic functional screen is used to provide a light field with full parallax stereo effect;

其中,所述透镜阵列中的透镜为具有偏心光瞳的透镜,所述透镜阵列满足如下条件:Wherein, the lens in the lens array is a lens with an off-center pupil, and the lens array satisfies the following conditions:

所述预设的视差子图阵列中位于第i行第j列的视差子图的中心相对于所述透镜阵列中相应位置的透镜Lij的通光圆孔的张角为U,i为不大于视差子图阵列行数的正整数,j为不大于视差子图阵列列数的正整数。The opening angle of the center of the parallax sub-image located in the i-th row and the j-th column in the preset parallax sub-image array relative to the light-through circular hole of the lens L ij at the corresponding position in the lens array is U, and i is not A positive integer greater than the number of rows of the disparity submap array, and j is a positive integer not greater than the number of columns of the disparity submap array.

可选的,所述显示器为液晶显示器LCD,所述透镜阵列中的透镜为菲涅尔透镜。Optionally, the display is a liquid crystal display LCD, and the lenses in the lens array are Fresnel lenses.

可选的,所述透镜阵列中的透镜个数由所述预设的视差子图阵列中的视差子图个数确定。Optionally, the number of lenses in the lens array is determined by the number of parallax sub-images in the preset parallax sub-image array.

可选的,所述预设的视差子图阵列中的视差子图个数为N×N,所述N为正整数,所述透镜阵列中的透镜个数也为N×N。Optionally, the number of parallax sub-images in the preset parallax sub-image array is N×N, where N is a positive integer, and the number of lenses in the lens array is also N×N.

可选的,所述透镜阵列中的透镜为不透光的方形结构,所述方形结构的中心开有一通光圆孔。Optionally, the lenses in the lens array are opaque square structures, and a light-through circular hole is opened in the center of the square structure.

可选的,所述张角满足:Optionally, the opening angle satisfies:

其中,D为所述通光圆孔的孔径,D1为所述显示器与所述透镜阵列的间距。Wherein, D is the aperture of the light - through circular hole, and D1 is the distance between the display and the lens array.

可选的,所述具有偏心光瞳的透镜的通光圆孔通过在预设透镜上截取圆形区域得到,所述圆形区域的中心满足:Optionally, the light-through circular hole of the lens with an eccentric pupil is obtained by intercepting a circular area on the preset lens, and the center of the circular area satisfies:

其中,x1为圆形区域的中心与所述预设透镜的中心的水平距离,y1为圆形区域的中心与所述预设的透镜的中心的竖直距离,D2为所述透镜阵列与所述全息功能屏的距离,X为视差子图的中心与全息功能屏中心的水平距离,Y为视差子图的中心与全息功能屏中心的竖直距离,所述视差子图为预设的视差子图阵列中与所述具有偏心光瞳的透镜位置相对应的视差子图。Wherein, x1 is the horizontal distance between the center of the circular area and the center of the preset lens, y1 is the vertical distance between the center of the circular area and the center of the preset lens, and D2 is the lens The distance between the array and the holographic functional screen, X is the horizontal distance between the center of the parallax sub-image and the center of the holographic functional screen, Y is the vertical distance between the center of the parallax sub-image and the center of the holographic functional screen, and the parallax sub-image is the preset The parallax submap corresponding to the position of the lens with an off-center pupil in the disparity submap array is provided.

可选的,所述透镜阵列中的透镜制作在曲率为Cs的球面基底上,并且透镜的相位函数满足:Optionally, the lenses in the lens array are made on a spherical substrate whose curvature is C s , and the phase function of the lens Satisfy:

其中,G为非球面系数,φ为透镜的光焦度,λ为光波的波长;所述Cs与G的值通过下述方式确定:Among them, G is the aspheric coefficient, φ is the focal power of the lens, and λ is the wavelength of the light wave; the values of C s and G are determined in the following way:

根据预设的像差平衡规则,调节Cs与G,使得弥散斑半径最小,其中所述弥散斑半径由所述具有偏心光瞳的透镜的偏心像差确定。According to a preset aberration balance rule, C s and G are adjusted to minimize the radius of the blurred spot, wherein the radius of the blurred spot is determined by the decentering aberration of the lens with a decentered pupil.

