CN105742386B - Photodiode and preparation method thereof, X-ray detection substrate and preparation method thereof - Google Patents
Photodiode and preparation method thereof, X-ray detection substrate and preparation method thereof Download PDFInfo
- Publication number
- CN105742386B CN105742386B CN201610105256.8A CN201610105256A CN105742386B CN 105742386 B CN105742386 B CN 105742386B CN 201610105256 A CN201610105256 A CN 201610105256A CN 105742386 B CN105742386 B CN 105742386B
- Authority
- CN
- China
- Prior art keywords
- layer
- pattern
- doped layer
- base substrate
- intrinsic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 175
- 238000001514 detection method Methods 0.000 title claims abstract description 73
- 238000002360 preparation method Methods 0.000 title description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 52
- 238000005468 ion implantation Methods 0.000 claims abstract description 31
- 239000010410 layer Substances 0.000 claims description 398
- 238000000034 method Methods 0.000 claims description 93
- 238000000059 patterning Methods 0.000 claims description 47
- 239000010409 thin film Substances 0.000 claims description 39
- 238000001994 activation Methods 0.000 claims description 26
- 239000011241 protective layer Substances 0.000 claims description 24
- 230000004913 activation Effects 0.000 claims description 14
- 238000005538 encapsulation Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- 239000000969 carrier Substances 0.000 abstract description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 20
- 239000010408 film Substances 0.000 description 18
- 238000005530 etching Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000003292 glue Substances 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000004151 rapid thermal annealing Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000002601 radiography Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910016909 AlxOy Inorganic materials 0.000 description 1
- MCVAAHQLXUXWLC-UHFFFAOYSA-N [O-2].[O-2].[S-2].[Gd+3].[Gd+3] Chemical compound [O-2].[O-2].[S-2].[Gd+3].[Gd+3] MCVAAHQLXUXWLC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/29—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to radiation having very short wavelengths, e.g. X-rays, gamma-rays or corpuscular radiation
- H10F30/292—Bulk-effect radiation detectors, e.g. Ge-Li compensated PIN gamma-ray detectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/18—Complementary metal-oxide-semiconductor [CMOS] image sensors; Photodiode array image sensors
- H10F39/189—X-ray, gamma-ray or corpuscular radiation imagers
- H10F39/1892—Direct radiation image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/147—Shapes of bodies
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种光电二极管及其制作方法、X射线探测基板及其制作方法,该光电二极管包括:衬底基板,以及位于衬底基板上的本征层、第一掺杂层和第二掺杂层;本征层的上表面在衬底基板上的正投影位于本征层的下表面在衬底基板上的正投影所在区域内;第一掺杂层和第二掺杂层分别位于本征层的相对的两个倾斜的侧表面上。本发明实施例提供的上述光电二极管结构,由于第一掺杂层和第二掺杂层分别位于本征层的两个倾斜的侧表面上,在制作工艺中可以采用离子注入的方式进行掺杂,这样能够精确控制掺杂浓度,实现对光电二极管性能的有效控制,并且设置为倾斜的侧表面可以增大光电二极管的有效受光面积,收集的光生载流子多,产生的信号强度大。
The invention discloses a photodiode and its manufacturing method, an X-ray detection substrate and its manufacturing method. The photodiode comprises: a base substrate, and an intrinsic layer, a first doped layer and a second Doped layer; the orthographic projection of the upper surface of the intrinsic layer on the substrate is located in the area where the orthographic projection of the lower surface of the intrinsic layer is located on the substrate; the first doped layer and the second doped layer are respectively located On the two opposite inclined side surfaces of the intrinsic layer. In the above photodiode structure provided by the embodiment of the present invention, since the first doped layer and the second doped layer are respectively located on the two inclined side surfaces of the intrinsic layer, ion implantation can be used for doping in the manufacturing process , so that the doping concentration can be precisely controlled, and the performance of the photodiode can be effectively controlled, and the inclined side surface can increase the effective light-receiving area of the photodiode, collect more photogenerated carriers, and generate a higher signal intensity.
Description
技术领域technical field
本发明涉及显示技术领域,尤指一种光电二极管及其制作方法、X射线探测基板及其制作方法。The invention relates to the field of display technology, in particular to a photodiode and a manufacturing method thereof, an X-ray detection substrate and a manufacturing method thereof.
背景技术Background technique
X射线检测广泛应用于医疗、安全、无损检测、科研等领域,在国计民生中日益发挥着重要作用。目前,在实际使用中,X射线检测普遍使用胶片照相法。X射线胶片照相的成像质量较高,能正确提供被测试件体貌和缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便以及评片人员眼睛易受强光损伤等缺点.为了解决上述问题,20世纪90年代末出现了X射线数字照相(DigitaI Radiography,DR)检测技术。X射线数字照相系统中使用了平板探测器(flat panel detector),其像元尺寸可小于0.1mm,因而其成像质量及分辨率几乎可与胶片照相媲美,同时还克服了胶片照相中表现出来的缺点,也为图像的计算机处理提供了方便。由于电子转换模式不同,数字化X射线照相检测可分为直接转换型(Direct DR)和间接转换型(Indirect DR).直接转化型X射线平板探测器由射线接收器、命令处理器和电源组成。射线接收器中包含有闪烁晶体屏(Gd2O2S或CsI)、大面积非晶硅传感器阵列以及读出电路等。其中,闪烁晶体屏用来将X射线光子转换成可见光,与其紧贴的大规模集成非晶硅传感器阵列将屏上的可见光转换成电子,然后由读出电路将其数字化,传送到计算机中形成可显示的数字图像。X-ray inspection is widely used in medical, safety, non-destructive testing, scientific research and other fields, and it is increasingly playing an important role in the national economy and people's livelihood. At present, in actual use, X-ray detection generally uses film photography. The imaging quality of X-ray film photography is high, and it can correctly provide reliable information on the physical appearance and defects of the tested piece. However, it has the disadvantages of complicated operation process, high operating cost, difficult preservation of results, inconvenient query and portability, and easy access to the eyes of reviewers. Disadvantages such as damage by strong light. In order to solve the above problems, X-ray digital photography (DigitaI Radiography, DR) detection technology appeared in the late 1990s. The flat panel detector is used in the X-ray digital photography system, and its pixel size can be smaller than 0.1mm, so its imaging quality and resolution are almost comparable to those of film photography, and it also overcomes the limitations of film photography. It also provides convenience for computer processing of images. Due to the different electronic conversion modes, digital X-ray radiography detection can be divided into direct conversion type (Direct DR) and indirect conversion type (Indirect DR). The direct conversion type X-ray flat panel detector consists of a ray receiver, a command processor and a power supply. The ray receiver includes a scintillation crystal screen (Gd 2 O 2 S or CsI), a large-area amorphous silicon sensor array, and a readout circuit. Among them, the scintillation crystal screen is used to convert X-ray photons into visible light, and the large-scale integrated amorphous silicon sensor array close to it converts the visible light on the screen into electrons, which are then digitized by the readout circuit and sent to the computer to form Displayable digital images.
间接转换型探测器由X射线转换层与非晶硅光电二极管、薄膜晶体管、信号存储基本像素单元及信号放大与信号读取等组成。间接平板探测器的结构主要是由闪烁体(碘化铯)或荧光体(硫氧化钆)层加具有光电二极管作用的非晶硅层,再加TFT阵列构成。此类的平板探测器闪烁体或荧光体层经X射线曝光后可以将X射线转换为电信号,通过薄膜晶体管阵列将每个像素的电荷信号读出并转化为数字信号并传送到计算机图像处理系统集成为X射线影像。The indirect conversion detector is composed of an X-ray conversion layer, an amorphous silicon photodiode, a thin film transistor, a basic pixel unit for signal storage, and signal amplification and signal reading. The structure of the indirect flat panel detector is mainly composed of a scintillator (cesium iodide) or a phosphor (gadolinium oxysulfide) layer, an amorphous silicon layer with a photodiode function, and a TFT array. This type of flat panel detector scintillator or phosphor layer can convert X-rays into electrical signals after being exposed to X-rays, and read out the charge signal of each pixel through a thin-film transistor array and convert it into a digital signal and send it to the computer for image processing System integration for X-ray imaging.
PIN光电二极管是间接型X射线探测基板的关键组成,其决定了可见光的吸收效率,对于X射线剂量、X射线成像的分辨率、图像的响应速度等关键指标有很大影响。间接型X射线探测基板的PIN的制备工艺方法主要采用PECVD技术,通过不同的工艺气体(如:SiH4、NH3、N2O、PH3、H2、B2H6等)可以同时方便快捷的形成PIN器件,但是其缺点为掺杂浓度较固定,不能精确控制,无法实现特殊区域化的掺杂。The PIN photodiode is a key component of the indirect X-ray detection substrate, which determines the absorption efficiency of visible light, and has a great impact on key indicators such as X-ray dose, X-ray imaging resolution, and image response speed. The PIN preparation method of the indirect X-ray detection substrate mainly adopts PECVD technology, which can be conveniently processed at the same time through different process gases (such as: SiH 4 , NH 3 , N 2 O, PH 3 , H 2 , B 2 H 6 , etc.) The PIN device can be quickly formed, but its disadvantage is that the doping concentration is relatively fixed, cannot be precisely controlled, and cannot achieve special regionalized doping.
因此,如何设计一种新的PIN光电二极管结构,能够精确控制掺杂浓度,是本领域技术人员亟待解决的技术问题。Therefore, how to design a new PIN photodiode structure that can accurately control the doping concentration is a technical problem to be solved urgently by those skilled in the art.
发明内容Contents of the invention
有鉴于此,本发明实施例提供一种光电二极管及其制作方法、X射线探测基板及其制作方法,可以精确控制掺杂浓度。In view of this, embodiments of the present invention provide a photodiode and its manufacturing method, an X-ray detection substrate and its manufacturing method, which can precisely control the doping concentration.
因此,本发明实施例提供了一种PIN光电二极管,包括:衬底基板,以及位于所述衬底基板上的本征层、第一掺杂层和第二掺杂层;Therefore, an embodiment of the present invention provides a PIN photodiode, including: a base substrate, and an intrinsic layer, a first doped layer, and a second doped layer located on the base substrate;
所述本征层的上表面在所述衬底基板上的正投影位于所述本征层的下表面在所述衬底基板上的正投影所在区域内;The orthographic projection of the upper surface of the intrinsic layer on the base substrate is located in the area where the orthographic projection of the lower surface of the intrinsic layer on the base substrate is located;
所述第一掺杂层和第二掺杂层分别位于所述本征层的相对的两个倾斜的侧表面上。The first doped layer and the second doped layer are respectively located on two opposite inclined side surfaces of the intrinsic layer.
在一种可能的实现方式中,在本发明实施例提供的上述PIN光电二极管中,所述本征层在垂直于所述衬底基板的截面为等腰梯形结构。In a possible implementation manner, in the above-mentioned PIN photodiode provided by the embodiment of the present invention, the intrinsic layer has an isosceles trapezoidal structure in a cross section perpendicular to the base substrate.
在一种可能的实现方式中,在本发明实施例提供的上述PIN光电二极管中,还包括:位于所述第一掺杂层上的第一透明电极层;In a possible implementation manner, the above PIN photodiode provided in the embodiment of the present invention further includes: a first transparent electrode layer located on the first doped layer;
以及位于所述第二掺杂层上的第二透明电极层。and a second transparent electrode layer located on the second doped layer.
在一种可能的实现方式中,在本发明实施例提供的上述PIN光电二极管中,所述第一掺杂层为P型半导体层,所述第二掺杂层为N型半导体层;或In a possible implementation manner, in the above PIN photodiode provided by the embodiment of the present invention, the first doped layer is a P-type semiconductor layer, and the second doped layer is an N-type semiconductor layer; or
所述第一掺杂层为N型半导体层,所述第二掺杂层为P型半导体层。The first doped layer is an N-type semiconductor layer, and the second doped layer is a P-type semiconductor layer.
本发明实施例还提供了一种X射线探测基板,包括:薄膜晶体管和PIN光电二极管;其中,An embodiment of the present invention also provides an X-ray detection substrate, including: a thin film transistor and a PIN photodiode; wherein,
所述PIN光电二极管为本发明实施例提供的上述PIN光电二极管。The PIN photodiode is the above-mentioned PIN photodiode provided by the embodiment of the present invention.
在一种可能的实现方式中,在本发明实施例提供的上述X射线探测基板中,所述薄膜晶体管为顶栅型薄膜晶体管;In a possible implementation manner, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, the thin film transistor is a top-gate thin film transistor;
所述顶栅型薄膜晶体管的漏极与所述PIN光电二极管的第一透明电极层电连接。The drain of the top-gate thin film transistor is electrically connected to the first transparent electrode layer of the PIN photodiode.
在一种可能的实现方式中,在本发明实施例提供的上述X射线探测基板中,还包括:In a possible implementation manner, the above-mentioned X-ray detection substrate provided in the embodiment of the present invention further includes:
位于所述PIN光电二极管的上方的第一保护层;a first protective layer over the PIN photodiode;
通过所述第一保护层的过孔与所述PIN光电二极管的第二透明电极层电连接的阴极。A cathode electrically connected to the second transparent electrode layer of the PIN photodiode through the via hole of the first protection layer.
在一种可能的实现方式中,在本发明实施例提供的上述X射线探测基板中,所述顶栅型薄膜晶体管的源极、漏极与所述阴极同层设置。In a possible implementation manner, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, the source and the drain of the top-gate thin film transistor are arranged in the same layer as the cathode.
在一种可能的实现方式中,在本发明实施例提供的上述X射线探测基板中,还包括:In a possible implementation manner, the above-mentioned X-ray detection substrate provided in the embodiment of the present invention further includes:
位于所述薄膜晶体管和PIN光电二极管的下方且位于所述衬底基板的上方的第二保护层。A second protection layer located below the thin film transistor and the PIN photodiode and above the base substrate.
在一种可能的实现方式中,在本发明实施例提供的上述X射线探测基板中,还包括:In a possible implementation manner, the above-mentioned X-ray detection substrate provided in the embodiment of the present invention further includes:
位于所述薄膜晶体管和PIN光电二极管的上方且层叠设置的树脂封装层和闪烁层。The resin encapsulation layer and the scintillation layer are stacked on the thin film transistor and the PIN photodiode.
本发明实施例还提供了一种本发明实施例提供的上述PIN光电二极管的制作方法,包括:The embodiment of the present invention also provides a method for manufacturing the above-mentioned PIN photodiode provided by the embodiment of the present invention, including:
在衬底基板上形成本征层的图形;所述本征层的上表面在所述衬底基板上的正投影位于所述本征层的下表面在所述衬底基板上的正投影所在区域内;Form the pattern of the intrinsic layer on the base substrate; the orthographic projection of the upper surface of the intrinsic layer on the base substrate is located where the orthographic projection of the lower surface of the intrinsic layer on the base substrate is within the area;
通过构图工艺和离子注入工艺在所述本征层的一个倾斜的侧表面上形成第一掺杂层的图形;forming a pattern of the first doped layer on an inclined side surface of the intrinsic layer through a patterning process and an ion implantation process;
通过构图工艺和离子注入工艺在所述本征层的与形成有所述第一掺杂层相对的另一个倾斜的侧表面上形成第二掺杂层的图形;forming a pattern of a second doped layer on the other inclined side surface of the intrinsic layer opposite to the first doped layer formed by a patterning process and an ion implantation process;
通过高温活化工艺对所述第一掺杂层和第二掺杂层进行离子激活。Ion activation is performed on the first doped layer and the second doped layer through a high temperature activation process.
在一种可能的实现方式中,本发明实施例提供的上述PIN光电二极管的制作方法中,在对所述第一掺杂层和第二掺杂层进行离子激活之后,还包括:In a possible implementation manner, in the above-mentioned PIN photodiode manufacturing method provided by the embodiment of the present invention, after performing ion activation on the first doped layer and the second doped layer, further includes:
通过一次构图工艺在所述第一掺杂层上形成第一透明电极层的图形,以及在所述第二掺杂层上形成第二透明电极层的图形。A pattern of the first transparent electrode layer is formed on the first doped layer, and a pattern of the second transparent electrode layer is formed on the second doped layer through a patterning process.
本发明实施例还提供了一种本发明实施例提供的上述X射线探测基板的制作方法,包括:The embodiment of the present invention also provides a method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, including:
在衬底基板上形成本征层的图形;所述本征层的上表面在所述衬底基板上的正投影位于所述本征层的下表面在所述衬底基板上的正投影所在区域内;Form the pattern of the intrinsic layer on the base substrate; the orthographic projection of the upper surface of the intrinsic layer on the base substrate is located where the orthographic projection of the lower surface of the intrinsic layer on the base substrate is within the area;
通过构图工艺和离子注入工艺在所述本征层的一个倾斜的侧表面上形成第一掺杂层的图形;forming a pattern of the first doped layer on an inclined side surface of the intrinsic layer through a patterning process and an ion implantation process;
通过构图工艺和离子注入工艺在所述本征层的与形成有所述第一掺杂层相对的另一个倾斜的侧表面上形成第二掺杂层的图形;forming a pattern of a second doped layer on the other inclined side surface of the intrinsic layer opposite to the first doped layer formed by a patterning process and an ion implantation process;
通过高温活化工艺对所述第一掺杂层和第二掺杂层进行离子激活;performing ion activation on the first doped layer and the second doped layer through a high temperature activation process;
在所述衬底基板上形成薄膜晶体管的图形。A pattern of thin film transistors is formed on the base substrate.
在一种可能的实现方式中,本发明实施例提供的上述X射线探测基板的制作方法中,在对所述第一掺杂层和第二掺杂层进行离子激活之后,在形成薄膜晶体管的图形之前,还包括:In a possible implementation manner, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, after performing ion activation on the first doped layer and the second doped layer, after forming the thin film transistor Before graphics, also include:
通过一次构图工艺在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形。A pattern of the first transparent electrode layer is formed on the first doped layer, and a pattern of the second transparent electrode layer is formed on the second doped layer through a patterning process.
在一种可能的实现方式中,本发明实施例提供的上述X射线探测基板的制作方法中,在形成所述第一透明电极层和第二透明电极层图形之后,还包括:In a possible implementation manner, in the manufacturing method of the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, after forming the pattern of the first transparent electrode layer and the second transparent electrode layer, it further includes:
在所述衬底基板上形成第一保护层的图形。A pattern of the first protection layer is formed on the base substrate.
在一种可能的实现方式中,本发明实施例提供的上述X射线探测基板的制作方法中,在所述衬底基板上形成薄膜晶体管的图形,具体包括:In a possible implementation manner, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, forming a pattern of thin film transistors on the base substrate specifically includes:
在形成有所述第一保护层图形的衬底基板上形成薄膜晶体管的有源层的图形;forming a pattern of an active layer of a thin film transistor on the base substrate on which the pattern of the first protective layer is formed;
通过一次构图工艺在形成有所述有源层图形的衬底基板上形成源极、漏极、以及通过所述第一保护层的过孔与所述第二透明电极层电连接的阴极的图形;A source electrode, a drain electrode, and a cathode pattern electrically connected to the second transparent electrode layer through the via holes of the first protective layer are formed on the base substrate on which the active layer pattern is formed by a patterning process ;
在形成有所述源极和漏极图形的衬底基板上依次形成栅极绝缘层、栅极的图形。A gate insulating layer and gate patterns are sequentially formed on the base substrate on which the source and drain patterns are formed.
在一种可能的实现方式中,本发明实施例提供的上述X射线探测基板的制作方法中,在衬底基板上形成本征层的图形之前,还包括:In a possible implementation manner, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, before forming the pattern of the intrinsic layer on the substrate substrate, it further includes:
在衬底基板上形成第二保护层的图形。A pattern of the second protection layer is formed on the base substrate.
在一种可能的实现方式中,本发明实施例提供的上述X射线探测基板的制作方法中,在形成栅极图形之后,还包括:In a possible implementation manner, in the manufacturing method of the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, after forming the gate pattern, further includes:
在所述衬底基板上依次形成树脂封装层和闪烁层的图形。Patterns of a resin encapsulation layer and a scintillation layer are sequentially formed on the base substrate.
本发明实施例的有益效果包括:The beneficial effects of the embodiments of the present invention include:
本发明实施例提供的一种光电二极管及其制作方法、X射线探测基板及其制作方法,该光电二极管包括:衬底基板,以及位于衬底基板上的本征层、第一掺杂层和第二掺杂层;本征层的上表面在衬底基板上的正投影位于本征层的下表面在衬底基板上的正投影所在区域内;第一掺杂层和第二掺杂层分别位于本征层的相对的两个倾斜的侧表面上。本发明实施例提供的上述光电二极管结构,由于第一掺杂层和第二掺杂层分别位于本征层的两个倾斜的侧表面上,在制作工艺中可以采用离子注入的方式进行掺杂,这样能够精确控制掺杂浓度,实现对光电二极管性能的有效控制,并且设置为倾斜的侧表面可以增大光电二极管的有效受光面积,收集的光生载流子多,产生的信号强度大。An embodiment of the present invention provides a photodiode and its manufacturing method, an X-ray detection substrate and its manufacturing method, the photodiode includes: a base substrate, and an intrinsic layer, a first doped layer and The second doped layer; the orthographic projection of the upper surface of the intrinsic layer on the substrate is located in the region where the orthographic projection of the lower surface of the intrinsic layer is on the substrate; the first doped layer and the second doped layer respectively located on two opposite inclined side surfaces of the intrinsic layer. In the above photodiode structure provided by the embodiment of the present invention, since the first doped layer and the second doped layer are respectively located on the two inclined side surfaces of the intrinsic layer, ion implantation can be used for doping in the manufacturing process , so that the doping concentration can be precisely controlled, and the performance of the photodiode can be effectively controlled, and the inclined side surface can increase the effective light-receiving area of the photodiode, collect more photogenerated carriers, and generate a higher signal intensity.
附图说明Description of drawings
图1为本发明实施例提供的PIN光电二极管的结构示意图之一;Fig. 1 is one of the structural representations of the PIN photodiode provided by the embodiment of the present invention;
图2为本发明实施例提供的PIN光电二极管的结构示意图之二;Fig. 2 is the second structural schematic diagram of the PIN photodiode provided by the embodiment of the present invention;
图3为本发明实施例提供的PIN光电二极管的制作方法流程图;Fig. 3 is the flow chart of the manufacturing method of the PIN photodiode provided by the embodiment of the present invention;
图4为本发明实施例提供的X射线探测基板的结构示意图之一;Fig. 4 is one of the structural schematic diagrams of the X-ray detection substrate provided by the embodiment of the present invention;
图5为本发明实施例提供的X射线探测基板的结构示意图之二;Fig. 5 is the second structural schematic diagram of the X-ray detection substrate provided by the embodiment of the present invention;
图6为本发明实施例提供的X射线探测基板的制作方法流程图之一;Fig. 6 is one of the flow charts of the manufacturing method of the X-ray detection substrate provided by the embodiment of the present invention;
图7为本发明实施例提供的X射线探测基板的制作方法流程图之二。FIG. 7 is the second flow chart of the manufacturing method of the X-ray detection substrate provided by the embodiment of the present invention.
具体实施方式detailed description
下面结合附图,对本发明实施例提供的光电二极管及其制作方法、X射线探测基板及其制作方法的具体实施方式进行详细地说明。Specific implementations of the photodiode and its manufacturing method, the X-ray detection substrate and its manufacturing method provided by the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
其中,附图中各膜层的厚度和形状不反映PIN光电二极管和X射线探测基板的真实比例,目的只是示意说明本发明内容。Wherein, the thickness and shape of each film layer in the drawings do not reflect the real ratio of the PIN photodiode and the X-ray detection substrate, and the purpose is only to illustrate the content of the present invention.
本发明实施例提供了一种PIN光电二极管,如图1所示,包括:衬底基板10,以及位于衬底基板10上的本征层11、第一掺杂层12和第二掺杂层13;An embodiment of the present invention provides a PIN photodiode, as shown in FIG. 1 , including: a base substrate 10, and an intrinsic layer 11, a first doped layer 12, and a second doped layer located on the base substrate 10 13;
本征层11的上表面在衬底基板10上的正投影位于本征层11的下表面在衬底基板10上的正投影所在区域内;The orthographic projection of the upper surface of the intrinsic layer 11 on the base substrate 10 is located in the area where the orthographic projection of the lower surface of the intrinsic layer 11 on the base substrate 10 is located;
第一掺杂层12和第二掺杂层13分别位于本征层11的相对的两个倾斜的侧表面上。The first doped layer 12 and the second doped layer 13 are respectively located on two opposite inclined side surfaces of the intrinsic layer 11 .
在本发明实施例提供的上述PIN光电二极管,由于在PIN光电二极管中设置的第一掺杂层和第二掺杂层分别位于本征层的相对的两个倾斜的侧表面上,在第一掺杂层和第二掺杂层的制作工艺中可以采用离子注入的方式进行掺杂,这样能够精确控制掺杂浓度,实现对光电二极管性能的有效控制,并且设置为倾斜的侧表面可以增大光电二极管的有效受光面积,收集的光生载流子多,产生的信号强度大。In the above-mentioned PIN photodiode provided in the embodiment of the present invention, since the first doped layer and the second doped layer arranged in the PIN photodiode are respectively located on two opposite inclined side surfaces of the intrinsic layer, in the first The doping layer and the second doping layer can be doped by ion implantation in the manufacturing process, so that the doping concentration can be precisely controlled, and the performance of the photodiode can be effectively controlled, and the inclined side surface can increase The effective light-receiving area of the photodiode collects more photogenerated carriers and generates a higher signal intensity.
在具体实施时,在本发明实施例提供的上述PIN光电二极管中,如图1所示,本征层11在垂直于衬底基板10的截面可以设置为等腰梯形结构,这样可以使第一掺杂层和第二掺杂层的大小相同,进而保证光电二极管的性能。需要说明的是,本征层的厚度可以设置为至对于本征层的厚度可以根据实际情况而定,在此不做限定。In specific implementation, in the above-mentioned PIN photodiode provided by the embodiment of the present invention, as shown in FIG. The size of the doped layer and the second doped layer are the same, thereby ensuring the performance of the photodiode. It should be noted that the thickness of the intrinsic layer can be set as to The thickness of the intrinsic layer may be determined according to actual conditions, and is not limited here.
进一步地,在具体实施时,在本发明实施例提供的上述PIN光电二极管中,如图2所示,该PIN光电二极管还可以包括:位于第一掺杂层12上的第一透明电极层14;以及位于第二掺杂层13上的第二透明电极层15。也就是说,在PIN光电二极管设置的透明电极层设置成两个部分,以便于在应用于X射线探测基板中,其中一部分可以与阴极电连接,另一部分可以与薄膜晶体管中的漏极电连接,使结构更简单化。需要说明的是,该第一透明电极层和第二透明电极层的材料可以设置为氧化铟锡(ITO)、氧化铟锌(IZO)、石墨烯、纳米银线、氧化锌(ZnO)其中之一或组合。对于第一透明电极层和第二透明电极层的材料可以根据实际情况而定,在此不做限定。Further, in specific implementation, in the above-mentioned PIN photodiode provided by the embodiment of the present invention, as shown in FIG. 2 , the PIN photodiode may further include: a first transparent electrode layer 14 located on the first doped layer 12 ; and the second transparent electrode layer 15 on the second doped layer 13 . That is to say, the transparent electrode layer arranged on the PIN photodiode is arranged in two parts, so that when applied to the X-ray detection substrate, one part can be electrically connected with the cathode, and the other part can be electrically connected with the drain in the thin film transistor , making the structure simpler. It should be noted that the material of the first transparent electrode layer and the second transparent electrode layer can be set to indium tin oxide (ITO), indium zinc oxide (IZO), graphene, nano-silver wire, zinc oxide (ZnO) among them One or a combination. The materials of the first transparent electrode layer and the second transparent electrode layer may be determined according to actual conditions, and are not limited here.
在具体实施时,在本发明实施例提供的上述PIN光电二极管中,第一掺杂层可以设置为P型半导体层时,那么第二掺杂层则为N型半导体层;或第一掺杂层可以设置为N型半导体层,那么第二掺杂层则为P型半导体层。对于第一掺杂层和第二掺杂层的种类可以根据实际情况而定,在此不做限定。In specific implementation, in the above-mentioned PIN photodiode provided by the embodiment of the present invention, when the first doped layer can be set as a P-type semiconductor layer, then the second doped layer is an N-type semiconductor layer; or the first doped layer layer can be set as an N-type semiconductor layer, then the second doped layer is a P-type semiconductor layer. The types of the first doped layer and the second doped layer can be determined according to actual conditions, and are not limited here.
基于同一发明构思,本发明实施例还提供了一种本发明实施例提供的上述PIN光电二极管的制作方法,由于该方法解决问题的原理与前述一种PIN光电二极管相似,因此该方法的实施可以参见PIN光电二极管的实施,重复之处不再赘述。Based on the same inventive concept, the embodiment of the present invention also provides a manufacturing method of the above-mentioned PIN photodiode provided by the embodiment of the present invention. Since the principle of solving the problem of this method is similar to that of the aforementioned PIN photodiode, the implementation of the method can be See the implementation of the PIN photodiode, which will not be repeated here.
在具体实施时,本发明实施例提供的PIN光电二极管的制作方法,如图3所示,具体包括以下步骤:During specific implementation, the manufacturing method of the PIN photodiode provided by the embodiment of the present invention, as shown in Figure 3, specifically includes the following steps:
S301、在衬底基板上形成本征层的图形;本征层的上表面在衬底基板上的正投影位于本征层的下表面在衬底基板上的正投影所在区域内;S301, forming the pattern of the intrinsic layer on the base substrate; the orthographic projection of the upper surface of the intrinsic layer on the base substrate is located in the area where the orthographic projection of the lower surface of the intrinsic layer on the base substrate is located;
S302、通过构图工艺和离子注入工艺在本征层的一个倾斜的侧表面上形成第一掺杂层的图形;S302, forming a pattern of the first doped layer on an inclined side surface of the intrinsic layer through a patterning process and an ion implantation process;
S303、通过构图工艺和离子注入工艺在本征层的与形成有第一掺杂层相对的另一个倾斜的侧表面上形成第二掺杂层的图形;S303, forming a pattern of the second doped layer on the other inclined side surface of the intrinsic layer opposite to the formed first doped layer through a patterning process and an ion implantation process;
S304、通过高温活化工艺对第一掺杂层和第二掺杂层进行离子激活。S304. Perform ion activation on the first doped layer and the second doped layer through a high temperature activation process.
在本发明实施例提供的上述PIN光电二极管的制作工艺中,由于可以采用离子注入对位于本征层两个倾斜的侧表面上的第一掺杂层和第二掺杂层进行掺杂,这样能够精确控制掺杂浓度,实现对光电二极管性能的有效控制。需要说明是,在执行步骤S302时,即在形成第一掺杂层图形的过程中,构图工艺具体是指在本征层的表面涂覆一层光刻胶,通过曝光、显影工艺,将待形成第一掺杂层图形的区域的光刻胶去除掉,之后进行离子注入工艺,最后进行光刻胶的剥离;同理,在执行步骤S303时,即在形成第二掺杂层图形的过程中,构图工艺具体是指在本征层的表面涂覆一层光刻胶,通过曝光、显影工艺,将待形成第二掺杂层图形的区域的光刻胶去除掉,之后进行离子注入工艺,最后进行光刻胶的剥离。In the manufacturing process of the above-mentioned PIN photodiode provided by the embodiment of the present invention, since ion implantation can be used to dope the first doped layer and the second doped layer located on the two inclined side surfaces of the intrinsic layer, thus The doping concentration can be precisely controlled to realize effective control of the performance of the photodiode. It should be noted that, when performing step S302, that is, in the process of forming the pattern of the first doped layer, the patterning process specifically refers to coating a layer of photoresist on the surface of the intrinsic layer, and through exposure and development processes, the to-be The photoresist in the area where the first doped layer pattern is formed is removed, then the ion implantation process is performed, and finally the photoresist is stripped; similarly, when step S303 is performed, that is, in the process of forming the second doped layer pattern Among them, the patterning process specifically refers to coating a layer of photoresist on the surface of the intrinsic layer, removing the photoresist in the area where the pattern of the second doped layer is to be formed through exposure and development processes, and then performing the ion implantation process , and finally the photoresist is stripped.
在具体实施时,在本发明实施例提供的上述PIN光电二极管的制作方法中,步骤S304在对第一掺杂层和第二掺杂层进行离子激活之后,还可以包括:In specific implementation, in the above-mentioned PIN photodiode manufacturing method provided by the embodiment of the present invention, step S304 may further include: after performing ion activation on the first doped layer and the second doped layer:
通过一次构图工艺在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形。A pattern of the first transparent electrode layer is formed on the first doped layer, and a pattern of the second transparent electrode layer is formed on the second doped layer through a patterning process.
下面以一个具体的实例详细的说明本发明实施例提供的PIN光电二极管的制作方法,制作PIN光电二极管的具体步骤如下:The manufacturing method of the PIN photodiode provided by the embodiment of the present invention is described in detail below with a specific example, and the specific steps of making the PIN photodiode are as follows:
步骤一、在衬底基板上形成本征层的图形;Step 1, forming the pattern of the intrinsic layer on the base substrate;
在具体实施时,在衬底基板上沉积一层α-Si:H薄膜,该α-Si:H薄膜的厚度范围可以设置在通过涂胶、曝光、显影、后烘并刻蚀实现α-Si:H本征层的图形化并剥离光刻胶;此时,形成的α-Si:H本征层图形的上表面在衬底基板上的正投影位于α-Si:H本征层图形的下表面在衬底基板上的正投影所在区域内;During specific implementation, a layer of α-Si:H thin film is deposited on the base substrate, and the thickness range of the α-Si:H thin film can be set at The patterning of the α-Si:H intrinsic layer is realized by coating, exposure, development, post-baking and etching, and the photoresist is peeled off; at this time, the upper surface of the formed α-Si:H intrinsic layer pattern is on the substrate The orthographic projection on the base substrate is located in the area where the orthographic projection of the lower surface of the α-Si:H intrinsic layer pattern on the base substrate is located;
步骤二、通过构图工艺和离子注入工艺在本征层的一个倾斜的侧表面上形成第一掺杂层的图形;Step 2, forming a pattern of the first doped layer on an inclined side surface of the intrinsic layer through a patterning process and an ion implantation process;
在具体实施时,在步骤一后形成的本征层图形上涂覆一层光刻胶,对光刻胶进行曝光、显影、后烘并刻蚀,实现P+α-Si:H第一掺杂层的图形化;之后采用离子注入工艺实现P+α-Si:H第一掺杂层的掺杂;最后将本征层上的光刻胶进行剥离;In specific implementation, a layer of photoresist is coated on the intrinsic layer pattern formed after step 1, and the photoresist is exposed, developed, post-baked and etched to realize the first doping of P+α-Si:H Patterning of the impurity layer; then using an ion implantation process to realize the doping of the first doped layer of P+α-Si:H; finally stripping the photoresist on the intrinsic layer;
步骤三、通过构图工艺和离子注入工艺在本征层的与形成有第一掺杂层相对的另一个倾斜的侧表面上形成第二掺杂层的图形;Step 3, forming a pattern of the second doped layer on the other inclined side surface of the intrinsic layer opposite to the formed first doped layer through a patterning process and an ion implantation process;
在具体实施时,在本征层图形上涂覆一层光刻胶,对光刻胶进行曝光、显影、后烘并刻蚀,实现N+α-Si:H第二掺杂层的图形化;之后采用离子注入工艺实现N+α-Si:H第二掺杂层的掺杂;最后将本征层上的光刻胶进行剥离;In specific implementation, a layer of photoresist is coated on the intrinsic layer pattern, and the photoresist is exposed, developed, post-baked and etched to realize the patterning of the N+α-Si:H second doped layer ; Afterwards, the ion implantation process is used to realize the doping of the N+α-Si:H second doped layer; finally, the photoresist on the intrinsic layer is stripped;
步骤四、通过高温活化工艺对第一掺杂层和第二掺杂层进行离子激活;Step 4, performing ion activation on the first doped layer and the second doped layer through a high-temperature activation process;
在具体实施时,采用高温活化工艺,例如准分子激光退火(ELA)、快速热退火(RTA)、高温炉加热(OVEN)等工艺,对第一掺杂层和第二掺杂层注入的离子进行激活;In specific implementation, high-temperature activation processes, such as excimer laser annealing (ELA), rapid thermal annealing (RTA), high-temperature furnace heating (OVEN), etc., are used to inject ions into the first doped layer and the second doped layer. to activate;
步骤五、通过一次构图工艺在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形;Step 5, forming a pattern of the first transparent electrode layer on the first doped layer through a patterning process, and forming a pattern of the second transparent electrode layer on the second doped layer;
在具体实施时,在执行完步骤四后,在形成有第一掺杂层、第二掺杂层、本征层图形的衬底基板上沉积一层电极层,该电极层的材料可以设置为氧化铟锡(ITO)、氧化铟锌(IZO)、石墨烯、纳米银线、氧化锌(ZnO)其中之一或组合;对电极层进行一次构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形。In specific implementation, after step 4 is performed, an electrode layer is deposited on the base substrate on which the first doped layer, the second doped layer, and the intrinsic layer pattern are formed, and the material of the electrode layer can be set as One or a combination of indium tin oxide (ITO), indium zinc oxide (IZO), graphene, nano-silver wire, zinc oxide (ZnO); conduct a patterning process on the electrode layer, that is, through coating, exposure, development, post-processing Baking and etching, forming the pattern of the first transparent electrode layer on the first doped layer, and forming the pattern of the second transparent electrode layer on the second doped layer.
至此,经过具体实例提供的上述步骤一至步骤五制作出了本发明实施例提供的上述PIN光电二极管。So far, the above-mentioned PIN photodiode provided by the embodiment of the present invention has been produced through the above-mentioned steps 1 to 5 provided in the specific examples.
本发明实施例提供了一种X射线探测基板,如图4所示,包括:薄膜晶体管(TFT)和PIN光电二极管;其中,PIN光电二极管为上述任一种方式的PIN光电二极管。该X射线探测基板的实施可以参见上述PIN光电二极管的实施例,重复之处不再赘述。An embodiment of the present invention provides an X-ray detection substrate, as shown in FIG. 4 , including: a thin film transistor (TFT) and a PIN photodiode; wherein the PIN photodiode is a PIN photodiode in any of the above modes. The implementation of the X-ray detection substrate can refer to the above-mentioned embodiment of the PIN photodiode, and repeated descriptions will not be repeated.
在本发明实施例提供的上述X射线探测基板,包括薄膜晶体管和上述任一种方式的PIN光电二极管,该PIN光电二极管中的本征层的上表面在衬底基板上的正投影位于本征层的下表面在衬底基板上的正投影所在区域内;第一掺杂层和第二掺杂层分别位于本征层的相对的两个倾斜的侧表面上,这样,能够精确控制掺杂浓度,降低X射线的照射强度,实现对光电二极管性能的有效控制,并且设置为倾斜的侧表面可以增大光电二极管的有效受光面积,收集的光生载流子多,产生的信号强度大。The above-mentioned X-ray detection substrate provided in the embodiment of the present invention includes a thin film transistor and a PIN photodiode in any of the above-mentioned modes, and the orthographic projection of the upper surface of the intrinsic layer in the PIN photodiode on the base substrate is located at the intrinsic The lower surface of the layer is in the region where the orthographic projection on the substrate is located; the first doped layer and the second doped layer are respectively located on the two opposite inclined side surfaces of the intrinsic layer, so that the doping can be precisely controlled concentration, reduce the irradiation intensity of X-rays, realize effective control of photodiode performance, and set the inclined side surface to increase the effective light-receiving area of photodiode, collect more photogenerated carriers, and generate higher signal strength.
在具体实施时,在本发明实施例提供的上述X射线探测基板中,如图4所示,薄膜晶体管可以设置为顶栅型薄膜晶体管;并且顶栅型薄膜晶体管的漏极21与PIN光电二极管的第一透明电极层14电连接,这样的结构可以使得薄膜晶体管的有源层22受到薄膜晶体管的栅极23的保护,在X射线探测基板工作时不会有光照射到有源层,避免了光照对有源层性能的影响,即有效地隔光保护。In specific implementation, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, as shown in FIG. 4 , the thin film transistor can be set as a top-gate thin film transistor; The first transparent electrode layer 14 of the X-ray detection substrate is electrically connected, such a structure can make the active layer 22 of the thin film transistor be protected by the grid 23 of the thin film transistor, and there will be no light shining on the active layer when the X-ray detection substrate is working, so as to avoid The effect of light on the performance of the active layer is eliminated, that is, effective light protection.
在具体实施时,在本发明实施例提供的上述X射线探测基板中,如图4所示,该X射线探测基板还可以包括:位于PIN光电二极管的上方的第一保护层24;以及通过第一保护层24的过孔与PIN光电二极管的第二透明电极层15电连接的阴极25。该第一保护层可以避免在制作工艺中对PIN光电二极管的本征层的性能造成影响。In specific implementation, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, as shown in FIG. A cathode 25 electrically connected to the second transparent electrode layer 15 of the PIN photodiode through a hole in the protection layer 24 . The first protective layer can avoid affecting the performance of the intrinsic layer of the PIN photodiode during the manufacturing process.
在具体实施时,在本发明实施例提供的上述X射线探测基板中,如图4所示,可以将顶栅型薄膜晶体管的源极26、漏极21与阴极25同层设置,将源极、漏极与阴极同层设置,这样,在制备X射线探测基板时不需要增加额外的制备工序,只需要通过一次构图工艺即可形成源极、漏极与阴极的图形,能够节省制备成本,简化制作工艺,提高生产效率。In specific implementation, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, as shown in FIG. , The drain and the cathode are arranged on the same layer, so that no additional preparation process is required when preparing the X-ray detection substrate, and the pattern of the source, drain and cathode can be formed by only one patterning process, which can save the preparation cost. Simplify the manufacturing process and improve production efficiency.
在具体实施时,在本发明实施例提供的上述X射线探测基板中,为了提高薄膜晶体管和PIN光电二极管分别与衬底基板的接触性能,如图5所示,该X射线探测基板还可以包括:位于薄膜晶体管和PIN光电二极管的下方且位于衬底基板10的上方的第二保护层27。In specific implementation, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, in order to improve the contact performance between the thin film transistor and the PIN photodiode and the substrate substrate respectively, as shown in Figure 5, the X-ray detection substrate may also include : the second protection layer 27 located below the thin film transistor and the PIN photodiode and above the base substrate 10 .
在具体实施时,在本发明实施例提供的上述X射线探测基板中,如图4和图5所示,该X射线探测基板还可以包括:位于薄膜晶体管和PIN光电二极管的上方且层叠设置的树脂封装层28和闪烁层29。In specific implementation, in the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, as shown in Fig. 4 and Fig. 5, the X-ray detection substrate may also include: a laminated layer located above the thin film transistor and the PIN photodiode resin encapsulation layer 28 and scintillation layer 29 .
基于同一发明构思,本发明实施例还提供了一种本发明实施例提供的上述X射线探测基板的制作方法,由于该方法解决问题的原理与前述一种X射线探测基板相似,因此该方法的实施可以参见X射线探测基板的实施,重复之处不再赘述。Based on the same inventive concept, the embodiment of the present invention also provides a method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention. Since the problem-solving principle of this method is similar to that of the aforementioned X-ray detection substrate, the method’s For the implementation, please refer to the implementation of the X-ray detection substrate, and repeated descriptions will not be repeated.
在具体实施时,本发明实施例提供的X射线探测基板的制作方法,如图6所示,具体包括以下步骤:In specific implementation, the manufacturing method of the X-ray detection substrate provided by the embodiment of the present invention, as shown in FIG. 6 , specifically includes the following steps:
S601、在衬底基板上形成本征层的图形;本征层的上表面在衬底基板上的正投影位于本征层的下表面在衬底基板上的正投影所在区域内;S601, forming the pattern of the intrinsic layer on the base substrate; the orthographic projection of the upper surface of the intrinsic layer on the base substrate is located in the area where the orthographic projection of the lower surface of the intrinsic layer on the base substrate is located;
S602、通过构图工艺和离子注入工艺在本征层的一个倾斜的侧表面上形成第一掺杂层的图形;S602, forming a pattern of the first doped layer on an inclined side surface of the intrinsic layer through a patterning process and an ion implantation process;
S603、通过构图工艺和离子注入工艺在本征层的与形成有第一掺杂层相对的另一个倾斜的侧表面上形成第二掺杂层的图形;S603, forming a pattern of the second doped layer on the other inclined side surface of the intrinsic layer opposite to the formed first doped layer through a patterning process and an ion implantation process;
S604、通过高温活化工艺对第一掺杂层和第二掺杂层进行离子激活;S604, performing ion activation on the first doped layer and the second doped layer through a high temperature activation process;
S605、在衬底基板上形成薄膜晶体管的图形。S605, forming a pattern of thin film transistors on the base substrate.
在本发明实施例提供的上述X射线探测基板的制作工艺中,由于可以采用离子注入对位于本征层两个倾斜的侧表面上的第一掺杂层和第二掺杂层进行掺杂,这样能够精确控制掺杂浓度,降低X射线的照射强度,实现对光电二极管性能的有效控制。需要说明的是,在执行完步骤S601至S604之后,再执行步骤S605形成薄膜晶体管的图形,可以避免高温工艺对薄膜晶体管性能的影响,实现离子注入工艺应用在X射线探测基板制备的可行性。In the manufacturing process of the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, since ion implantation can be used to dope the first doped layer and the second doped layer on the two inclined side surfaces of the intrinsic layer, In this way, the doping concentration can be precisely controlled, the irradiation intensity of X-rays can be reduced, and the performance of the photodiode can be effectively controlled. It should be noted that, after performing steps S601 to S604, performing step S605 to form the pattern of the thin film transistor can avoid the influence of the high temperature process on the performance of the thin film transistor, and realize the feasibility of applying the ion implantation process to the preparation of the X-ray detection substrate.
在具体实施时,在本发明实施例提供的上述X射线探测基板的制作方法中,步骤S604在对第一掺杂层和第二掺杂层进行离子激活之后,步骤S605在形成薄膜晶体管的图形之前,如图7所示,还可以包括:In specific implementation, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, after step S604 performs ion activation on the first doped layer and the second doped layer, step S605 forms the pattern of the thin film transistor Before, as shown in Figure 7, you can also include:
S606、通过一次构图工艺在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形。S606, forming a pattern of the first transparent electrode layer on the first doped layer through a patterning process, and forming a pattern of the second transparent electrode layer on the second doped layer.
在具体实施时,在本发明实施例提供的上述X射线探测基板的制作方法中,步骤S606在形成第一透明电极层和第二透明电极层图形之后,如图7所示,还可以包括:In specific implementation, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, after forming the first transparent electrode layer and the second transparent electrode layer pattern, step S606 may further include:
S607、在衬底基板上形成第一保护层的图形。S607, forming a pattern of the first protection layer on the base substrate.
在具体实施时,在本发明实施例提供的上述X射线探测基板的制作方法中,步骤S605在衬底基板上形成薄膜晶体管的图形,如图7所示,具体可以采用如下方式实现:In specific implementation, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, step S605 forms a pattern of a thin film transistor on the substrate substrate, as shown in FIG. 7 , which can be specifically implemented in the following manner:
S701、在形成有第一保护层图形的衬底基板上形成薄膜晶体管的有源层的图形;S701, forming a pattern of an active layer of a thin film transistor on the base substrate on which the pattern of the first protective layer is formed;
S702、通过一次构图工艺在形成有有源层图形的衬底基板上形成源极、漏极、以及通过第一保护层的过孔与第二透明电极层电连接的阴极的图形;S702, forming a pattern of a source electrode, a drain electrode, and a cathode electrically connected to the second transparent electrode layer through a via hole in the first protection layer on the base substrate on which the pattern of the active layer is formed through a patterning process;
S703、在形成有源极和漏极图形的衬底基板上依次形成栅极绝缘层、栅极的图形。S703, sequentially forming a gate insulating layer and a pattern of the gate on the base substrate on which the patterns of the source and the drain are formed.
在具体实施时,在本发明实施例提供的上述X射线探测基板的制作方法中,步骤S601在衬底基板上形成本征层的图形之前,如图7所示,还可以包括:In specific implementation, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, step S601 may further include:
S704、在衬底基板上形成第二保护层的图形。S704, forming a pattern of the second protection layer on the base substrate.
在具体实施时,在本发明实施例提供的上述X射线探测基板的制作方法中,步骤S703在形成栅极图形之后,如图7所示,还可以包括:In specific implementation, in the method for manufacturing the above-mentioned X-ray detection substrate provided by the embodiment of the present invention, after the gate pattern is formed in step S703, as shown in FIG. 7 , it may further include:
S705、在衬底基板上依次形成树脂封装层和闪烁层的图形。S705, sequentially forming patterns of a resin encapsulation layer and a scintillation layer on the base substrate.
下面以一个具体的实例详细的说明本发明实施例提供的X射线探测基板的制作方法,制作X射线探测基板的具体步骤如下:The following uses a specific example to describe in detail the manufacturing method of the X-ray detection substrate provided by the embodiment of the present invention. The specific steps for manufacturing the X-ray detection substrate are as follows:
步骤一、在衬底基板上形成第二保护层的图形;Step 1, forming a pattern of the second protective layer on the base substrate;
在具体实施时,在衬底基板上沉积一层第二保护层薄膜,该第二保护层薄膜的材料可以设置为SixOy、SixNy、SixOyNz、AlxOy、TixOy其中之一或组合;对第二保护层薄膜进行构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在衬底基板上形成第二保护层的图形;In specific implementation, a second protective layer film is deposited on the base substrate, and the material of the second protective layer film can be set as Six O y , Six N y , Six O y N z , Al x O One or a combination of y , Ti x O y ; performing a patterning process on the second protective layer film, that is, forming a pattern of the second protective layer on the base substrate by applying glue, exposing, developing, post-baking and etching;
步骤二、在衬底基板上形成本征层的图形;Step 2, forming the pattern of the intrinsic layer on the base substrate;
在具体实施时,在执行完步骤一形成有第二保护层图形的衬底基板上沉积一层α-Si:H薄膜,该α-Si:H薄膜的厚度范围可以设置在通过涂胶、曝光、显影、后烘并刻蚀实现α-Si:H本征层的图形化并剥离光刻胶;此时,形成的α-Si:H本征层图形的上表面在衬底基板上的正投影位于α-Si:H本征层图形的下表面在衬底基板上的正投影所在区域内;During specific implementation, a layer of α-Si:H thin film is deposited on the base substrate having the second protective layer pattern formed in Step 1, and the thickness range of the α-Si:H thin film can be set at The patterning of the α-Si:H intrinsic layer is realized by coating, exposure, development, post-baking and etching, and the photoresist is peeled off; at this time, the upper surface of the formed α-Si:H intrinsic layer pattern is on the substrate The orthographic projection on the base substrate is located in the area where the orthographic projection of the lower surface of the α-Si:H intrinsic layer pattern on the base substrate is located;
步骤三、通过构图工艺和离子注入工艺在本征层的一个倾斜的侧表面上形成第一掺杂层的图形;Step 3, forming a pattern of the first doped layer on an inclined side surface of the intrinsic layer through a patterning process and an ion implantation process;
在具体实施时,在步骤二后形成的本征层图形上涂覆一层光刻胶,对光刻胶进行曝光、显影、后烘并刻蚀,实现P+α-Si:H第一掺杂层的图形化;之后采用离子注入工艺实现P+α-Si:H第一掺杂层的掺杂;最后将本征层上的光刻胶进行剥离;In specific implementation, a layer of photoresist is coated on the intrinsic layer pattern formed after step 2, and the photoresist is exposed, developed, post-baked and etched to realize the first doping of P+α-Si:H Patterning of the impurity layer; then using an ion implantation process to realize the doping of the first doped layer of P+α-Si:H; finally stripping the photoresist on the intrinsic layer;
步骤四、通过构图工艺和离子注入工艺在本征层的与形成有第一掺杂层相对的另一个倾斜的侧表面上形成第二掺杂层的图形;Step 4, forming a pattern of the second doped layer on the other inclined side surface of the intrinsic layer opposite to the formed first doped layer through a patterning process and an ion implantation process;
在具体实施时,在本征层图形上涂覆一层光刻胶,对光刻胶进行曝光、显影、后烘并刻蚀,实现N+α-Si:H第二掺杂层的图形化;之后采用离子注入工艺实现N+α-Si:H第二掺杂层的掺杂;最后将本征层上的光刻胶进行剥离;In specific implementation, a layer of photoresist is coated on the intrinsic layer pattern, and the photoresist is exposed, developed, post-baked and etched to realize the patterning of the N+α-Si:H second doped layer ; Afterwards, the ion implantation process is used to realize the doping of the N+α-Si:H second doped layer; finally, the photoresist on the intrinsic layer is stripped;
步骤五、通过高温活化工艺对第一掺杂层和第二掺杂层进行离子激活;Step 5, performing ion activation on the first doped layer and the second doped layer through a high-temperature activation process;
在具体实施时,采用高温活化工艺,例如准分子激光退火(ELA)、快速热退火(RTA)、高温炉加热(OVEN)等工艺,对第一掺杂层和第二掺杂层注入的离子进行激活;In specific implementation, high-temperature activation processes, such as excimer laser annealing (ELA), rapid thermal annealing (RTA), high-temperature furnace heating (OVEN), etc., are used to inject ions into the first doped layer and the second doped layer. to activate;
步骤六、通过一次构图工艺在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形;Step 6, forming a pattern of the first transparent electrode layer on the first doped layer through a patterning process, and forming a pattern of the second transparent electrode layer on the second doped layer;
在具体实施时,在执行完步骤五后,在形成有第一掺杂层、第二掺杂层、本征层图形的衬底基板上沉积一层电极层,该电极层的材料可以设置为氧化铟锡(ITO)、氧化铟锌(IZO)、石墨烯、纳米银线、氧化锌(ZnO)其中之一或组合;对电极层进行一次构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在第一掺杂层上形成第一透明电极层的图形,以及在第二掺杂层上形成第二透明电极层的图形;In specific implementation, after step 5 is performed, an electrode layer is deposited on the base substrate on which the first doped layer, the second doped layer, and the intrinsic layer pattern are formed, and the material of the electrode layer can be set as One or a combination of indium tin oxide (ITO), indium zinc oxide (IZO), graphene, nano-silver wire, zinc oxide (ZnO); conduct a patterning process on the electrode layer, that is, through coating, exposure, development, post-processing Baking and etching, forming a pattern of the first transparent electrode layer on the first doped layer, and forming a pattern of the second transparent electrode layer on the second doped layer;
步骤七、在衬底基板上形成第一保护层的图形;Step 7, forming a pattern of the first protective layer on the base substrate;
在具体实施时,在执行完步骤六后,在形成有第二保护层、第一透明电极层、第二透明电极层、本征层图形的衬底基板上沉积一层第一保护层薄膜,该第一保护层薄膜的材料可以设置为SixOy、SixNy、SixOyNz、AlxOy、TixOy其中之一或组合;对第一保护层薄膜进行构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在衬底基板上形成第一保护层以及第一保护层的过孔的图形;In specific implementation, after step 6 is performed, a first protective layer film is deposited on the base substrate on which the second protective layer, the first transparent electrode layer, the second transparent electrode layer, and the intrinsic layer pattern are formed, The material of the first protective layer film can be set as one or a combination of Six Oy , Six Ny , Six Oy N z , AlxOy , TixOy ; Patterning process, that is, forming the pattern of the first protective layer and the via hole of the first protective layer on the base substrate by applying glue, exposing, developing, post-baking and etching;
步骤八、在形成有第一保护层图形的衬底基板上形成薄膜晶体管的有源层的图形;Step 8, forming the pattern of the active layer of the thin film transistor on the base substrate on which the pattern of the first protective layer is formed;
在具体实施时,在执行完步骤七后,在形成有第一保护层图形的衬底基板上沉积一层有源层薄膜,该有源层薄膜的材料可以设置为α-Si:H、LTPS、IGZO、ITZO、ZnON其中之一或组合;对有源层薄膜进行构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在衬底基板上形成薄膜晶体管的有源层的图形;In specific implementation, after step 7 is performed, a layer of active layer film is deposited on the base substrate with the first protective layer pattern formed, and the material of the active layer film can be set to α-Si:H, LTPS One or a combination of , IGZO, ITZO, ZnON; patterning the active layer film, that is, forming the pattern of the active layer of the thin film transistor on the substrate by applying glue, exposing, developing, post-baking and etching ;
步骤九、通过一次构图工艺在形成有有源层图形的衬底基板上形成源极、漏极、以及通过第一保护层的过孔与第二透明电极层电连接的阴极的图形;Step 9, forming a pattern of a source electrode, a drain electrode, and a cathode electrically connected to the second transparent electrode layer through a via hole in the first protective layer on the base substrate formed with an active layer pattern through a patterning process;
在具体实施时,在执行完步骤八后,在形成有源层图形的衬底基板上形成一层源漏极金属层,该源漏极金属层的材料可以设置为Mo、Al、Ti、Cu、Nd、Nb其中之一或组合;对源漏极金属层进行一次构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在衬底基板上形成源极、漏极、以及通过第一保护层的过孔与第二透明电极层电连接的阴极的图形;In specific implementation, after step 8 is performed, a source-drain metal layer is formed on the base substrate forming the active layer pattern, and the material of the source-drain metal layer can be set to Mo, Al, Ti, Cu , Nd, Nb, or a combination thereof; a patterning process is performed on the source and drain metal layers, that is, through coating, exposure, development, post-baking and etching, the source, drain, and pass through The pattern of the cathode electrically connected to the via hole of the first protective layer and the second transparent electrode layer;
步骤十、在形成有源极和漏极图形的衬底基板上依次形成栅极绝缘层、栅极的图形;Step 10, sequentially forming a gate insulating layer and gate patterns on the base substrate formed with source and drain patterns;
在具体实施时,在形成有源极和漏极图形的衬底基板上沉积一层栅极绝缘层薄膜,该栅极绝缘层薄膜的材料可以设置为SixOy、SixNy、SixOyNz、AlxOy、TixOy其中之一或组合;对栅极绝缘层薄膜进行构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在衬底基板上形成栅极绝缘层的图形;之后在栅极绝缘层上沉积一层栅极金属层,该栅极金属层的材料可以设置为Mo、Al、Ti、Cu、Nd、Nb其中之一或组合;对栅极金属层进行构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在栅极绝缘层上形成栅极的图形;In specific implementation, a gate insulating layer film is deposited on the base substrate with source and drain patterns formed, and the material of the gate insulating layer film can be set as Six O y , Six N y , Si One or a combination of x O y N z , Al x O y , Ti x O y ; the patterning process of the gate insulating layer film, that is, through coating, exposure, development, post-baking and etching, on the substrate Form the pattern of the gate insulating layer; then deposit a layer of gate metal layer on the gate insulating layer, the material of the gate metal layer can be set to one or a combination of Mo, Al, Ti, Cu, Nd, Nb ;Patterning the gate metal layer, that is, forming a gate pattern on the gate insulating layer by applying glue, exposing, developing, post-baking and etching;
步骤十一、在衬底基板上依次形成树脂封装层和闪烁层的图形;Step eleven, sequentially forming patterns of the resin encapsulation layer and the scintillation layer on the base substrate;
在具体实施时,在执行完步骤十后,在衬底基板上涂覆一层树脂封装层薄膜,对树脂封装层薄膜进行构图工艺,即通过涂胶、曝光、显影、后烘并刻蚀,在衬底基板上形成树脂封装层的图形;之后在树脂封装层上蒸镀一层闪烁层,该闪烁层的材料可以设置为Gd2O2S、CsI、HgI其中之一或组合;最后封装完成X射线探测基板制备。In specific implementation, after step ten is performed, a layer of resin encapsulation layer film is coated on the base substrate, and the resin encapsulation layer film is patterned, that is, through glue coating, exposure, development, post-baking and etching, Form the pattern of the resin encapsulation layer on the base substrate; then evaporate a layer of scintillation layer on the resin encapsulation layer, the material of the scintillation layer can be set to one or a combination of Gd 2 O 2 S, CsI, HgI; finally encapsulation Complete the X-ray detection substrate preparation.
至此,经过具体实例提供的上述步骤一至步骤十一制作出了本发明实施例提供的上述X射线探测基板。So far, the above-mentioned X-ray detection substrate provided by the embodiment of the present invention has been produced through the above-mentioned steps 1 to 11 provided in the specific examples.
本发明实施例提供的一种光电二极管及其制作方法、X射线探测基板及其制作方法,该光电二极管包括:衬底基板,以及位于衬底基板上的本征层、第一掺杂层和第二掺杂层;本征层的上表面在衬底基板上的正投影位于本征层的下表面在衬底基板上的正投影所在区域内;第一掺杂层和第二掺杂层分别位于本征层的相对的两个倾斜的侧表面上。本发明实施例提供的上述光电二极管结构,由于第一掺杂层和第二掺杂层分别位于本征层的两个倾斜的侧表面上,在制作工艺中可以采用离子注入的方式进行掺杂,这样能够精确控制掺杂浓度,实现对光电二极管性能的有效控制,并且设置为倾斜的侧表面可以增大光电二极管的有效受光面积,收集的光生载流子多,产生的信号强度大。An embodiment of the present invention provides a photodiode and its manufacturing method, an X-ray detection substrate and its manufacturing method, the photodiode includes: a base substrate, and an intrinsic layer, a first doped layer and The second doped layer; the orthographic projection of the upper surface of the intrinsic layer on the substrate is located in the region where the orthographic projection of the lower surface of the intrinsic layer is on the substrate; the first doped layer and the second doped layer respectively located on two opposite inclined side surfaces of the intrinsic layer. In the above photodiode structure provided by the embodiment of the present invention, since the first doped layer and the second doped layer are respectively located on the two inclined side surfaces of the intrinsic layer, ion implantation can be used for doping in the manufacturing process. , so that the doping concentration can be precisely controlled, and the performance of the photodiode can be effectively controlled, and the inclined side surface can increase the effective light-receiving area of the photodiode, collect more photogenerated carriers, and generate a higher signal intensity.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies thereof, the present invention also intends to include these modifications and variations.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610105256.8A CN105742386B (en) | 2016-02-25 | 2016-02-25 | Photodiode and preparation method thereof, X-ray detection substrate and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610105256.8A CN105742386B (en) | 2016-02-25 | 2016-02-25 | Photodiode and preparation method thereof, X-ray detection substrate and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105742386A CN105742386A (en) | 2016-07-06 |
CN105742386B true CN105742386B (en) | 2017-10-17 |
Family
ID=56249434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610105256.8A Expired - Fee Related CN105742386B (en) | 2016-02-25 | 2016-02-25 | Photodiode and preparation method thereof, X-ray detection substrate and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105742386B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11961935B2 (en) | 2020-10-22 | 2024-04-16 | Beijing Boe Sensor Technology Co., Ltd. | Detection base plate and flat-panel detector |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106842278B (en) * | 2017-01-19 | 2023-11-21 | 京东方科技集团股份有限公司 | MSM photoelectric detection device, driving method thereof and X-ray detector |
CN106910796B (en) | 2017-03-02 | 2018-12-18 | 京东方科技集团股份有限公司 | X-ray detection X substrate and its manufacturing method, ray detecting device |
CN109037284B (en) * | 2018-07-26 | 2020-11-27 | 京东方科技集团股份有限公司 | Display device, control method thereof and manufacturing method thereof |
CN109727974B (en) * | 2019-01-03 | 2021-10-08 | 京东方科技集团股份有限公司 | Photosensitive assembly, preparation method thereof and photosensitive substrate |
CN110335876A (en) * | 2019-04-29 | 2019-10-15 | 上海天马微电子有限公司 | Radiation image detection panel, method for manufacturing same, and radiation image detection device |
CN112786636A (en) * | 2021-01-06 | 2021-05-11 | Tcl华星光电技术有限公司 | Preparation method of X-ray sensor and X-ray sensor |
CN115621294B (en) * | 2022-10-28 | 2025-07-11 | 北京京东方传感技术有限公司 | Detection substrate, manufacturing method thereof, and detector |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295002A (en) * | 1980-06-23 | 1981-10-13 | International Business Machines Corporation | Heterojunction V-groove multijunction solar cell |
CN103268891A (en) * | 2013-03-28 | 2013-08-28 | 北京京东方光电科技有限公司 | Thin film transistor, amorphous silicon flat panel detection substrate and preparation method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100544039C (en) * | 2007-05-31 | 2009-09-23 | 中国科学院微电子研究所 | A kind of photodetector with oblique light receiving |
JP6024755B2 (en) * | 2012-09-18 | 2016-11-16 | 富士通株式会社 | Semiconductor light receiving element and manufacturing method thereof |
-
2016
- 2016-02-25 CN CN201610105256.8A patent/CN105742386B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295002A (en) * | 1980-06-23 | 1981-10-13 | International Business Machines Corporation | Heterojunction V-groove multijunction solar cell |
CN103268891A (en) * | 2013-03-28 | 2013-08-28 | 北京京东方光电科技有限公司 | Thin film transistor, amorphous silicon flat panel detection substrate and preparation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11961935B2 (en) | 2020-10-22 | 2024-04-16 | Beijing Boe Sensor Technology Co., Ltd. | Detection base plate and flat-panel detector |
US12349474B2 (en) | 2020-10-22 | 2025-07-01 | Beijing Boe Sensor Technology Co., Ltd. | Detection base plate and flat-panel detector |
Also Published As
Publication number | Publication date |
---|---|
CN105742386A (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105742386B (en) | Photodiode and preparation method thereof, X-ray detection substrate and preparation method thereof | |
CN106910796B (en) | X-ray detection X substrate and its manufacturing method, ray detecting device | |
US9570645B2 (en) | Photodiode and method of manufacturing the same, and X-ray detector and method of manufacturing the same | |
KR101921402B1 (en) | Array substrate and manufacturing method thereof, x-ray flat panel detector and camera system | |
CN111202536B (en) | Ray detector, manufacturing method thereof and electronic equipment | |
CN107104108B (en) | Array substrate and manufacturing method thereof, flat panel detector and imaging equipment | |
CN102664184B (en) | Array substrate of X ray detection device and manufacturing method thereof | |
CN104795419B (en) | X-ray flat panel detector | |
CN104681655A (en) | Detection substrate, preparation method thereof, and detector | |
CN105550662A (en) | Fingerprint identification apparatus, manufacturing method for fingerprint identification apparatus, array substrate and display apparatus | |
CA2712174A1 (en) | Method and apparatus for a radiation detector | |
CN106847986A (en) | X-ray flat panel detector and preparation method thereof | |
JP2012159340A (en) | Radiographic device and radiograph display system | |
CN103259983B (en) | Flat-plate image sensor | |
CN110783355B (en) | Detection panel, manufacturing method thereof and detection device | |
WO2014169518A1 (en) | Photodiode and manufacturing method therefor, and x-ray detector substrate and manufacturing method therefor | |
CN103165635A (en) | Ray detector and manufacturing method thereof | |
CN102856441A (en) | Manufacture methods of X-ray detector back panel and PIN photodiode | |
JP2014225524A (en) | Method for manufacturing detection device, detection device, and detection system | |
KR20160114767A (en) | Image sensor and method of manufacturing the same | |
CN105093256B (en) | A kind of ray detection substrate and its manufacture method and ray detector | |
JP2009130127A (en) | Radiation detector and its manufacturing method | |
CN106299013B (en) | Photodiode and preparation method, X-ray detection substrate | |
CN107342346A (en) | A kind of photodiode, X-ray detector and preparation method thereof | |
CN112736104B (en) | Preparation method of flat panel detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171017 |