CN105755035B - A kind of building of Hansenula yeast specific expression vector and hepatitis B virus surface antigen is being improved in the method for expressed by Hansenula yeast amount - Google Patents
A kind of building of Hansenula yeast specific expression vector and hepatitis B virus surface antigen is being improved in the method for expressed by Hansenula yeast amount Download PDFInfo
- Publication number
- CN105755035B CN105755035B CN201610137206.8A CN201610137206A CN105755035B CN 105755035 B CN105755035 B CN 105755035B CN 201610137206 A CN201610137206 A CN 201610137206A CN 105755035 B CN105755035 B CN 105755035B
- Authority
- CN
- China
- Prior art keywords
- mox
- hansenula
- hepatitis
- hbsag
- hansenula yeast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2730/00—Reverse transcribing DNA viruses
- C12N2730/00011—Details
- C12N2730/10011—Hepadnaviridae
- C12N2730/10111—Orthohepadnavirus, e.g. hepatitis B virus
- C12N2730/10122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/102—Plasmid DNA for yeast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/70—Vector systems having a special element relevant for transcription from fungi
- C12N2830/702—Vector systems having a special element relevant for transcription from fungi yeast
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种汉逊酵母特异性表达载体的构建及在提高乙肝病毒表面抗原在汉逊酵母表达量的方法,属于生物工程技术领域。The invention relates to the construction of a Hansenula specific expression vector and a method for increasing the expression level of hepatitis B virus surface antigen in Hansenula, belonging to the technical field of bioengineering.
背景技术Background technique
乙型肝炎(简称乙肝)疫苗已大规模使用愈20年,但乙型肝炎病毒(HepatitisBvirus,HBV)感染仍是最为严重的全球性健康问题之一。据世界卫生组织报道,全世界约20亿人有现状或既往乙肝病毒感染标志,每年约有60万人死于HBV感染引起的肝衰竭、肝硬化和肝细胞癌。我国乙肝病毒携带者超过1亿,现有患者超过2000万,南方流行重于北方,农村重于城市。目前并无特异性治疗乙肝的药物,最有效的手段就是接种乙肝疫苗。Hepatitis B (referred to as hepatitis B) vaccine has been widely used for more than 20 years, but hepatitis B virus (HepatitisBvirus, HBV) infection is still one of the most serious global health problems. According to the report of the World Health Organization, about 2 billion people in the world have current or past signs of hepatitis B virus infection, and about 600,000 people die every year from liver failure, cirrhosis and hepatocellular carcinoma caused by HBV infection. There are more than 100 million hepatitis B virus carriers in my country, and more than 20 million existing patients. The epidemic in the south is heavier than that in the north, and the rural areas are heavier than the cities. Currently, there is no specific drug for the treatment of hepatitis B, and the most effective means is vaccination against hepatitis B.
第一代乙肝疫苗为血源疫苗,采用无症状带毒者(HBsAg阳性)血浆为原料制备。由于提取方法不同,所得成分也有差别,但均含提纯的22nm小颗粒乙型肝炎表面抗原。80年代以来开始研制第二代乙肝疫苗,系将S基因编码的226个氨基酸产物装配而成的抗原颗粒,采用基因工程方法在哺乳动物细胞和重组酵母中均能表达。重组乙型肝炎疫苗(汉逊酵母)乙肝疫苗是最新一代基因工程乙肝疫苗,是继血源疫苗、酿酒酵母疫苗之后的第三代疫苗,系国家863重大科技攻关成果,已有2000万名受种者验证了其安全性。对HBsAg阳性母亲所生新生儿,本市已将母婴阻断率较高的重组(汉逊酵母)乙肝疫苗纳入免疫规划,在出生12小时内给予免费接种;在本地的临床观察中,健康成人全程接种后1个月,97.46%的受种者抗体阳转;全程接种后半年,59.8%的受种者抗体水平在1000mIU/mL以上,因而保护期更长。按照世界卫生组织资料,不同乙肝疫苗的相对效力不以HBsAg含量来判断,10ug重组(汉逊酵母)疫苗适用于任意年龄的易感人群,能提供全面高效持久的免疫保护屏障。免疫预防为主,有效遏制乙肝的高流行状态,基因重组(汉逊酵母)技术为乙型肝炎的免疫预防提供了一种全新的选择。The first-generation hepatitis B vaccine is a blood-derived vaccine, which is prepared from the plasma of asymptomatic carriers (HBsAg positive). Due to different extraction methods, the obtained components are also different, but all contain purified 22nm small particle hepatitis B surface antigen. Since the 1980s, the second-generation hepatitis B vaccine has been developed. It is an antigen particle assembled from the 226 amino acid products encoded by the S gene. It can be expressed in mammalian cells and recombinant yeast by genetic engineering methods. Recombinant Hepatitis B Vaccine (Hansenula) Hepatitis B Vaccine is the latest generation of genetically engineered Hepatitis B vaccine and the third generation vaccine after blood-derived vaccine and Saccharomyces cerevisiae vaccine. The seeder verified its safety. For newborns born to HBsAg-positive mothers, the city has incorporated the recombinant (Hansenula) hepatitis B vaccine, which has a high mother-to-baby blocking rate, into the immunization program, giving free vaccinations within 12 hours of birth; in local clinical observations, healthy One month after the full vaccination in adults, 97.46% of the recipients became positive for antibodies; half a year after the full vaccination, 59.8% of the recipients had antibody levels above 1000mIU/mL, so the protection period was longer. According to the World Health Organization, the relative effectiveness of different hepatitis B vaccines is not judged by the HBsAg content. The 10ug recombinant (Hansenula) vaccine is suitable for susceptible people of any age and can provide a comprehensive, efficient and durable immune protection barrier. Focusing on immune prevention, effectively curbing the high prevalence of hepatitis B, genetic recombination (Hansenula) technology provides a new option for hepatitis B immune prevention.
多形汉逊酵母(Hansenula Polymorpha),又称作Pichia augusta,是当前公认的最为理想的外源基因表达系统之一。汉逊酵母也是一种甲醇营养型酵母,与毕赤酵母类似。汉逊酵 母中甲醇代谢的主要途径有两种(LodeboerA.M.,etal.,1985):一种是在过氧化物酶体中进行,甲醇在甲醇氧化酶(methanoloxidase,MOX)作用下生成甲醛和H2O2,甲醛再经甲醛脱氢酶(formaldehyde dehydrogenase)和甲酸脱氢酶(formate dehydrogenase,FMD)作用下生成CO2,H2O2在过氧化氢酶(catalase,CAT)的作用下生成H2O和O2;甲醇的另一个代谢途径发生在过氧化物酶体外,甲醇在细胞质中经过一系列酶的催化作用最后转变为糖类,其中二羟丙酮合成酶(dihydroxy acetone synthase,DHAS)是这一过程的关键酶。甲醇代谢过程中的各种关键酶,包括MOX、DHAS和CAT等的表达都是在转录水平进行调解的,它们受甲醇、甘油和山梨醇的诱导,受葡萄糖和乙醇的阻遏,但当葡萄糖浓度低于0.1%时,阻遏作用即被解除。在甲醇完全诱导条件下,过氧化物酶体可占细胞总体积的80%,MOX和DHAS可占细胞总蛋白的15%,它们的启动子具有极强的启动下游基因表达的功能,目前已被用作外源基因在酵母中表达的常用启动子。汉逊酵母作为单细胞真核微生物,既具备原核生物生长快速、易于遗传操作等特点,又有真核细胞翻译后加工和修饰等功能。此外,汉逊酵母还具备安全性好、易于培养、成本低廉、表达量高及遗传稳定等优势,并且能够克服诸如酿酒酵母(Saccharomy cescerevisiae)菌株不稳定、产量低及糖基化侧链过长以及毕赤酵母(Pichia Pastoris)外源基因整合拷贝数较低的问题。目前,应用汉逊酵母表达系统生产的药物(如胰岛素,商品名Wosulin)及HBV疫苗(商品名Hepavax-Gene)均已上市销售。Hansenula Polymorpha, also known as Pichia augusta, is currently recognized as one of the most ideal exogenous gene expression systems. Hansenula is also a methanolotrophic yeast, similar to Pichia pastoris. There are two main pathways for methanol metabolism in Hansenula yeast (LodeboerA.M., et al., 1985): one is carried out in peroxisomes, and methanol generates formaldehyde under the action of methanol oxidase (methanoloxidase, MOX) and H 2 O 2 , formaldehyde generates CO 2 under the action of formaldehyde dehydrogenase (formaldehyde dehydrogenase) and formate dehydrogenase (formate dehydrogenase, FMD), and H 2 O 2 in the action of catalase (CAT) H 2 O and O 2 are generated under the environment; another metabolic pathway of methanol occurs outside the peroxisome, and methanol is finally transformed into sugars through a series of enzyme catalysis in the cytoplasm, among which dihydroxyacetone synthase (dihydroxyacetone synthase , DHAS) is the key enzyme in this process. The expression of various key enzymes in the process of methanol metabolism, including MOX, DHAS and CAT, etc. are regulated at the transcriptional level, they are induced by methanol, glycerol and sorbitol, and repressed by glucose and ethanol, but when the concentration of glucose When it is lower than 0.1%, the repression is released. Under methanol fully induced conditions, peroxisomes can account for 80% of the total cell volume, MOX and DHAS can account for 15% of the total cell protein, and their promoters have a strong function of initiating the expression of downstream genes. Used as a common promoter for exogenous gene expression in yeast. As a single-cell eukaryotic microorganism, Hansenula not only has the characteristics of fast growth and easy genetic manipulation of prokaryotes, but also has the functions of post-translational processing and modification of eukaryotic cells. In addition, Hansenula has the advantages of good safety, easy cultivation, low cost, high expression level and genetic stability, and can overcome the instability of Saccharomyces cerevisiae strain, low yield and long glycosylation side chain And the low copy number of exogenous gene integration in Pichia Pastoris. At present, drugs (such as insulin, trade name Wosulin) and HBV vaccines (trade name Hepavax-Gene) produced using the Hansenula expression system have been marketed.