相比于现有技术,本发明的三维光场显示系统通过将透镜阵列制作为满足:视差子图阵列中视差子图的中心相对于透镜阵列中相应位置的透镜的通光圆孔的张角为U,并且将透镜制作为具有偏心光瞳的透镜解决了现有技术存在的问题,实现了效果较好的三维光场显示。Compared with the prior art, the three-dimensional light field display system of the present invention satisfies the following requirements by making the lens array: the opening angle of the center of the parallax sub-image in the parallax sub-image array relative to the light-through circular hole of the lens at the corresponding position in the lens array is U, and making the lens as a lens with an off-center pupil solves the problems existing in the prior art, and realizes a three-dimensional light field display with better effect.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1示出了基于液晶显示器LCD的光场显示系统结构图;Fig. 1 shows the structural diagram of a light field display system based on a liquid crystal display LCD;

图2示出了本发明的一种三维光场显示系统;Fig. 2 shows a kind of three-dimensional light field display system of the present invention;

图3示出了本发明的一种三维光场显示系统;FIG. 3 shows a three-dimensional light field display system of the present invention;

图4示出了本发明具有偏心光瞳的透镜的通光圆孔的获取示意图。Fig. 4 shows a schematic diagram of obtaining a light-through circular hole of a lens with an off-center pupil according to the present invention.

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are the Some, but not all, embodiments are invented. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

如图2所示,本实施例公开一种三维光场显示系统,所述系统包括:显示器、透镜阵列、全息功能屏,显示器可选用液晶显示器LCD,透镜阵列中的透镜可选用菲涅尔透镜。As shown in Figure 2, this embodiment discloses a three-dimensional light field display system, the system includes: a display, a lens array, a holographic function screen, the display can be a liquid crystal display LCD, and the lens in the lens array can be a Fresnel lens .

显示器用于显示预设的视差子图阵列;视差子图阵列中的视差子图的个数为预先确定的值,不同的视差子图显示物体不同方向的图像;透镜阵列中的透镜个数由预设的视差子图阵列中的视差子图个数确定,如图3所示,视差子图阵列中的视差子图个数为81个,即视差子图阵列为9行9列,透镜阵列中的透镜个数也为81个。The display is used to display a preset parallax sub-image array; the number of parallax sub-images in the parallax sub-image array is a predetermined value, and different parallax sub-images display images in different directions of objects; the number of lenses in the lens array is determined by The number of parallax sub-images in the preset parallax sub-image array is determined. As shown in FIG. The number of lenses in is also 81.

透镜阵列用于将预设的视差子图阵列投射到全息功能屏;The lens array is used to project the preset parallax sprite array to the holographic functional screen;

全息功能屏用于提供具有全视差立体效果的光场;The holographic functional screen is used to provide a light field with a full parallax stereoscopic effect;

其中,透镜阵列中的透镜为具有偏心光瞳的透镜,透镜阵列满足如下条件:预设的视差子图阵列中位于第i行第j列的视差子图的中心相对于所述透镜阵列中相应位置的透镜Lij的通光圆孔的张角为U,i为不大于视差子图阵列行数的正整数,j为不大于视差子图阵列列数的正整数。张角U满足:Wherein, the lenses in the lens array are lenses with eccentric pupils, and the lens array satisfies the following conditions: the center of the parallax sub-image in the i-th row and j-th column in the preset parallax sub-image array is relative to the corresponding The opening angle of the light-through circular hole of the lens L ij at the position is U, i is a positive integer not greater than the number of rows of the parallax sub-image array, and j is a positive integer not greater than the number of columns of the parallax sub-image array. Zhang Angle U satisfies:

其中,D为所述通光圆孔的孔径,D1为所述显示器与所述透镜阵列的间距。Wherein, D is the aperture of the light - through circular hole, and D1 is the distance between the display and the lens array.

可见,本实施例,最左侧的视差子图的中心相对于透镜阵列中最左侧的透镜的通光圆孔的张角U2=U,中间的视差子图的中心相对于透镜阵列中间的透镜的通光圆孔的张角为U1=U,由此得知,具有偏心光瞳的透镜阵列保证了边缘视差子图(即最左侧的视差子图)不会因偏离透镜中心过多而导致其像面照度过低,同时,具有偏心光瞳的透镜阵列也保证了最终重建物体图像照度的均匀性。It can be seen that in this embodiment, the center of the leftmost parallax subfigure is relative to the aperture angle U 2 = U of the light-through circular hole of the leftmost lens in the lens array, and the center of the parallax subfigure in the middle is relative to the center of the lens array. The opening angle of the light-passing circular hole of the lens is U 1 =U. From this, it can be known that the lens array with eccentric pupil ensures that the edge parallax sub-image (that is, the leftmost parallax sub-image) will not deviate from the center of the lens Too much leads to low illumination of the image plane. At the same time, the lens array with off-center pupils also ensures the uniformity of illumination of the final reconstructed object image.

在具体应用中,如图4所示,具有偏心光瞳的透镜的通光圆孔通过在预设透镜上截取圆形区域得到,圆形区域的中心满足:In a specific application, as shown in Figure 4, the light-through circular hole of the lens with an off-center pupil is obtained by intercepting a circular area on the preset lens, and the center of the circular area satisfies:

其中,x1为圆形区域的中心与所述预设透镜的中心的水平距离,y1为圆形区域的中心与所述预设的透镜的中心的竖直距离,D2为透镜阵列与全息功能屏的距离,X为视差子图的中心与全息功能屏中心的水平距离,Y为视差子图的中心与全息功能屏中心的竖直距离,所述视差子图为预设的视差子图阵列中与具有偏心光瞳的透镜位置相对应的视差子图。Wherein, x1 is the horizontal distance between the center of the circular area and the center of the preset lens, y1 is the vertical distance between the center of the circular area and the center of the preset lens, and D2 is the distance between the lens array and the preset lens. The distance of the holographic functional screen, X is the horizontal distance between the center of the parallax sub-image and the center of the holographic functional screen, Y is the vertical distance between the center of the parallax sub-image and the center of the holographic functional screen, and the parallax sub-image is a preset parallax sub-image Disparity submap in the map array corresponding to lens positions with decentered pupils.

由于具有偏心光瞳的透镜会引入偏心像差,为了降低偏心像差的影响,本实施例中,透镜阵列中的透镜制作在曲率为Cs的球面基底上,并且透镜的相位函数满足:Since a lens with a decentered pupil will introduce decentering aberrations, in order to reduce the influence of decentering aberrations, in this embodiment, the lenses in the lens array are fabricated on spherical substrates with a curvature of C s , and the phase function of the lenses Satisfy:

其中,G为非球面系数,φ为透镜的光焦度,λ为光波的波长;所述Cs与G的值通过下述方式确定:Among them, G is the aspheric coefficient, φ is the focal power of the lens, and λ is the wavelength of the light wave; the values of C s and G are determined in the following way:

根据预设的像差平衡规则,调节Cs与G,使得弥散斑半径最小,其中,弥散斑半径由具有偏心光瞳的透镜的偏心像差确定。According to the preset aberration balance rule, C s and G are adjusted to minimize the radius of the blurred spot, where the radius of the blurred spot is determined by the decentering aberration of the lens with the decentered pupil.

在本实施例中,所述具有偏心光瞳的透镜的偏心像差有四种: In this embodiment, there are four types of decentering aberrations of the lens with decentered pupils:

S3=J2φS 3 =J 2 φ

其中,u、u'为第一近轴光线角,h为第一近轴光线与透镜交点的高度,n为透镜的折射率,J为拉格朗日常量。in, u, u' are the first paraxial ray angle, h is the height of the intersection of the first paraxial ray and the lens, n is the refractive index of the lens, and J is the Lagrang daily quantity.

本文涉及的技术术语如下:The technical terms involved in this article are as follows:

照度:即通常所说的勒克司度(lux),表示被摄主体表面单位面积上受到的光通量。Illuminance: It is commonly referred to as Lux (lux), which means the luminous flux per unit area on the surface of the subject.

像差:实际光学系统中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,这些与高斯光学(一级近似理论或近轴光线)的理想状况的偏差,叫做像差。Aberration: In the actual optical system, the results obtained by non-paraxial ray tracing are inconsistent with the results obtained by paraxial ray tracing. These deviations from the ideal conditions of Gaussian optics (first-order approximation theory or paraxial ray) are called aberrations.