发明内容Contents of the invention
针对上述现有技术存在的问题,本发明提供一种汉逊酵母特异性表达载体的构建及在提高乙肝病毒表面抗原在汉逊酵母表达量的方法,适用于规模化生产HBsAg重组蛋白。Aiming at the above-mentioned problems in the prior art, the present invention provides a method for constructing a Hansenula-specific expression vector and increasing the expression level of hepatitis B virus surface antigen in Hansenula, suitable for large-scale production of HBsAg recombinant protein.
为了实现上述目的,本发明采用的一种汉逊酵母特异性表达载体pHPZF1.0的构建方法,按照下述步骤进行:In order to achieve the above object, the construction method of a Hansenula specific expression vector pHPZF1.0 adopted in the present invention is carried out according to the following steps:
步骤1,提取真核汉逊酵母菌株ATCC34438或其衍生菌种基因组DNA,设计特异性引物,PCR扩增,分别调取MOX基因启动子MOXp和终止子MOX-TT;Step 1, extract the genomic DNA of the eukaryotic Hansenula strain ATCC34438 or its derivatives, design specific primers, perform PCR amplification, and transfer the MOX gene promoter MOXp and terminator MOX-TT respectively;
步骤2,将毕赤酵母表达载体pPICZC上的启动子AOX1和终止子AOX-TT,分别替换成MOX基因启动子MOXp和终止子MOX-TT,即得汉逊酵母表达载体pHPZF1.0。In step 2, the promoter AOX1 and the terminator AOX-TT on the Pichia pastoris expression vector pPICZC were respectively replaced with the MOX gene promoter MOXp and the terminator MOX-TT to obtain the Hansenula expression vector pHPZF1.0.
作为改进,所述MOX基因启动子MOXp的序列是SEQ ID No.3所示核苷酸序列。As an improvement, the sequence of the MOX gene promoter MOXp is the nucleotide sequence shown in SEQ ID No.3.
作为改进,所述MOX基因终止子MOX-TT的序列是SEQ ID No.4所示核苷酸序列。As an improvement, the sequence of the MOX gene terminator MOX-TT is the nucleotide sequence shown in SEQ ID No.4.
本发明还提供了一种上述任一项所述构建方法得到表达载体pHPZF1.0在提高乙型肝炎病毒表面抗原HBsAg在汉逊酵母表达量的方法,该方法采用优化HBsAg基因。The present invention also provides a method for increasing the expression of hepatitis B virus surface antigen HBsAg in Hansenula by obtaining the expression vector pHPZF1.0 through the construction method described in any one of the above methods. The method adopts the optimization of HBsAg gene.
作为改进,所述优化HBsAg基因以序列表SEQ ID No.1所述氨基酸序列为基础,结合宿主菌汉逊酵母基因组密码子偏好性,合成优化HBsAg基因核苷酸序列,其具有序列表中SEQ ID No.2所述的核苷酸序列。As an improvement, the optimized HBsAg gene is based on the amino acid sequence described in the sequence listing SEQ ID No.1, combined with the codon preference of the host strain Hansenula genome, to synthesize and optimize the HBsAg gene nucleotide sequence, which has the SEQ ID No. 1 in the sequence listing. Nucleotide sequence described in ID No.2.
采用本发明所述方法,可以获得的乙型肝炎表面抗原汉逊酵母酵母工程菌株能够以甲醇诱导型方式稳定和高效地表达HBsAg重组蛋白,适用于规模化生产HBsAg重组蛋白。By adopting the method of the present invention, the HBsAg Hansenula yeast engineering strain that can be obtained can stably and efficiently express HBsAg recombinant protein in a methanol-inducible manner, and is suitable for large-scale production of HBsAg recombinant protein.
附图说明Description of drawings
图1为甲醇诱导型汉逊酵母高效表达载体pHPZF1.0的构建全过程;Figure 1 shows the whole process of constructing the methanol-inducible Hansenula high-efficiency expression vector pHPZF1.0;
图2为乙型肝炎病毒表面抗原HBsAg高效表达重组载体pHPZF1.0-ZS的构建全过程;Fig. 2 is the whole process of constructing the recombinant vector pHPZF1.0-ZS for high-efficiency expression of hepatitis B virus surface antigen HBsAg;
图3为SDS-PAGE电泳检测不同重组子HBsAg重组蛋白表达情况:Figure 3 is the expression of different recombinant HBsAg recombinant proteins detected by SDS-PAGE electrophoresis:
M为标准分子量蛋白(PageRulerTM Plus Prestained Protein Ladder partNo.26616 10~170KDa,Thermo Scientific公司产品);M is standard molecular weight protein (PageRulerTM Plus Prestained Protein Ladder partNo.26616 10~170KDa, product of Thermo Scientific Company);
1为阴性对照,pHPZF1.0空载体转化的重组酵母菌株培养120小时破碎液;1 is the negative control, and the recombinant yeast strain transformed with pHPZF1.0 empty vector is cultured for 120 hours;
2~9分别源自pHPZF1.0-ZS转化酵母不同重组子培养120小时破碎液;2-9 are respectively derived from the 120-hour crushing solution of different recombinants of pHPZF1.0-ZS transformed yeast;
图4为Western-Blot电泳检测不同重组子HBsAg重组蛋白表达情况;Figure 4 is Western-Blot electrophoresis detection of different recombinant HBsAg recombinant protein expression;
M为标准分子量蛋白(PageRulerTM Plus Prestained Protein Ladder partNo.26616 10~170KDa,Thermo Scientific公司产品);M is standard molecular weight protein (PageRulerTM Plus Prestained Protein Ladder partNo.26616 10~170KDa, product of Thermo Scientific Company);
1为阴性对照,pHPZF1.0空载体转化的重组酵母菌株培养120小时破碎液;1 is the negative control, and the recombinant yeast strain transformed with pHPZF1.0 empty vector is cultured for 120 hours;
2~9分别源自pHPZF1.0-ZS转化酵母不同重组子培养120小时破碎液;2-9 are respectively derived from the 120-hour crushing solution of different recombinants of pHPZF1.0-ZS transformed yeast;
Western-Blot使用的一抗为抗HBsAg的鼠源原抗(Hep B HBsAg(1023):sc-53299,SANTA CRUZ公司产品)。The primary antibody used in Western-Blot was the mouse-derived primary antibody against HBsAg (Hep B HBsAg(1023): sc-53299, product of SANTA CRUZ Company).
图5为发酵过程中菌体湿重和SDS-PAGE电泳检测抗原表达的变化情况:Fig. 5 is the changing situation of the bacterial cell wet weight and SDS-PAGE electrophoresis detection antigen expression in the fermentation process:
M为标准分子量蛋白(PierceTM unstained Protein Molecular Weight Markerpart No.26610 14.4~116KDa,Thermo Scientific公司产品);M is a standard molecular weight protein (PierceTM unstained Protein Molecular Weight Markerpart No.26610 14.4~116KDa, product of Thermo Scientific Company);
1~10分别为源自工程菌HBsAg1.0-38G1不同发酵时间点菌体的破碎液,对应的时间点分别为24、48、54、60、66、72、78、84、90和96小时,HBsAg重组蛋白的分子量20~25kD;1 to 10 are the broken liquids derived from the engineering bacteria HBsAg1.0-38G1 at different fermentation time points, and the corresponding time points are 24, 48, 54, 60, 66, 72, 78, 84, 90 and 96 hours , the molecular weight of HBsAg recombinant protein is 20-25kD;
图6为重组蛋白HBsAg层析纯化后的蛋白检测:Fig. 6 is the protein detection after recombinant protein HBsAg chromatographic purification:
M为标准分子量蛋白(PierceTM unstained Protein Molecular Weight Markerpart No.26610 14.4~116KDa,Thermo Scientific公司产品);M is a standard molecular weight protein (PierceTM unstained Protein Molecular Weight Markerpart No.26610 14.4~116KDa, product of Thermo Scientific Company);
其中,1为破碎液上清;2为阴离子交换层析产物;3为阳离子交换层析产物;4为300K中空纤维柱浓缩后产物;5为分子筛产物;Among them, 1 is the supernatant of the broken liquid; 2 is the product of anion exchange chromatography; 3 is the product of cation exchange chromatography; 4 is the product concentrated by the 300K hollow fiber column; 5 is the product of molecular sieve;
图7为纯化后的重组蛋白HBsAg的HPSEC检测图谱。Fig. 7 is the HPSEC detection spectrum of the purified recombinant protein HBsAg.
具体实施方式Detailed ways
下面以汉逊酵母组成型表达HBsAg蛋白为例,描述一些优先的实施方案,但本发明的应用不仅限于此。本发明的进一步描述只是一些特别的优先实施方案,是按照专利申请要求以及为了解释和说明本专利的内容。很显然,在不背离本发明的精神和范围之内,可在此基础上,做进一步的改进和变化。Taking Hansenula constitutively expressing HBsAg protein as an example, some preferred embodiments are described below, but the application of the present invention is not limited thereto. The further description of the present invention is only some specific preferred embodiments, in accordance with the requirements of the patent application and for the purpose of explaining and illustrating the content of this patent. Obviously, further improvements and changes can be made on this basis without departing from the spirit and scope of the present invention.
利用常规的分子生物学技术(内切酶和连接酶处理),将MOX启动子和终止子插入到pPICZ C中并取代载体原位置上的诱导型启动子-乙醇氧化酶启动子和终止子,得到汉逊酵母表达载体pHPZF1.0;Using conventional molecular biology techniques (endonuclease and ligase treatment), insert the MOX promoter and terminator into pPICZ C and replace the inducible promoter-alcohol oxidase promoter and terminator on the original position of the vector, Obtain the Hansenula expression vector pHPZF1.0;
实施例1:汉逊酵母甲醇氧化酶启动子和终止子的克隆Example 1: Cloning of Hansenula methanol oxidase promoter and terminator
根据已知序列(GenBank:A11156,AR363832和E00783),分别合成位于MOX基因启动子两端的引物MOX_P-F和MOX_P-R,According to the known sequences (GenBank: A11156, AR363832 and E00783), primers MOX_P-F and MOX_P-R located at both ends of the MOX gene promoter were synthesized, respectively,
其中MOX_P-F为5′-CCAATAGATCTTCGACGCGGAGAACGATCTCCTC-3′,Wherein MOX_P-F is 5'-CCAATAGATCTTCGACGCGGAGAACGATCTCCTC-3',
MOX_P-R1为5′-GGAACCTCCACCAACAACAATGATATCGAAT-3′,和合成位于MOX基因终止子两端的引物MOX_TT-F1和MOX_TT-R1,MOX_P-R1 is 5'-GGAACCTCCACCAACAACAATGATATCGAAT-3', and the primers MOX_TT-F1 and MOX_TT-R1 located at both ends of the MOX gene terminator are synthesized,
其中MOX_TT-F1为5′-TCGGAACTTACGAGGAGACCGGACTTGCCAG-3′,Where MOX_TT-F1 is 5'-TCGGAACTTACGAGGAGACCGGACTTGCCAG-3',
MOX_TT-R1为5′-CTTGTGTCTCACACCCATAATGATCCCGTT-3′,以汉逊酵母基因组DNA为模板(基因组提取方法参见《分子克隆实验指南第三版》485页),通过PCR,扩增获得MOX 启动子和终止子,将扩增片段直接插入到pEASY-Blunt-Zero质粒中,按照该公司所提供的方法,分别得到含有中间质粒载体pMOX-P的细菌克隆和pMOX-TT的细菌克隆(见附图3、图4),然后,通过核苷酸测序分析,确定MOX启动子(MOX-P)和MOX终止子(MOX-TT)是正确和完整的,分别见SEQ ID NO:3和SEQ ID NO:4。MOX_TT-R1 is 5′-CTTGTGTCTCACACCCATAATGATCCCGTT-3′, using Hansenula yeast genomic DNA as a template (for the genome extraction method, see page 485 of "Molecular Cloning Experiment Guide, Third Edition"), the MOX promoter and terminator were amplified by PCR , the amplified fragment was directly inserted into the pEASY-Blunt-Zero plasmid, and according to the method provided by the company, the bacterial clone containing the intermediate plasmid vector pMOX-P and the bacterial clone of pMOX-TT were respectively obtained (see accompanying drawing 3, Fig. 4), and then, through nucleotide sequencing analysis, it was confirmed that the MOX promoter (MOX-P) and MOX terminator (MOX-TT) were correct and complete, see SEQ ID NO: 3 and SEQ ID NO: 4, respectively.
实施例2:表达载体pHPZF1.0的构建Embodiment 2: Construction of expression vector pHPZF1.0
从pMOX-P质粒上PCR扩增MOX-P启动子,利用BglII-EcoRI位点克隆入载体pPICZC,得到质粒pPICZC-MOXP;根据测序验证得到的MOX启动子序列,重新设计引物MOX_P-R2。以MOX_P-F和MOX_P-R2为引物,The MOX-P promoter was amplified by PCR from the pMOX-P plasmid, and cloned into the vector pPICZC using the BglII-EcoRI site to obtain the plasmid pPICZC-MOXP; according to the sequence of the MOX promoter obtained by sequencing verification, the primer MOX_P-R2 was redesigned. With MOX_P-F and MOX_P-R2 as primers,
其中MOX_P-F为5′-CCAATAGATCTTCGACGCGGAGAACGATCTCCTC-3′(划线部分为BglII位点),MOX_P-R2为5′-CACGTGAATTCCTCGTTTCGAAGCTTTGTTTTTGTACTTTAGATT-3′(划线部分为EcoRI位点),以中间质粒载体pMOX-P DNA为模板(质粒提取方法参见《分子克隆实验指南第三版》485页),通过PCR,扩增获得MOX启动子,PCR产物两端引入BglII和EcoRI位点。用限制性内切酶BglII-EcoRI进行双酶切,通过琼脂糖凝胶电泳分离和回收该DNA片段。用同样的限制性内切酶处理质粒pPICZ C(美国Invitrogen公司产品),通过琼脂糖凝胶电泳分离和回收线性化后的pPICZ C质粒DNA,然后将上述两个DNA片段混合后并用连接酶连接在一起便得到中间质粒载体pPICZC-MOXP(见附图1),然后用上述质粒载体转化大肠杆菌细胞DH5α(美国Invitrogen公司产品)以方便进行该质粒的复制和保存,最后,通过核苷酸测序分析,确定MOX启动子序列和插入位点的正确和完整的。Where MOX_P-F is 5'-CCAATAGATCTTCGACGCGGAGAACGATCTCCTC-3' (the underlined part is the BglII site), MOX_P-R2 is 5'-CACGTGAATTCCTCGTTTCGAAGCTTTGTTTTTGTACTTTAGATT-3' (the underlined part is the EcoRI site), and the intermediate plasmid vector pMOX-P DNA was used as a template (see page 485 of "Molecular Cloning Experiment Guide, Third Edition" for the plasmid extraction method), and the MOX promoter was amplified by PCR, and BglII and EcoRI sites were introduced at both ends of the PCR product. Double digestion was performed with restriction endonuclease BglII-EcoRI, and the DNA fragment was separated and recovered by agarose gel electrophoresis. Treat the plasmid pPICZ C (product of Invitrogen, USA) with the same restriction endonuclease, separate and recover the linearized pPICZ C plasmid DNA by agarose gel electrophoresis, then mix the above two DNA fragments and connect them with ligase Together, the intermediate plasmid vector pPICZC-MOXP (see accompanying drawing 1) is obtained, and then the Escherichia coli cell DH5α (product of Invitrogen, USA) is transformed with the above-mentioned plasmid vector to facilitate the replication and preservation of the plasmid, and finally, through nucleotide sequencing Analysis to determine the correct and complete MOX promoter sequence and insertion site.
从pMOX-TT质粒上PCR扩增MOX-TT终止子,利用SalI-BamHI位点克隆入上面中间质粒pPICZC-MOXP,得到汉逊酵母表达载体pHPZF1.0;根据测序验证得到的MOX终止子序列,重新设计引物MOX_TT-F2和MOX_TT-R2。The MOX-TT terminator was amplified by PCR from the pMOX-TT plasmid, and cloned into the above intermediate plasmid pPICZC-MOXP using the SalI-BamHI site to obtain the Hansenula expression vector pHPZF1.0; the obtained MOX terminator sequence was verified by sequencing, Primers MOX_TT-F2 and MOX_TT-R2 were redesigned.
其中MOX_TT-F2为5′-CCAATGTCGACCATCATCATCATCATCATTGAGGAGACGTGGAAGGACATAC-3′(划线部分为SalI位点),Where MOX_TT-F2 is 5'-CCAATGTCGACCATCATCATCATCATCATTGAGGAGACGTGGAAGGACATAC-3' (the underlined part is the SalI site),
MOX_TT-R2为5′-CAATTAGATCTGCTAGCATTGGGGATCCGGGATATCACCACAACGTCCG-3′(划线部分为BglII位点),以中间质粒载体pPICZC-MOXP为模板(质粒提取参见质粒小量DNA提取试剂盒AP-MN-P-250,Axygen公司产品),通过PCR,扩增获得MOX终止子,PCR产物两端引入SalI和BglII位点,其中BglII与BamHI是同尾酶。用限制性内切酶SalI-BglII进行双酶切,通过琼脂糖凝胶电泳分离和回收该DNA片段。用SalI-BamHI限制性内切酶处理质粒pPICZC-MOXP,通过琼脂糖凝胶电泳分离和回收线性化后的pPICZC-MOXP质粒DNA,然后将上述两个DNA片段混合后并用连接酶连接在一起便得到得到汉逊酵母表达载体pHPZF1.0(见附图1),然后用上述质粒载体转化大肠杆菌细胞DH5α(美国Invitrogen公司产品)以方便进行该质粒的复制和保存,最后,通过核苷酸测序分析,确定MOX启动子序列和插入位点的正确和完整的。MOX_TT-R2 is 5′-CAATTAGATCTGCTAGCATTGGGGATCCGGGATATCACCACAACGTCCG-3′ (the underlined part is the BglII site), and the intermediate plasmid vector pPICZC-MOXP is used as a template (for plasmid extraction, refer to the plasmid small DNA extraction kit AP-MN-P-250, Axygen Company product), the MOX terminator was amplified by PCR, and SalI and BglII sites were introduced into both ends of the PCR product, wherein BglII and BamHI are homologous enzymes. Double digestion was performed with restriction endonuclease SalI-BglII, and the DNA fragment was separated and recovered by agarose gel electrophoresis. Treat the plasmid pPICZC-MOXP with SalI-BamHI restriction endonuclease, separate and recover the linearized pPICZC-MOXP plasmid DNA by agarose gel electrophoresis, then mix the above two DNA fragments and connect them together with ligase Obtain the Hansenula expression vector pHPZF1.0 (see accompanying drawing 1), then use the above-mentioned plasmid vector to transform Escherichia coli cells DH5α (product of Invitrogen, USA) to facilitate the replication and preservation of the plasmid, and finally, through nucleotide sequencing Analysis to determine the correct and complete MOX promoter sequence and insertion site.
实施例3:adr亚型HBsAg共有氨基酸序列的分析Example 3: Analysis of the consensus amino acid sequence of adr subtype HBsAg
由于基因型C包含了所有adr血清型,因此我们以日本报道的乙肝病毒C型标准基因组序列AY123041为检索序列,Blast NCBI核酸数据库(相似性参数设置为93~100%),共检索HBV基因组序列近2000条。经排查,其中中国报道序列基因型C的HBV基因组序列617条,排除测序错误和HBsAg无义突变序列,共获得中国报道的adr血清型HBsAg蛋白序列479条(其中25条来自香港序列,4条来自台湾地区)。使用BioEdit软件功能进行氨基酸序列比对分析,获得最具代表性的HBsAg共有氨基酸序列(consensus amino acid sequence,即在HBsAg每个氨基酸位置均采用出现概率最高的氨基酸残基的序列),其序列如SEQ ID NO:1所示。Since genotype C includes all adr serotypes, we used the standard genome sequence AY123041 of hepatitis B virus type C reported in Japan as the retrieval sequence, and Blast NCBI nucleic acid database (similarity parameters were set to 93-100%) to retrieve the HBV genome sequence Nearly 2000 entries. After investigation, 617 HBV genome sequences of genotype C reported in China were sequenced. Excluding sequencing errors and HBsAg nonsense mutation sequences, a total of 479 HBsAg protein sequences of adr serotype reported in China were obtained (25 of which were from Hong Kong sequences and 4 of them were from Hong Kong). from Taiwan). Use the function of BioEdit software to perform amino acid sequence comparison analysis, and obtain the most representative HBsAg consensus amino acid sequence (consensus amino acid sequence, that is, the sequence of amino acid residues with the highest probability of occurrence at each amino acid position of HBsAg), the sequence is as follows: Shown in SEQ ID NO:1.
实施例4:密码子优化后的HBsAg基因的人工合成Embodiment 4: Artificial synthesis of HBsAg gene after codon optimization
HBsAg基因源于乙型肝炎病毒,其密码子为哺乳动物生物所偏好,而汉逊酵母属于真菌,故它们在基因密码子偏好方面存在着一定的差异,而这种差异很可能会影响到HBsAg基因及其转录产物在汉逊酵母细胞中的稳定性和表达效率。为提高HBsAg的生物产量,在不改变其氨基酸序列的前提下(见SEQIDNO:1),按照酵母所偏爱的密码子(SharpPM,etal.,1986),人工设计和合成了新的HBsAg蛋白的DNA编码序列HBsAg-ZS(见SEQ ID NO:2)。与此同时,为了便于此后基因克隆和重组方便,其合成的DNA序列需要避免以下酶切位点SphI、ScaI、HindIII、BamHI、NheI、BstBI、EcoRI和KpnI。The HBsAg gene is derived from hepatitis B virus, and its codons are preferred by mammals, while Hansenula belongs to fungi, so there are certain differences in their gene codon preferences, and this difference is likely to affect HBsAg Stability and expression efficiency of genes and their transcripts in Hansenula cells. In order to improve the biological yield of HBsAg, under the premise of not changing its amino acid sequence (see SEQ ID NO: 1), according to the codon preferred by yeast (SharpPM, et al., 1986), the DNA of a new HBsAg protein was artificially designed and synthesized Coding sequence HBsAg-ZS (see SEQ ID NO: 2). At the same time, in order to facilitate subsequent gene cloning and recombination, the synthetic DNA sequence needs to avoid the following restriction sites SphI, ScaI, HindIII, BamHI, NheI, BstBI, EcoRI and KpnI.
实施例5:重组质粒pHPZF1.0-ZS的构建Embodiment 5: Construction of recombinant plasmid pHPZF1.0-ZS
用限制性内切酶HindIII和SalI进行双酶切,将优化合成得到的新HBsAg基因与载体pHPZF1.0用连接酶连接在一起便得到汉逊酵母表达载体pHPZF1.0-ZS(见附图2),然后用上述质粒载体转化大肠杆菌细胞JM109(购自美国GIBCO公司)以方便进行该质粒的复制和保存。Carry out double digestion with restriction endonucleases HindIII and SalI, and link the new HBsAg gene obtained by optimization synthesis with the vector pHPZF1.0 with a ligase to obtain the Hansenula expression vector pHPZF1.0-ZS (see accompanying drawing 2 ), and then transform Escherichia coli cell JM109 (purchased from GIBCO, USA) with the above-mentioned plasmid vector to facilitate the replication and preservation of the plasmid.
实施例6:线性化质粒表达载体DNA的制备Example 6: Preparation of linearized plasmid expression vector DNA
首先用试剂盒提取质粒(详细步骤参见质粒小量DNA提取试剂盒AP-MN-P-250,Axygen 公司产品),从上述的大肠杆菌DH5α(美国Invitrogen公司产品)细胞中制备提取pHPZF1.0-ZS质粒DNA,然后用1~2倍过量的限制性内切酶NsiI进行酶切,使之完全线性化,可利用琼脂糖凝胶电泳检测酶切是否完全;然后回收试剂盒(详细步骤参见胶回收试剂盒Wizard SV Gel and PCR Clean-up System,Promega公司产品),使用无菌的去离子水洗脱,-20℃保存,备用。First, use a kit to extract the plasmid (for detailed steps, refer to the plasmid small DNA extraction kit AP-MN-P-250, a product of Axygen Company), and prepare and extract pHPZF1.0- ZS plasmid DNA is then digested with 1-2 times excess restriction endonuclease NsiI to make it completely linearized, and agarose gel electrophoresis can be used to detect whether the digestion is complete; then recover the kit (see gel for detailed steps). The recovery kit (Wizard SV Gel and PCR Clean-up System, product of Promega Company) was used for elution with sterile deionized water, stored at -20°C, and used for later use.
实施例7:酵母细胞的转化Example 7: Transformation of Yeast Cells
将-80℃保存的汉逊酵母(购自美国ATCC菌种保藏中心)接种到5mLYPD中(1%酵母提取物,2%胰蛋白胨,2%葡萄糖),37℃震荡培养1天左右,将培养好的菌液以1%接种量重新接种于100mLYPD中,37℃震荡过夜培养(8h)至OD600为1.3~1.5,4000rpm离心5分钟,倒掉上清,将沉淀的酵母细胞重悬在40mL溶液A(50mM磷酸钾缓冲液,pH7.5,25mM DTT)中,37℃温浴15min,4000rpm离心5分钟,倒掉上清,将沉淀的酵母细胞重悬在200mL冰预冷的溶液B(270mM蔗糖,10mMTris-HCl,pH7.5,1mMMgCl2)中,4000rpm离心5分钟,倒掉上清,将沉淀的酵母细胞重悬在100mL预冷的溶液B中,4000rpm离心5分钟,倒掉上清,将沉淀的酵母细胞重悬在1mL预冷的溶液B中,吸取80uL于1.5mL离心管中,与上述线性化表达载体pHPZF1.0-ZS质粒DNA(4~5ug)分别充分混匀,然后转移到冰浴后的0.2cm无菌电击杯中,利用电击仪(Bio-Rad公司产品)将线性化的表达载体质粒DNA导入酵母感受态细胞中,使用的电击参数为电压1.5kV,电容50uF,电阻125Ω。电击完成后,立即向电击杯中加入1mL室温的YPD培养基(1%酵母提取物,2%酪蛋白胨,2%葡萄糖),充分混匀后,35℃静置1小时,然后涂布于固体YPD培养基(液体培养基中加入了2%琼脂粉,0.1mg/mL Zeocin)上,平板倒置于35℃恒温培养箱中2~3天,至转化重组子出现。Inoculate Hansenula saccharomyces (purchased from the American ATCC Culture Collection Center) stored at -80°C into 5mL LYPD (1% yeast extract, 2% tryptone, 2% glucose), shake culture at 37°C for about 1 day, and culture The good bacterial solution was re-inoculated in 100mLYPD with 1% inoculum, cultured overnight at 37°C with shaking (8h) until the OD600 was 1.3-1.5, centrifuged at 4000rpm for 5 minutes, discarded the supernatant, and resuspended the precipitated yeast cells in 40mL solution In A (50mM potassium phosphate buffer, pH 7.5, 25mM DTT), incubate at 37°C for 15 minutes, centrifuge at 4000rpm for 5 minutes, discard the supernatant, and resuspend the precipitated yeast cells in 200mL of ice-cold solution B (270mM sucrose , 10mM Tris-HCl, pH7.5, 1mMMgCl2), centrifuged at 4000rpm for 5 minutes, poured off the supernatant, resuspended the precipitated yeast cells in 100mL pre-cooled solution B, centrifuged at 4000rpm for 5 minutes, poured off the supernatant, and Resuspend the precipitated yeast cells in 1mL of pre-cooled solution B, pipette 80uL into a 1.5mL centrifuge tube, mix thoroughly with the above-mentioned linearized expression vector pHPZF1.0-ZS plasmid DNA (4~5ug), and then transfer to In a 0.2 cm sterile electric shock cup after ice bath, use an electric shock instrument (product of Bio-Rad Company) to introduce the linearized expression vector plasmid DNA into yeast competent cells. The electric shock parameters used are voltage 1.5kV, capacitance 50uF, resistance 125Ω. Immediately after the electric shock is completed, add 1 mL of YPD medium (1% yeast extract, 2% casein peptone, 2% glucose) to the electric shock cup, mix well, let stand at 35°C for 1 hour, and then spread on the solid On the YPD medium (2% agar powder, 0.1 mg/mL Zeocin added to the liquid medium), the plate was inverted and placed in a constant temperature incubator at 35° C. for 2 to 3 days until transformed recombinants appeared.
实施例8:高表达酵母菌株的筛选Example 8: Screening of Highly Expressed Yeast Strains
将在YPD培养基(0.1mg/mL Zeocin)上生长的酵母单菌落(转化子)用无菌牙签逐一挑取到含有梯度Zeocin的YPD培养基(分别含有1mg/mL、2mg/mL、4mg/mL、6mg/mL Zeocin)上,平板倒置于35℃恒温培养箱中1~2天。随着携带有Zeocin抗性基因的外源质粒整合到酵母基因组中的拷贝数的增加,转化子对Zeocin的抗性增强。挑取能够在含有6mg/mLZeocin的YPD平板上生长的转化子,接种于100mLBMMY培养基[1%酵母提取物,2%酪蛋白胨,100mM磷酸钾缓冲液(pH7.0),1.34%YNB,0.00004%Biotin,0.64%甲醇(v/v)]中,35℃震荡培养120小时,每隔24小时补充0.64ml(v/v)甲醇一次,发酵液10000rmp离心5分钟,收集菌体,破碎后,进行SDS-PAGE电泳检测。Single yeast colonies (transformants) grown on YPD medium (0.1 mg/mL Zeocin) were picked one by one with a sterile toothpick into YPD medium containing gradient Zeocin (containing 1 mg/mL, 2 mg/mL, 4 mg/mL, respectively mL, 6mg/mL Zeocin), and place the plate upside down in a constant temperature incubator at 35°C for 1-2 days. As the number of copies of the foreign plasmid carrying the Zeocin resistance gene integrated into the yeast genome increases, the resistance of the transformants to Zeocin increases. Pick the transformant that can grow on the YPD plate containing 6mg/mL Zeocin, and inoculate it in 100mL of BMMY medium [1% yeast extract, 2% casein, 100mM potassium phosphate buffer (pH7.0), 1.34%YNB, 0.00004 %Biotin, 0.64% methanol (v/v)], shake culture at 35°C for 120 hours, add 0.64ml (v/v) methanol once every 24 hours, centrifuge the fermentation broth at 10,000rmp for 5 minutes, collect the cells, and after crushing, Carry out SDS-PAGE electrophoresis detection.
从附图3、图4可知,在经表达载体pHPZF1.0-ZS转化所获得的重组酵母菌株培养上清液泳道中含有目标蛋白带,而在经表达载体pHPZF1.0转化所获得的重组酵母菌株培养上清液泳道中则没有目标蛋白带。该结果表明:HBsAg基因被按照酵母所偏爱的密码子所优化被置于一个汉逊酵母MOX启动子操纵之下,连同MOX终止子,一起被整合到汉逊酵母基因组中,随着重组酵母工程菌的生长,HBsAg基因在MOX启动子的作用下能够在甲醇的诱导下得到高效表达。从中挑选出一株作为工程菌加以保存,并将其命名为HBsAg1.0-38G1Hansenula ploymorpha HBsAg1.0-38G1,并于2016年1月15日保藏于位于中国武汉武汉大学的中国典型培养物保藏中心,保藏号CCTCC No:M2016039。It can be seen from accompanying drawings 3 and 4 that the target protein band is contained in the culture supernatant lane of the recombinant yeast strain obtained through the transformation of the expression vector pHPZF1.0-ZS, while the recombinant yeast obtained through the transformation of the expression vector pHPZF1.0 There is no target protein band in the culture supernatant lane of the strain. The results indicated that the HBsAg gene was optimized according to the codons preferred by yeast and placed under the operation of a Hansenula MOX promoter, together with the MOX terminator, was integrated into the Hansenula genome. The HBsAg gene can be highly expressed under the induction of methanol under the action of MOX promoter. One of them was selected and preserved as an engineering strain, and it was named HBsAg1.0-38G1Hansenula polymorpha HBsAg1.0-38G1, and was preserved in the Chinese Type Culture Collection Center located in Wuhan University, Wuhan, China on January 15, 2016 , deposit number CCTCC No: M2016039.
实施例9:重组酵母在30L发酵罐中的高密度发酵Embodiment 9: High-density fermentation of recombinant yeast in 30L fermenter
1)种子液制备:取1管真核汉逊酵母工程菌HBsAg1.0-38G1工作种子(1ml/管),尽数转接于1.2LBMGY培养基中,35℃振荡培养48小时,OD600值达到2~6,然后将其作为种子液;1) Seed liquid preparation: Take 1 tube of working seeds of the eukaryotic Hansenula engineering strain HBsAg1.0-38G1 (1ml/tube), transfer all of them to 1.2LBMGY medium, shake and culture at 35°C for 48 hours, and the OD600 value reaches 2 ~6, then use it as seed solution;
2)初培养阶段:在30L发酵罐中盛放了15L基础发酵培养基(4.29%磷酸二氢钾,0.5%硫酸铵,1.43%硫酸钾,1.17%七水硫酸镁,0.10%二水硫酸钙,0.5882%二水柠檬酸钠,3.00%甘油),pH用14%氨水调整并维持至5.5。再按照下述比例,在每升基础发酵培养基中加入4.37mL微量盐溶液PTM1(0.6%硫酸铜,0.008%碘化钠,0.3%硫酸锰,0.02%钼酸钠,0.002%硼酸,0.05%氯化钴,2%氯化锌,6.5%硫酸亚铁,0.025%生物素,0.5%硫酸),在35℃条件下,自动控制溶氧不低于30%;2) Initial culture stage: 15L basic fermentation medium (4.29% potassium dihydrogen phosphate, 0.5% ammonium sulfate, 1.43% potassium sulfate, 1.17% magnesium sulfate heptahydrate, 0.10% calcium sulfate dihydrate) was placed in a 30L fermenter , 0.5882% sodium citrate dihydrate, 3.00% glycerol), the pH was adjusted and maintained to 5.5 with 14% ammonia water. Then add 4.37mL trace salt solution PTM1 (0.6% copper sulfate, 0.008% sodium iodide, 0.3% manganese sulfate, 0.02% sodium molybdate, 0.002% boric acid, 0.05% Cobalt chloride, 2% zinc chloride, 6.5% ferrous sulfate, 0.025% biotin, 0.5% sulfuric acid), at 35°C, automatically control dissolved oxygen not less than 30%;
3)甘油流加培养阶段:当甘油耗尽后,溶氧(DO)陡然上升,此时,流加甘油。通过蠕动泵流加50%甘油(其中含有12mLPTM1/L),甘油补加速度为7G/min,至菌体湿重约250~300g/L,调节转速和通气量,溶氧不低于20%,此阶段,用14%氨水将pH值缓慢调节至6.0。3) Glycerol fed-batch culture stage: when glycerol is exhausted, dissolved oxygen (DO) rises sharply, at this time, feed glycerol. Add 50% glycerol (which contains 12mLPTM1/L) through a peristaltic pump, and the speed of glycerol supplementation is 7G/min, until the wet weight of the bacteria is about 250-300g/L, adjust the speed and ventilation, and the dissolved oxygen is not less than 20%. At this stage, the pH was slowly adjusted to 6.0 with 14% ammonia.
4)甲醇诱导阶段:停止甘油流加后让菌体饥饿30min后,通过蠕动泵流加补料液,补料液为100%甲醇(其中含有12mLPTM1/L),甲醇浓度在线控制,浓度维持在6.0~6.4%(v/v)。pH用14%氨水调整并维持至6.0。调节转速和通气量,控制溶氧量不低于20%至菌体湿重约300g/L,然后,将转速调到大于1300rpm,空气通量最大,溶氧量不于控制,至发酵总时100h下罐;4) Methanol induction stage: After stopping the feeding of glycerin and letting the cells starve for 30 minutes, feed the feed liquid through a peristaltic pump. 6.0-6.4% (v/v). The pH was adjusted and maintained to 6.0 with 14% aqueous ammonia. Adjust the rotation speed and air flow, control the dissolved oxygen amount to not less than 20% until the wet weight of the bacteria is about 300g/L, then adjust the rotation speed to greater than 1300rpm, the air flux is the largest, and the dissolved oxygen amount is not under control, until the total fermentation time 100h tank;
5)每隔24小时取数毫升发酵液经5000rpm4℃下离心10分钟,取破碎液上清液进行SDS-PAGE检测,发现目的蛋白条带随着甲醇诱导时间的延长而浓度显著增加,分子量约为24kDa,与推测中分子量基本吻合。此外,从电泳图中发现,在培养100小时后,重组蛋白表达量达到最高峰(见附图5)。5) Take a few milliliters of fermentation broth every 24 hours and centrifuge at 5000rpm at 4°C for 10 minutes, and take the supernatant of the crushed solution for SDS-PAGE detection. It is found that the concentration of the target protein band increases significantly with the prolongation of methanol induction time, and the molecular weight is about It is 24kDa, which is basically consistent with the estimated molecular weight. In addition, it was found from the electropherogram that the recombinant protein expression reached the highest peak after 100 hours of culture (see Figure 5).
实施例10:发酵后HBsAg重组蛋白表达检测Example 10: Detection of HBsAg recombinant protein expression after fermentation
1)三批连续发酵,每批取500mL发酵液经离心和洗涤,然后高压匀破碎,在相同条件下破碎细胞。向破碎液中表面活性剂吐温20,调节pH值,2~8℃搅拌过夜;将破碎后细胞12000g的转速离心除去细胞碎片,上清经过0.45μm和0.2μm微滤。1) Three batches of continuous fermentation, each batch of 500mL fermentation broth was centrifuged and washed, and then homogeneously crushed under high pressure, and the cells were broken under the same conditions. Surfactant Tween 20 was added to the crushing solution to adjust the pH value, and stirred overnight at 2-8°C; the crushed cells were centrifuged at a speed of 12,000 g to remove cell debris, and the supernatant was microfiltered at 0.45 μm and 0.2 μm.
2)采用ELISA方法测定HBsAg,HBsAg酶联免疫检测试剂盒购自科华公司,HBsAg标准品(纯度99%)购自中国药品生物制品检定院,详细步骤参见试剂盒说明书。2) ELISA was used to measure HBsAg. The HBsAg enzyme-linked immunoassay kit was purchased from Kehua Company, and the HBsAg standard product (purity 99%) was purchased from China Institute for the Control of Pharmaceutical and Biological Products. For detailed steps, please refer to the kit instruction manual.
3)结果发现,重组蛋白的平均表达量约1.5g/L,菌体的生物量、生长速度以及重组蛋白的表达量在三批连续发酵过程中基本保持稳定,证实重组汉逊酵母菌株和发酵工艺均具有很好的稳定性,具体参见表1。3) It was found that the average expression level of the recombinant protein was about 1.5g/L, and the biomass, growth rate and expression level of the recombinant protein remained basically stable during the three batches of continuous fermentation, confirming that the recombinant Hansenula strain and fermentation The processes all have good stability, see Table 1 for details.
表1.HBsAg1.0-38G1发酵过程中菌体浓度和外源蛋白表达测定Table 1. Determination of bacterial cell concentration and exogenous protein expression during HBsAg1.0-38G1 fermentation
实施例11:重组蛋白的纯化Embodiment 11: Purification of recombinant protein
在一个发酵周期结束之后,除留下500mL发酵液作为种子液外,其余的发酵液用于重组蛋白的纯化。发酵液经离心并洗涤,然后置于高压匀破碎直至细胞破碎率达到90%。向破碎液中0.05~1.0%(v/v)的表面活性剂吐温20,调节pH值至7.0~9.0,2~8℃搅拌4~16小时;将破碎后细胞12000g的转速离心除去细胞碎片,用1.0MNaOH和1.0MHCI调节pH值至7.5~9.0,且电导率小于5.0mS/cm,0.45μm或0.2μm微滤,然后进行阴离子交换层析,层析介质为DEAE sepherose FF,收集含汉逊酵母表达的重组乙肝表面抗原活性的流穿;将流穿液进行阳离子离子交换层析,层析介质为POROS 50HS,收集含汉逊酵母表达的重组乙肝表面抗原活性的流穿,收集含汉逊酵母表达的重组乙肝表面抗原活性回收率大于20%以上的紫外吸收峰的洗脱液;对疏水层析所得组分,采用截留分子量为100~500KD的超滤膜将样品一 次或多次重复浓缩,直至样品中蛋白质浓度为1.0~2.0mg/ml;得到的浓缩液使用凝胶过滤柱进行凝胶过滤,去除部分乙肝表面抗原病毒样颗粒形成的聚集物,在SDS-PAGE电泳和HPLC检测重组蛋白回收纯度,纯度99%以上(见附图6和7)。After one fermentation cycle was over, except for leaving 500 mL of fermentation broth as seed liquid, the rest of the fermentation broth was used for the purification of recombinant protein. The fermented liquid is centrifuged and washed, and then placed under high pressure for homogeneous disruption until the cell disruption rate reaches 90%. Add 0.05-1.0% (v/v) surfactant Tween 20 to the crushing solution, adjust the pH value to 7.0-9.0, stir at 2-8°C for 4-16 hours; centrifuge the broken cells at a speed of 12000g to remove cell debris , use 1.0M NaOH and 1.0M HCI to adjust the pH value to 7.5-9.0, and the conductivity is less than 5.0mS/cm, 0.45μm or 0.2μm microfiltration, and then perform anion exchange chromatography. The chromatography medium is DEAE sepherose FF. The flow-through of recombinant HBsAg activity expressed by Sylvia sinensis; the flow-through liquid was subjected to cationic ion exchange chromatography, and the chromatographic medium was POROS 50HS, and the flow-through containing the activity of recombinant HBsAg expressed by Hansenula was collected, and the flow-through containing Hansenula was collected. The eluate of the ultraviolet absorption peak whose activity recovery rate of the recombinant HBsAg expressed by Scutellaria subtilis is greater than 20%; for the components obtained by hydrophobic chromatography, the sample is repeated one or more times with an ultrafiltration membrane with a molecular weight cut-off of 100-500KD Concentrate until the protein concentration in the sample is 1.0-2.0 mg/ml; the obtained concentrated solution is gel-filtered using a gel filtration column to remove some aggregates formed by HBsAg virus-like particles, and detected by SDS-PAGE electrophoresis and HPLC The recovered purity of the recombinant protein is above 99% (see accompanying drawings 6 and 7).
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention. Any modification, equivalent replacement or improvement made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
SEQUENCE LISTINGSEQUENCE LISTING
<110>安徽智飞龙科马生物制药有限公司<110> Anhui Zhifeilong Koma Biopharmaceutical Co., Ltd.
<120>一种汉逊酵母特异性表达载体的构建及在提高乙肝病毒表面抗原在汉逊酵母表达量的方法<120> Construction of a Hansenula-specific expression vector and its method for increasing the expression of hepatitis B virus surface antigen in Hansenula
<160> 4<160> 4
<210>1<210>1
<211>226<211>226
<212>PRT<212>PRT
<213>乙型肝炎病毒<213> Hepatitis B virus
<400>1<400>1
Met Glu Asn Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu GlnMet Glu Asn Thr Thr Ser Gly Phe Leu Gly Pro Leu Leu Val Leu Gln
1 5 10 151 5 10 15
Ala Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser LeuAla Gly Phe Phe Leu Leu Thr Arg Ile Leu Thr Ile Pro Gln Ser Leu
20 25 30 20 25 30
Asp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr CysAsp Ser Trp Trp Thr Ser Leu Asn Phe Leu Gly Gly Ala Pro Thr Cys
35 40 45 35 40 45
Pro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr SerPro Gly Gln Asn Ser Gln Ser Pro Thr Ser Asn His Ser Pro Thr Ser
50 55 60 50 55 60
Cys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg PheCys Pro Pro Ile Cys Pro Gly Tyr Arg Trp Met Cys Leu Arg Arg Phe
65 70 75 8065 70 75 80
Ile Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu ValIle Ile Phe Leu Phe Ile Leu Leu Leu Cys Leu Ile Phe Leu Leu Val
85 90 95 85 90 95
Leu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro GlyLeu Leu Asp Tyr Gln Gly Met Leu Pro Val Cys Pro Leu Leu Pro Gly
100 105 110 100 105 110
Thr Ser Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro AlaThr Ser Thr Thr Thr Ser Thr Gly Pro Cys Lys Thr Cys Thr Ile Pro Ala
115 120 125 115 120 125
Gln Gly Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser AspGln Gly Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp
130 135 140 130 135 140
Gly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala ArgGly Asn Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg
145 150 155 160145 150 155 160
Phe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu LeuPhe Leu Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu
165 170 175 165 170 175
Val Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp LeuVal Pro Phe Val Gln Trp Phe Val Gly Leu Ser Pro Thr Val Trp Leu
180 185 190 180 185 190
Ser Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn IleSer Val Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile
195 200 205 195 200 205
Leu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp ValLeu Ser Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val
210 215 220 210 215 220
Tyr IleTyr Ile
225225
<210>2<210>2
<211>684<211>684
<212>DNA<212>DNA
<213>人工序列<213> Artificial sequence
<400>2<400>2
atggagaaca ccacttcggg attcctgggt cctttgctgg ttctccaggc cggattcttc 60atggagaaca ccacttcggg attcctgggt cctttgctgg ttctccaggc cggattcttc 60
ctgttgacca gaatcctcac tattcctcag tctctggact cgtggtggac gtccttgaac 120ctgttgacca gaatcctcac tattcctcag tctctggact cgtggtggac gtccttgaac 120
ttcctcggag gtgctccaac ctgccctggc cagaactcgc aatctccaac ctccaatcac 180ttcctcggag gtgctccaac ctgccctggc cagaactcgc aatctccaac ctccaatcac 180
tctcctacct cgtgcccacc tatctgccca ggctacagat ggatgtgcct gagaagattc 240tctcctacct cgtgcccacc tatctgccca ggctacagat ggatgtgcct gagaagattc 240
atcattttcc tgtttatctt gctgctctgc ctgatcttct tgctggtcct cctggactac 300atcattttcc tgtttatctt gctgctctgc ctgatcttct tgctggtcct cctggactac 300
cagggtatgc tgcctgtttg tccattgctg cctggaacct ccactacttc taccggtcca 360cagggtatgc tgcctgtttg tccattgctg cctggaacct ccactacttc taccggtcca 360
tgcaagacgt gtaccatccc tgcccagggc acttcgatgt tcccatcctg ctgttgcacc 420tgcaagacgt gtaccatccc tgcccagggc acttcgatgt tcccatcctg ctgttgcacc 420
aagccttctg acggcaactg cacctgtatc cctattccat cgtcctgggc tttcgccaga 480aagccttctg acggcaactg cacctgtatc cctattccat cgtcctgggc tttcgccaga 480
tttctgtggg agtgggcctc ggtgagattc tcctggttgt cgctgctcgt tccattcgtc 540tttctgtggg agtgggcctc ggtgagattc tcctggttgt cgctgctcgt tccattcgtc 540
cagtggtttg tgggattgtc ccctaccgtt tggctgtcgg tcatctggat gatgtggtat 600cagtggtttg tgggattgtc ccctaccgtt tggctgtcgg tcatctggat gatgtggtat 600
tggggtcctt ctctgtacaa catcttgtcc ccattcctgc ctctcttgcc aatcttcttt 660tggggtcctt ctctgtacaa catcttgtcc ccattcctgc ctctcttgcc aatcttcttt 660
tgcctgtggg tttacatcta atag 684tgcctgtggg tttacatcta atag 684
<210>3<210>3
<211>1511<211>1511
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
<400>3<400>3
tcgacgcgga gaacgatctc ctcgagctgc tcgcggatca gcttgtggcc cggtaatgga 60tcgacgcgga gaacgatctc ctcgagctgc tcgcggatca gcttgtggcc cggtaatgga 60
accaggccga cggcacgctc cttgcggacc acggtggctg gcgagcccag tttgtgaacg 120accaggccga cggcacgctc cttgcggacc acggtggctg gcgagcccag tttgtgaacg 120
aggtcgttta gaacgtcctg cgcaaagtcc agtgtcagat gaatgtcctc ctcggaccaa 180aggtcgttta gaacgtcctg cgcaaagtcc agtgtcagat gaatgtcctc ctcggaccaa 180
ttcagcatgt tctcgagcag ccatctgtct ttggagtaga agcgtaatct ctgctcctcg 240ttcagcatgt tctcgagcag ccatctgtct ttggagtagaga agcgtaatct ctgctcctcg 240
ttactgtacc ggaagaggta gtttgcctcg ccgcccataa tgaacaggtt ctctttctgg 300ttactgtacc ggaagaggta gtttgcctcg ccgcccataa tgaacaggtt ctctttctgg 300
tggcctgtga gcagcgggga cgtctggacg gcgtcgatga ggcccttgag gcgctcgtag 360tggcctgtga gcagcgggga cgtctggacg gcgtcgatga ggcccttgag gcgctcgtag 360
tacttgttcg cgtcgctgta gccggccgcg gtgacgatac ccacatagag gtccttggcc 420tacttgttcg cgtcgctgta gccggccgcg gtgacgatac ccacatagag gtccttggcc 420
attagtttga tgaggtgggg caggatgggc gactcggcat cgaaattttt gccgtcgtcg 480attagtttga tgaggtgggg caggatgggc gactcggcat cgaaattttt gccgtcgtcg 480
tacagtgtga tgtcaccatc gaatgtaatg agctgcagct tgcgatctcg gatggttttg 540tacagtgtga tgtcaccatc gaatgtaatg agctgcagct tgcgatctcg gatggttttg 540
gaatggaaga accgcgacat ctccaacagc tgggccgtgt tgagaatgag ccggacgtcg 600gaatggaaga accgcgacat ctccaacagc tgggccgtgt tgagaatgag ccggacgtcg 600
ttgaacgagg gggccacaag ccggcgtttg ctgatggcgc ggcgctcgtc ctcgatgtag 660ttgaacgagg gggccacaag ccggcgtttg ctgatggcgc ggcgctcgtc ctcgatgtag 660
aaggcctttt ccagaggcag tctcgtgaag aagctgccaa cgctcggaac cagctgcacg 720aaggcctttt ccagaggcag tctcgtgaag aagctgccaa cgctcggaac cagctgcacg 720
agccgagaca attcgggggt gccggctttg gtcatttcaa tgttgtcgtc gatgaggagt 780agccgagaca attcgggggt gccggctttg gtcatttcaa tgttgtcgtc gatgaggagt 780
tcgaggtcgt ggaagatttc cgcgtagcgg cgttttgcct cagagtttac catgaggtcg 840tcgaggtcgt ggaagatttc cgcgtagcgg cgttttgcct cagagtttac catgaggtcg 840
tccactgcag agatgccgtt gctcttcacc gcgtacagga cgaacggcgt ggccagcagg 900tccactgcag agatgccgtt gctcttcacc gcgtacagga cgaacggcgt ggccagcagg 900
cccttgatcc attctatgag gccatctcga cggtgttcct tgagtgcgta ctccactctg 960cccttgatcc attctatgag gccatctcga cggtgttcct tgagtgcgta ctccactctg 960
tagcgactgg acatctcgag actgggcttg ctgtgctgga tgcaccaatt aattgttgcc 1020tagcgactgg acatctcgag actgggcttg ctgtgctgga tgcaccaatt aattgttgcc 1020
gcatgcatcc ttgcaccgca agtttttaaa acccactcgc tttagccgtc gcgtaaaact 1080gcatgcatcc ttgcaccgca agtttttaaa accactcgc tttagccgtc gcgtaaaact 1080
tgtgaatctg gcaactgagg gggttctgca gccgcaaccg aacttttcgc ttcgaggacg 1140tgtgaatctg gcaactgagg gggttctgca gccgcaaccg aacttttcgc ttcgaggacg 1140
cagctggatg gtgtcatgtg aggctctgtt tgctggcgta gcctacaacg tgaccttgcc 1200cagctggatg gtgtcatgtg aggctctgtt tgctggcgta gcctacaacg tgaccttgcc 1200
taaccggacg gcgctaccca ctgctgtctg tgcctgctac cagaaaatca ccagagcagc 1260taaccggacg gcgctaccca ctgctgtctg tgcctgctac cagaaaatca ccagagcagc 1260
agagggccga tgtggcaact ggtggggtgt cggacaggct gtttctccac agtgcaaatg 1320agagggccga tgtggcaact ggtggggtgt cggacaggct gtttctccac agtgcaaatg 1320
cgggtgaacc ggccagaaag taaattctta tgctaccgtg cagtgactcc gacatcccca 1380cgggtgaacc ggccagaaag taaattctta tgctaccgtg cagtgactcc gacatcccca 1380
gtttttgccc tacttgatca cagatggggt cagcgctgcc gctaagtgta cccaaccgtc 1440gtttttgccc tacttgatca cagatggggt cagcgctgcc gctaagtgta cccaaccgtc 1440
cccacacggt ccatctataa atactgctgc cagtgcacgg tggtgacatc aatctaaagt 1500cccacacggt ccatctataa atactgctgc cagtgcacgg tggtgacatc aatctaaagt 1500
acaaaaacaa a 1511acaaaaacaa a 1511
<210>4<210>4
<211>335<211>335
<212> DNA<212> DNA
<213>人工序列<213> Artificial sequence
<400>4<400>4
gagacgtgga aggacatacc gcttttgaga agcgtgtttg aaaatagttc tttttctggt 60gagacgtgga aggacatacc gcttttgaga agcgtgtttg aaaatagttc tttttctggt 60
ttatatcgtt tatgaagtga tgagatgaaa agctgaaata gcgagtatag gaaaatttaa 120ttatatcgtt tatgaagtga tgagatgaaa agctgaaata gcgagtatag gaaaatttaa 120
tgaaaattaa attaaatatt ttcttaggct attagtcacc ttcaaaatgc cggccgcttc 180tgaaaattaa attaaatatt ttcttaggct attagtcacc ttcaaaatgc cggccgcttc 180
taagaacgtt gtcatgatcg acaactacga ctcgtttacc tggaacctgt acgagtacct 240taagaacgtt gtcatgatcg acaactacga ctcgtttacc tggaacctgt acgagtacct 240
gtgtcaggag ggagccaatg tcgaggtttt caggaacgat cagatcacca ttccggagat 300gtgtcaggag ggagccaatg tcgaggtttt caggaacgat cagatcacca ttccggagat 300
tgagcagctc aagccggacg ttgtggtgat atccc 335tgagcagctc aagccggacg ttgtggtgat atccc 335
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610137206.8A CN105755035B (en) | 2016-03-11 | 2016-03-11 | A kind of building of Hansenula yeast specific expression vector and hepatitis B virus surface antigen is being improved in the method for expressed by Hansenula yeast amount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610137206.8A CN105755035B (en) | 2016-03-11 | 2016-03-11 | A kind of building of Hansenula yeast specific expression vector and hepatitis B virus surface antigen is being improved in the method for expressed by Hansenula yeast amount |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105755035A CN105755035A (en) | 2016-07-13 |
CN105755035B true CN105755035B (en) | 2019-08-23 |
Family
ID=56333034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610137206.8A Active CN105755035B (en) | 2016-03-11 | 2016-03-11 | A kind of building of Hansenula yeast specific expression vector and hepatitis B virus surface antigen is being improved in the method for expressed by Hansenula yeast amount |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105755035B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110004216A (en) * | 2019-04-16 | 2019-07-12 | 艾美汉信疫苗(大连)有限公司 | The method for detecting recombination Hansenula yeast fermentation expression rate using fluorescence real-time quantitative PCR |
CN110093404A (en) * | 2019-04-16 | 2019-08-06 | 艾美汉信疫苗(大连)有限公司 | The method for screening recombination Hansenula yeast virus-like particle expression strain using fluorescence real-time quantitative PCR |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104164447A (en) * | 2013-05-17 | 2014-11-26 | 北京安百胜生物科技有限公司 | Method for producing HPV45 L1 protein by using Hansenula polymorpha expression system |
-
2016
- 2016-03-11 CN CN201610137206.8A patent/CN105755035B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104164447A (en) * | 2013-05-17 | 2014-11-26 | 北京安百胜生物科技有限公司 | Method for producing HPV45 L1 protein by using Hansenula polymorpha expression system |
Non-Patent Citations (1)
Title |
---|
KR014088.1;GENBANK;《NCBI》;20150618;1-2 * |
Also Published As
Publication number | Publication date |
---|---|
CN105755035A (en) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9782471B2 (en) | EV71 virus-like particles and preparation method and application thereof | |
CN101343314B (en) | The Human Papillomavirus Type 11 L1 albumen of brachymemma | |
CN101343315B (en) | Shorten human papilloma virus 6 type L1 protein | |
JP2021073261A (en) | Recombinant hansenula polymorpha-based high dosage hepatitis b vaccine | |
CN103045492A (en) | Hansenula polymorpha expression system, hansenula polymorpha construction method and application of hansenula polymorpha | |
CN105755035B (en) | A kind of building of Hansenula yeast specific expression vector and hepatitis B virus surface antigen is being improved in the method for expressed by Hansenula yeast amount | |
CN105734066B (en) | A kind of building of the eukaryon Hansenula yeast engineering bacteria containing recombinant hepatitis B virus gene and the production method of hepatitis B surface antigen | |
EP2479186B1 (en) | Genes encoding major capsid protein L1 of human papilloma viruses | |
CN108383897A (en) | Expression and its application of the VZV glycoprotein in Pichia pastoris | |
CN105693826A (en) | Method for separating and purifying hansenula polymorpha expressed recombinant HBsAgs (hepatitis B surface antigens) and application of recombinant HBsAgs | |
JP2001231582A (en) | Hepatitis B virus recombinant surface antigen having high immunity and hepatitis B virus vaccine composition | |
CN117925430A (en) | Oxidation stress resistant saccharomyces cerevisiae engineering strain, construction method and application thereof | |
CN104561063A (en) | cDNA fragment, high-efficiency expression recombinant plasmid and genetically engineered bacterium of bovine enterokinase and and expression method of genetically engineered bacterium | |
CN104164447A (en) | Method for producing HPV45 L1 protein by using Hansenula polymorpha expression system | |
CN104164374A (en) | Method for producing HPV31 L1 protein by using Hansenula polymorpha expression system | |
CN103146631A (en) | Genetically engineered bacterium for expressing solubility pig gamma-interferonPoIFN-gamma and construction method and application of genetically engineered bacterium | |
CN110699366B (en) | Expression of recombinant human papilloma virus 6 and 11 subtype protein pichia pastoris | |
CN102533841B (en) | Method for increasing expression of bacillus thuringiensis(Bt) insecticidalcrystalprotein in hansenula polymorpha | |
CN103215302B (en) | The method for generating HPV18 L1 albumen with expressed by Hansenula yeast system | |
CN103361280A (en) | Method for generating HPV11 L1 (Human Papillomavirus) by using hansenula polymorpha expression system | |
CN103361377A (en) | Method for generating HPV6 L1 (Human Papillomavirus) proteins by using hansenula polymorpha expression system | |
CN104120089A (en) | Method using hansenula expression system for production of HPV52 L1 protein | |
CN104164373A (en) | Method for producing HPV68 L1 protein by using Hansenula polymorpha expression system | |
CN104120088A (en) | Method for generation of HPV58 L1 protein by Hansenula expression system | |
CN103265626B (en) | HPV16L1-f protein and coding gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180126 Address after: 230088 Hefei high tech Zone, Anhui, No. 100 floating Hill Road Applicant after: ANHUI ZHIFEI LONGCOM BIOPHARMACEUTICAL Co.,Ltd. Applicant after: CHONGQING ZHIFEI BIOLOGICAL PRODUCTS CO.,LTD. Applicant after: BEIJING ZHIFEI LVZHU BIOPHARMACEUTICAL Co.,Ltd. Address before: 230088 Hefei high tech Zone, Anhui, No. 100 floating Hill Road Applicant before: ANHUI ZHIFEI LONGCOM BIOPHARMACEUTICAL Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: 230000, No. 5008 Mingzhu Avenue, Hefei City, Anhui Province Patentee after: ANHUI ZHIFEI LONGCOM BIOPHARMACEUTICAL Co.,Ltd. Patentee after: CHONGQING ZHIFEI BIOLOGICAL PRODUCTS CO.,LTD. Patentee after: BEIJING ZHIFEI LVZHU BIOPHARMACEUTICAL Co.,Ltd. Address before: 230088 No.100 Fushan Road, high tech Zone, Hefei City, Anhui Province Patentee before: ANHUI ZHIFEI LONGCOM BIOPHARMACEUTICAL Co.,Ltd. Patentee before: CHONGQING ZHIFEI BIOLOGICAL PRODUCTS CO.,LTD. Patentee before: BEIJING ZHIFEI LVZHU BIOPHARMACEUTICAL Co.,Ltd. |
|
CP02 | Change in the address of a patent holder |