偏心光瞳:偏离入射光瞳中心的部分瞳面。Eccentric Pupil: Part of the pupil surface that deviates from the center of the entrance pupil.

偏心像差:由偏心光瞳引入的像差。Eccentric Aberration: Aberration introduced by an off-center pupil.

通光孔径:指透镜的有效孔径。Clear aperture: refers to the effective aperture of the lens.

球面基底:指具有一定曲率的球面型衬底,传统菲涅尔透镜的基底是平面。Spherical substrate: refers to a spherical substrate with a certain curvature, and the substrate of a traditional Fresnel lens is a plane.

视差:指从不同方向获取的物体图像的差异。Parallax: Refers to the difference in images of objects taken from different directions.

视差子图:指不同方向获取的物体的图像。Disparity submap: Refers to images of objects acquired in different directions.

全息功能屏:用全息的方法制作的具有点扩散功能的光学屏。Holographic functional screen: an optical screen with point diffusion function made by holographic method.

散射角:全息功能屏点扩散的散射角。Scattering angle: the scattering angle of the point diffusion of the holographic function screen.

视点:从实际物体一个方向所获取的图像。Viewpoint: An image taken from one direction of the actual object.

分辨率:是指一英寸内包含的像素点的数量。Resolution: Refers to the number of pixels contained within an inch.

虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art can make various modifications and variations without departing from the spirit and scope of the present invention. within the bounds of the requirements.

Claims (4)

1. A three-dimensional light field display system, the system comprising:
the display, the lens array and the holographic functional screen;
the display is used for displaying a preset parallax sub-image array;
the lens array is used for projecting the preset parallax sub-image array to the holographic functional screen;
the holographic functional screen is used for providing a light field with a full parallax three-dimensional effect;
wherein the lenses in the lens array are lenses with eccentric pupils, and the lens array satisfies the following conditions:
the center of the parallax sub-image in the ith row and the jth column in the preset parallax sub-image array is opposite to the lens L at the corresponding position in the lens arrayijThe opening angle of the light-passing circular hole is U, i is a positive integer not larger than the number of rows of the parallax sub-image array, and j is a positive integer not larger than the number of columns of the parallax sub-image array;
the number of the lenses in the lens array is determined by the number of the preset parallax sub-images in the parallax sub-image array, the lenses in the lens array are of an opaque square structure, and a light-passing round hole is formed in the center of the square structure;
the opening angle U satisfies:
<mrow> <mi>U</mi> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mfrac> <mi>D</mi> <mrow> <mn>2</mn> <msub> <mi>D</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>;</mo> </mrow>
wherein D is the aperture of the light-passing circular hole, D1The distance between the display and the lens array;
the light-passing circular hole of the lens with the eccentric pupil is obtained by cutting a circular area on a preset lens, and the center of the circular area satisfies the following conditions:
<mrow> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>D</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mi>X</mi> <mo>;</mo> </mrow>
<mrow> <msub> <mi>y</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <msub> <mi>D</mi> <mn>1</mn> </msub> <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mi>Y</mi> <mo>;</mo> </mrow>
wherein x is1Is the horizontal distance, y, of the center of the circular area from the center of the preset lens1Is the vertical distance of the center of the circular area from the center of the preset lens, D2And the distance between the lens array and the holographic function screen is defined as X, the horizontal distance between the center of the parallax sub-image and the center of the holographic function screen is defined as Y, the vertical distance between the center of the parallax sub-image and the center of the holographic function screen is defined as Y, and the parallax sub-image is a parallax sub-image corresponding to the position of the lens with the eccentric pupil in the preset parallax sub-image array.
2. The display system of claim 1, wherein the display is a Liquid Crystal Display (LCD) and the lenses in the array of lenses are Fresnel lenses.
3. The display system of claim 1, wherein the number of parallax sub-images in the predetermined parallax sub-image array is N × N, where N is a positive integer, and the number of lenses in the lens array is also N × N.
4. The display system of claim 1, wherein the lenses of the lens array are fabricated with a curvature CsOn a spherical substrate, and a phase function of the lensSatisfies the following conditions:
wherein G is an aspherical coefficient,phi is the focal power of the lens, and lambda is the wavelength of the light wave; said C issThe value of G is determined by:
according to the preset aberration balance rule, C is adjustedsAnd G, such that a diffuse spot radius is minimized, wherein the diffuse spot radius is determined by an eccentric aberration of the lens with an eccentric pupil.
CN201410779720.2A 2014-12-16 2014-12-16 A kind of 3 d light fields display system Active CN105759431B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410779720.2A CN105759431B (en) 2014-12-16 2014-12-16 A kind of 3 d light fields display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410779720.2A CN105759431B (en) 2014-12-16 2014-12-16 A kind of 3 d light fields display system

Publications (2)

Publication Number Publication Date
CN105759431A CN105759431A (en) 2016-07-13
CN105759431B true CN105759431B (en) 2018-04-24

Family

ID=56336938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410779720.2A Active CN105759431B (en) 2014-12-16 2014-12-16 A kind of 3 d light fields display system

Country Status (1)

Country Link
CN (1) CN105759431B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106125378A (en) * 2016-07-15 2016-11-16 北京邮电大学 The system and method that a kind of 3D light field shows
CN108061972B (en) * 2016-11-07 2020-01-14 北京邮电大学 Curved surface light field display system
CN107092096A (en) * 2016-11-09 2017-08-25 北京邮电大学 A kind of bore hole 3D ground sand table shows system and method
CN106507096B (en) * 2016-11-24 2018-12-04 北京邮电大学 A kind of tracing type ground light field 3D display method and system with super large visual angle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1004652B (en) * 2003-05-28 2004-08-04 Κωνσταντινος Αρισταρχου Ψυλλακης Table electronic hologram thermoprintig machine
CN101539272A (en) * 2008-03-19 2009-09-23 精工爱普生株式会社 Illumination apparatus, projector, and illumination method
CN102854630A (en) * 2012-09-27 2013-01-02 李志扬 Three-dimensional display device based on constructive interferences

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102050504B1 (en) * 2013-05-16 2019-11-29 삼성전자주식회사 Complex spatial light modulator and 3D image display having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1004652B (en) * 2003-05-28 2004-08-04 Κωνσταντινος Αρισταρχου Ψυλλακης Table electronic hologram thermoprintig machine
CN101539272A (en) * 2008-03-19 2009-09-23 精工爱普生株式会社 Illumination apparatus, projector, and illumination method
CN102854630A (en) * 2012-09-27 2013-01-02 李志扬 Three-dimensional display device based on constructive interferences

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
具有平滑运动视差的三维显示技术;桑新柱;《中国激光》;20140228;第1-5页 *

Also Published As

Publication number Publication date
CN105759431A (en) 2016-07-13

Similar Documents

Publication Publication Date Title
US10007122B2 (en) Three-dimensional display substrate, its Manufacturing method and three-dimensional display device
CN103959134B (en) Head-mounted display device
US20180343434A1 (en) Near-eye display with sparse sampling super-resolution
CN102498429B (en) Multiple view display
WO2020042605A1 (en) Display apparatus and display system
JP6913441B2 (en) Image display device
CN103091854B (en) Stereo display device
CN105759431B (en) A kind of 3 d light fields display system
JP2016503512A (en) Autostereoscopic display device and image display method
CN104238126A (en) Naked-eye three-dimensional display device
CN104423050A (en) Glasses-free stereoscopic display device
CN108169921B (en) Display and display panel thereof
CN105894970A (en) Virtual curved surface display panel and display device
CN108769655A (en) Projection-type electronic sand table three-dimensional display system
US20150054928A1 (en) Auto-stereoscopic display apparatus and storage media
US9817239B2 (en) Three-dimensional display device having lens-switching function
CN205670419U (en) A kind of virtual curved face display floater and display device
CN104391344B (en) A kind of microlens array method for designing for eliminating main lobe distortion aberration
KR20170097182A (en) Non-eyeglass stereoscopic image display device
Li et al. Global control of colored moiré pattern in layered optical structures
CN102331626A (en) Stereo display
CN108061972B (en) Curved surface light field display system
CN102722045B (en) Three-dimensional display
US12189139B2 (en) Near-eye display apparatus and display method therefor
US11092818B2 (en) Device for displaying stereoscopic images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant