CN105738442A - Preparation method for magnetic nanoparticle modified carbon fiber microelectrode and application thereof - Google Patents
Preparation method for magnetic nanoparticle modified carbon fiber microelectrode and application thereof Download PDFInfo
- Publication number
- CN105738442A CN105738442A CN201610177537.4A CN201610177537A CN105738442A CN 105738442 A CN105738442 A CN 105738442A CN 201610177537 A CN201610177537 A CN 201610177537A CN 105738442 A CN105738442 A CN 105738442A
- Authority
- CN
- China
- Prior art keywords
- carbon fiber
- modified
- preparation
- magnetic nano
- microelectrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 239000002122 magnetic nanoparticle Substances 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 101
- 239000004917 carbon fiber Substances 0.000 claims abstract description 99
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 claims abstract description 35
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 15
- 230000007613 environmental effect Effects 0.000 claims abstract description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 9
- 239000003292 glue Substances 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 9
- 239000004332 silver Substances 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 8
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 7
- 239000001632 sodium acetate Substances 0.000 claims description 7
- 235000017281 sodium acetate Nutrition 0.000 claims description 7
- 239000002202 Polyethylene glycol Substances 0.000 claims description 6
- 239000008055 phosphate buffer solution Substances 0.000 claims description 6
- 229920001223 polyethylene glycol Polymers 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000004832 voltammetry Methods 0.000 claims description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims 2
- 238000013019 agitation Methods 0.000 claims 1
- 229940097572 chloromycetin Drugs 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 229960005091 chloramphenicol Drugs 0.000 abstract description 34
- 238000001514 detection method Methods 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 18
- 230000035945 sensitivity Effects 0.000 abstract description 10
- 230000004048 modification Effects 0.000 abstract description 5
- 238000012986 modification Methods 0.000 abstract description 5
- 238000011065 in-situ storage Methods 0.000 abstract description 4
- 230000027756 respiratory electron transport chain Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- VITRLXDSBBVNCZ-UHFFFAOYSA-K trichloroiron;hydrate Chemical compound O.Cl[Fe](Cl)Cl VITRLXDSBBVNCZ-UHFFFAOYSA-K 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 229910021397 glassy carbon Inorganic materials 0.000 description 4
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000002848 electrochemical method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001548 drop coating Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 231100000678 Mycotoxin Toxicity 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002636 mycotoxin Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种用磁性纳米粒子修饰的碳纤维微电极的制备方法,包括如下步骤:首先采用循环伏安法对碳纤维进行表面活化;然后利用磁性纳米粒子修饰碳纤维;最后制备磁性纳米粒子/碳纤维微电极。本发明得到的微电极性能稳定、灵敏度高、工序简单且成本低廉;本发明采用磁性纳米粒子构建修饰层,可大大提高微电极的电子传递性能,从而提高传感器的灵敏度和检测限;本发明制备的微电极能够有效快速地对氯霉素进行原位检测,抗干扰能力强,重现性好,可应用于不同的环境样品。
The invention discloses a preparation method of a carbon fiber microelectrode modified with magnetic nanoparticles, which comprises the following steps: firstly, the carbon fiber is surface activated by cyclic voltammetry; then, the carbon fiber is modified by magnetic nanoparticles; finally, the magnetic nanoparticle/carbon fiber is prepared microelectrodes. The microelectrode obtained by the present invention has stable performance, high sensitivity, simple process and low cost; the present invention uses magnetic nanoparticles to construct the modification layer, which can greatly improve the electron transfer performance of the microelectrode, thereby improving the sensitivity and detection limit of the sensor; the present invention prepares The microelectrode can effectively and quickly detect chloramphenicol in situ, has strong anti-interference ability and good reproducibility, and can be applied to different environmental samples.
Description
技术领域technical field
本发明属于电化学传感器领域,具体涉及一种用于检测氯霉素的磁性纳米粒子/碳纤维微电极的制备方法。The invention belongs to the field of electrochemical sensors, in particular to a method for preparing a magnetic nanoparticle/carbon fiber microelectrode for detecting chloramphenicol.
背景技术Background technique
氯霉素是一种广谱抗生素,具有良好的抗菌效用以及性质稳定、廉价易得等特点,被应用于人类某些疾病的预防和治疗。氯霉素一般从医药废水、生活污水以及养殖业废水中排入自然水体,容易对人体和环境造成不可逆的影响。因此,定量测定环境中的氯霉素具有十分重要的意义。目前,测定氯霉素的方法有电化学法,质谱法和色谱法等,其中质谱法,色谱法设备比较昂贵且费时,另外需要专业人员操作,不适合用于快速检测;电化学法由于其体积小,设备价格低廉,使用便捷,灵敏度高,稳定性好以及实时原位检测等优点而受到广泛的关注。Chloramphenicol is a broad-spectrum antibiotic with good antibacterial effect, stable properties, low cost and easy availability. It is used in the prevention and treatment of certain human diseases. Chloramphenicol is generally discharged into natural water bodies from medical wastewater, domestic sewage, and aquaculture wastewater, which is likely to cause irreversible impacts on the human body and the environment. Therefore, the quantitative determination of chloramphenicol in the environment is of great significance. At present, the method for measuring chloramphenicol has electrochemical method, mass spectrometry and chromatographic method etc., and wherein mass spectrometry, chromatographic equipment are more expensive and time-consuming, need professional operation in addition, are not suitable for rapid detection; Electrochemical method is because of its Small size, low equipment price, convenient use, high sensitivity, good stability, and real-time in-situ detection have attracted widespread attention.
一般而言,氯霉素在环境样品中的浓度相对较低,限制了电化学传感器对氯霉素检测研究的发展。因此,发展新型电化学传感器成为氯霉素电化学分析法的趋势。碳纤维微电极比常规电极面积小、电流密度大,具有良好的机械强度和柔韧性,易制作,具有优良的电子传递性能,在电化学前沿领域得到广泛应用。磁性纳米粒子是一种金属氧化物,具有比表面积大,良好的生物相容性以及良好的导电性等特点,用于制备修饰电极可有效提高电极的性能。基于以上理论,结合磁性纳米粒子及碳纤维微电极的性能,制备磁性纳米粒子修饰碳纤维电极,可充分发挥二者优点,提高传感器的导电性能,催化性能,从而实现对环境样品中痕量氯霉素的高灵敏检测。In general, the concentration of chloramphenicol in environmental samples is relatively low, which limits the development of electrochemical sensors for the detection of chloramphenicol. Therefore, the development of new electrochemical sensors has become the trend of electrochemical analysis of chloramphenicol. Compared with conventional electrodes, carbon fiber microelectrodes have smaller area, higher current density, good mechanical strength and flexibility, are easy to manufacture, and have excellent electron transfer performance, and have been widely used in the frontier field of electrochemistry. Magnetic nanoparticles are a kind of metal oxide, which has the characteristics of large specific surface area, good biocompatibility and good conductivity. It can effectively improve the performance of electrodes when used in the preparation of modified electrodes. Based on the above theories, combined with the performance of magnetic nanoparticles and carbon fiber microelectrodes, the preparation of magnetic nanoparticles modified carbon fiber electrodes can give full play to the advantages of both, improve the conductivity and catalytic performance of the sensor, and realize the detection of trace amounts of chloramphenicol in environmental samples. highly sensitive detection.
发明内容Contents of the invention
解决的技术问题:本发明所的目的是提供一种用磁性纳米粒子修饰碳纤维微电极的制备方法,该方法得到的电化学传感器灵敏度高、稳定性好,可以快速检测出氯霉素的浓度。Technical problem solved: the purpose of this invention is to provide a kind of preparation method of carbon fiber microelectrode modified with magnetic nanoparticles, the electrochemical sensor obtained by this method has high sensitivity and good stability, and can detect the concentration of chloramphenicol quickly.
为解决上述技术问题,本发明所采用的技术方案为:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:
一种用磁性纳米粒子修饰的碳纤维微电极的制备方法,包括如下步骤:A method for preparing a carbon fiber microelectrode modified with magnetic nanoparticles, comprising the steps of:
步骤1,采用循环伏安法对碳纤维进行表面活化;对碳纤维进行活化一方面可以去除碳纤维表面杂质以达到清洁作用,另一方面还可以使碳纤维表面接枝活性官能团,以便后续的修饰步骤;Step 1, using cyclic voltammetry to activate the surface of the carbon fiber; on the one hand, the activation of the carbon fiber can remove impurities on the surface of the carbon fiber to achieve cleaning, and on the other hand, it can also graft active functional groups on the surface of the carbon fiber for subsequent modification steps;
步骤2,用磁性纳米粒子修饰活化后的碳纤维;对碳纤维采用磁性纳米粒子修饰之后得到的碳纤维电极在电解质相内以及电解质之间的电荷转移、离子转移、离子传质过程与行为都有显著的提高,有助于降低底物的检测限;Step 2, modify the activated carbon fibers with magnetic nanoparticles; the carbon fiber electrodes obtained after the carbon fibers are modified with magnetic nanoparticles have significant changes in the charge transfer, ion transfer, and ion mass transfer processes and behaviors in the electrolyte phase and between electrolytes. Improve, help to reduce the detection limit of the substrate;
步骤3,在显微镜下取出单根磁性纳米粒子修饰的碳纤维,采用导电银胶将碳纤维与1mm铜丝粘结,同时将碳纤维另一端露出0.8cm,制备成碳纤维微电极。Step 3: Take out a single magnetic nanoparticle-modified carbon fiber under a microscope, use conductive silver glue to bond the carbon fiber to a 1mm copper wire, and expose the other end of the carbon fiber by 0.8cm to prepare a carbon fiber microelectrode.
其中,步骤1中,采用循环伏安法对碳纤维进行表面活化具体是指将超声洗涤后的碳纤维置于浓度为0.1M,pH为7.0的磷酸缓冲溶液中进行循环伏安法扫描,其中,所述循环伏安法扫描的电位范围为0~2.5V。Wherein, in step 1, the use of cyclic voltammetry to activate the surface of carbon fibers specifically refers to placing the ultrasonically washed carbon fibers in a phosphate buffer solution with a concentration of 0.1M and a pH of 7.0 for cyclic voltammetry scanning, wherein, the The potential range of the cyclic voltammetry scanning is 0-2.5V.
其中,步骤1中,所述碳纤维微电极的直径为7μm。Wherein, in step 1, the diameter of the carbon fiber microelectrode is 7 μm.
其中,步骤2中,对活化后的碳纤维采用磁性纳米粒子修饰的具体操作步骤为:将一定质量的水合氯化铁、醋酸钠和聚乙二醇依次溶于水中配制成混合溶液,磁性搅拌后与活化后的碳纤维一起置于高压釜中,密封,于200~220℃下恒温加热20~30h,然后冷却至室温,得到的黑色产物即为用磁性纳米粒子修饰的碳纤维。Among them, in step 2, the specific operation steps of using magnetic nanoparticles to modify the activated carbon fibers are as follows: a certain quality of ferric chloride hydrate, sodium acetate and polyethylene glycol are dissolved in water to prepare a mixed solution, and after magnetic stirring, Place it in an autoclave together with the activated carbon fiber, seal it, heat it at a constant temperature of 200-220°C for 20-30 hours, and then cool it to room temperature. The black product obtained is the carbon fiber modified with magnetic nanoparticles.
本发明方法将磁性纳米粒子修饰到碳纤维表面,磁性纳米粒子属于金属氧化物,具有较强的导电性和生物兼容性,对氯霉素等抗生素响应非常灵敏迅速。The method of the invention modifies the magnetic nano particles on the surface of the carbon fiber. The magnetic nano particles belong to metal oxides, have strong electrical conductivity and biocompatibility, and are very sensitive and rapid in response to antibiotics such as chloramphenicol.
其中,所述水合氯化铁与醋酸钠的质量比为1∶3。Wherein, the mass ratio of the ferric chloride hydrate to sodium acetate is 1:3.
上述制备方法得到的碳纤维微电极应用于原位检测环境样品中的氯霉素。The carbon fiber microelectrode obtained by the above preparation method is applied to in situ detection of chloramphenicol in environmental samples.
本发明采用磁性纳米粒子修饰后的碳纤维作为电极材料并通过导电银胶与铜丝连接得到碳纤维微电极,以此作为工作电极,再结合参比电极,辅助电极以及磷酸电解质,构建用于检测氯霉素的电化学传感器。In the present invention, carbon fiber modified by magnetic nanoparticles is used as electrode material and carbon fiber microelectrode is obtained by connecting conductive silver glue and copper wire, which is used as a working electrode, combined with a reference electrode, an auxiliary electrode and a phosphoric acid electrolyte, and is used to detect chlorine. Electrochemical sensor for mycotoxin.
本发明碳纤维微电极的使用方法:将碳纤维微电极与参比电极和对电极一起正确连接在电化学工作站上,以形成基于修饰碳纤维微电极的电化学传感器;将三电极系统浸入将含有氯霉素的样品中,通过差分脉冲循环伏安法检测,该差分脉冲检测的扫描电位为-1.0~0V,每次扫描后,将电化学传感器置于磷酸缓冲溶液中进行循环扫描至无峰后,用去离子水洗净晾干,重复使用。The method for using the carbon fiber microelectrode of the present invention: the carbon fiber microelectrode is correctly connected with the reference electrode and the counter electrode on the electrochemical workstation to form an electrochemical sensor based on the modified carbon fiber microelectrode; In the sample of element, it is detected by differential pulse cyclic voltammetry. The scanning potential of the differential pulse detection is -1.0 ~ 0V. After each scan, the electrochemical sensor is placed in the phosphate buffer solution for cyclic scanning until there is no peak. Rinse with deionized water, dry and reuse.
有益效果:相比于现有技术,本发明的制备方法采用碳纤维为电极基底材料,首先对碳纤维表面进行活化,然后再用磁性纳米粒子对碳纤维进行修饰,最后得到磁性纳米粒子修饰的碳纤维微电极,本发明方法工艺简单,得到的碳纤维微电极对氯霉素的浓度响应敏感,能够有效快速地对氯霉素进行检测,检测限低、灵敏度好、抗干扰能力强。本发明得到的碳纤维微电极在原位检测环境样品中的氯霉素方面具有广阔的前景。Beneficial effects: Compared with the prior art, the preparation method of the present invention uses carbon fiber as the electrode base material, first activates the surface of the carbon fiber, then modifies the carbon fiber with magnetic nanoparticles, and finally obtains a carbon fiber microelectrode modified by magnetic nanoparticles , the method of the invention has simple process, and the obtained carbon fiber microelectrode is sensitive to the concentration response of chloramphenicol, can effectively and rapidly detect chloramphenicol, has low detection limit, good sensitivity and strong anti-interference ability. The carbon fiber microelectrode obtained by the invention has broad prospects in the aspect of in-situ detection of chloramphenicol in environmental samples.
附图说明Description of drawings
图1为本发明实施例1中裸碳纤维的SEM图;Fig. 1 is the SEM figure of bare carbon fiber in the embodiment of the present invention 1;
图2为本发明实施例1中磁性纳米粒子修饰碳纤维的SEM图;Fig. 2 is the SEM picture of the carbon fiber modified by magnetic nanoparticles in Example 1 of the present invention;
图3为本发明实施例1中磁性纳米粒子修饰碳纤维微电极检测不同浓度氯霉素的CV氧化峰电流值与氯霉素浓度的拟合曲线;Fig. 3 is the fitting curve of the CV oxidation peak current value and the concentration of chloramphenicol detected by the magnetic nanoparticle modified carbon fiber microelectrode in Example 1 of the present invention with different concentrations of chloramphenicol;
图4为本发明实施例2中磁性纳米粒子修饰碳纤维的SEM图;Fig. 4 is the SEM figure of magnetic nanoparticle modified carbon fiber in the embodiment of the present invention 2;
图5为本发明实施例3中磁性纳米粒子修饰碳纤维的SEM图。Fig. 5 is an SEM image of carbon fibers modified with magnetic nanoparticles in Example 3 of the present invention.
具体实施方式detailed description
下面结合附图和实施例,对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
一种用磁性纳米粒子修饰的碳纤维微电极的制备方法,包括如下步骤:A method for preparing a carbon fiber microelectrode modified with magnetic nanoparticles, comprising the steps of:
步骤1,将一束碳纤维依次置于无水乙醇和超纯水中进行超声洗涤,将洗涤后的碳纤维与铜丝用导电银胶相连制成碳纤维电极,将得到的碳纤维电极置于浓度为0.1M、pH为7.0的磷酸缓冲溶液中采用循环伏安法进行表面活化,扫描电位范围为0~2.5V,将活化后的碳纤维取下并置入高压釜中;该步骤一方面可以去除碳纤维表面杂质以达到清洁作用,另一方面可以使碳纤维表面接枝活性官能团,以便后续的修饰步骤,从而使电极整体的稳定性、导电性和电子转移速度都得到提高;Step 1, put a bundle of carbon fibers in absolute ethanol and ultrapure water for ultrasonic cleaning, connect the washed carbon fibers with copper wires with conductive silver glue to make carbon fiber electrodes, and place the obtained carbon fiber electrodes in a concentration of 0.1 M, pH 7.0 phosphate buffer solution adopts cyclic voltammetry for surface activation, and the scanning potential range is 0-2.5V. The activated carbon fiber is removed and placed in an autoclave; on the one hand, this step can remove the carbon fiber surface impurities to achieve cleaning effect, on the other hand, carbon fiber surface can be grafted with active functional groups for subsequent modification steps, so that the overall stability, conductivity and electron transfer speed of the electrode are improved;
步骤2,在50mL水溶液中加入1.0g水合氯化铁(FeCl3·6H2O),搅拌溶解,再往水溶液中加入3.0g醋酸钠和1.0g聚乙二醇,磁力搅拌30min,将混合溶液倒入步骤1的高压釜中,密封,在200℃下恒温加热25h,然后冷却至室温,得到的黑色产物用乙醇清洗数次,在60℃烘箱中干燥6h;Step 2, add 1.0g ferric chloride hydrate (FeCl 3 6H 2 O) to 50mL aqueous solution, stir to dissolve, then add 3.0g sodium acetate and 1.0g polyethylene glycol to the aqueous solution, stir magnetically for 30min, and mix the solution Pour it into the autoclave in step 1, seal it, heat it at a constant temperature of 200°C for 25h, then cool it to room temperature, wash the obtained black product with ethanol several times, and dry it in an oven at 60°C for 6h;
步骤3,在显微镜下取出单根磁性纳米粒子修饰的碳纤维,采用导电银胶将碳纤维与1mm铜丝相粘结,同时将碳纤维另一端露出0.8cm,制备成碳纤维微电极。Step 3: Take out a single carbon fiber modified with magnetic nanoparticles under a microscope, use conductive silver glue to bond the carbon fiber to a 1mm copper wire, and expose the other end of the carbon fiber by 0.8cm to prepare a carbon fiber microelectrode.
将步骤3得到的碳纤维微电极与参比电极和对电极一起正确连接在电化学工作站上,以形成基于修饰碳纤维微电极的电化学传感器。The carbon fiber microelectrode obtained in step 3 is correctly connected with the reference electrode and the counter electrode on the electrochemical workstation to form an electrochemical sensor based on the modified carbon fiber microelectrode.
将三电极系统浸入含有0.1、0.2、0.3、0.5、0.8、1.0μM不同浓度氯霉素的磷酸电解质中,利用差分脉冲循环伏安法扫描,扫描电位为-1.0~0V,取各浓度下对氯苯酚的峰流值与对氯苯酚浓度作拟合曲线,如图3所示。由图3分析实施例1得到的磁性纳米粒子修饰的碳纤维微电极对氯霉素的线性检测范围为0.1~1.0μM;电流值与氯霉素浓度的拟合曲线为:I(氯霉素)=0.90c(氯霉素)+1.54,R2=0.9917;灵敏度为0.90,检测限为0.033μM。The three-electrode system was immersed in the phosphoric acid electrolyte containing different concentrations of chloramphenicol at 0.1, 0.2, 0.3, 0.5, 0.8, and 1.0 μM, and scanned by differential pulse cyclic voltammetry. The peak flow value of chlorophenol and the concentration of p-chlorophenol are fitted curves, as shown in Figure 3. The carbon fiber microelectrode modified by Fig. 3 that embodiment 1 obtains is 0.1~1.0 μ M to the linear detection range of chloramphenicol; The fitting curve of electric current value and chloramphenicol concentration is: I (chloramphenicol) =0.90c(chloramphenicol)+1.54, R 2 =0.9917; the sensitivity was 0.90, and the detection limit was 0.033 μM.
实施例1修饰前后的碳纤维扫描电镜结果分别如图1、图2所示。从图1中可以看出裸碳纤维表面有杂质,表面不光滑,从图2可以看出活化之后的碳纤维表面光滑平整,并且表面负载的磁性纳米粒子粒径均匀,磁性纳米粒子分布较为分散,证明用以上方法成功的将磁性纳米粒子修饰到碳纤维表面,有利于提高电极比表面积,提高催化活性。The carbon fiber scanning electron microscope results before and after modification in Example 1 are shown in Figure 1 and Figure 2 respectively. It can be seen from Figure 1 that there are impurities on the surface of the bare carbon fiber, and the surface is not smooth. From Figure 2, it can be seen that the surface of the carbon fiber after activation is smooth and flat, and the particle size of the magnetic nanoparticles loaded on the surface is uniform, and the distribution of the magnetic nanoparticles is relatively dispersed. Using the above method to successfully modify the magnetic nanoparticles to the surface of the carbon fiber is beneficial to increase the specific surface area of the electrode and improve the catalytic activity.
将实施例1所得修饰电极的各项性能与现有其他电极相比较,具体结果见表1。The properties of the modified electrode obtained in Example 1 were compared with other existing electrodes, and the specific results are shown in Table 1.
表1:几种修饰电极伏安法测定对氯苯酚的各项性能比较Table 1: Comparison of various performances of several modified electrodes for the determination of p-chlorophenol by voltammetry
其中,Yang等人采用滴涂法修饰上多壁碳纳米管-分子印迹复合物修饰玻碳电极。来源:Electrochemicalsensorforchloramphenicolbasedonnovelmultiwalledcarbonnanotubesmolecularlyimprintedpolymer,BiosensorsandBioelectronics,2015,64:416-422。Borowiec等人制备Au-氮掺杂石墨烯纳米片复合材料并采用滴涂法修饰到玻碳电极上。来源:Synthesisofnitrogen-dopedgraphenenanosheetsdecoratedwithgoldnanoparticlesasanimprovedsensorforelectrochemicaldeterminationofchloramphenicol,ElectrochimicaActa,2013,99:138-144.L.Agui等人利用电化学方法活化碳纤维并用于制备碳纤维电极。来源:Voltammetricdeterminationofchloramphenicolinmilkatelectrochemicallyactivatedcarbonfibremicroelectrodes,AnalyticaChimicaActa,2002,461(1):65-73.Among them, Yang et al. used the drop coating method to modify the glassy carbon electrode modified by the multi-walled carbon nanotube-molecularly imprinted composite. Source: Electrochemicalsensorforchloramphenicolbasedonnovelmultiwalledcarbonnanotubesmolecularlyimprintedpolymer, BiosensorsandBioelectronics, 2015, 64:416-422. Borowiec et al. prepared Au-nitrogen-doped graphene nanosheet composites and modified them onto glassy carbon electrodes by drop coating. Source: Synthesis of nitrogen-doped graphenenanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol, Electrochimica Acta, 2013, 99: 138-144. L. Agui et al. used electrochemical methods to activate carbon fibers and used them to prepare carbon fiber electrodes. Source: Voltammetricdeterminationofchloramphenicolinmilkateelectrochemicallyactivatedcarbonfibremicroelectrodes, AnalyticaChimicaActa, 2002, 461(1): 65-73.
由表1可见,与现有的修饰电极相比,实施例1所得电极具有相对较高的灵敏度和相对较低的检测限。It can be seen from Table 1 that compared with the existing modified electrode, the electrode obtained in Example 1 has relatively high sensitivity and relatively low detection limit.
实施例2Example 2
一种用磁性纳米粒子修饰的碳纤维微电极的制备方法,包括如下步骤:A method for preparing a carbon fiber microelectrode modified with magnetic nanoparticles, comprising the steps of:
步骤1,将一束碳纤维依次置于无水乙醇和超纯水中进行超声洗涤,将洗涤后的碳纤维与铜丝用导电银胶相连制成碳纤维电极,将得到的碳纤维电极置于浓度为0.1M、pH为7.0的磷酸缓冲溶液中采用循环伏安法进行表面活化,扫描电位范围为0~2.5V,将活化后的碳纤维取下并置入高压釜中;Step 1, put a bundle of carbon fibers in absolute ethanol and ultrapure water for ultrasonic cleaning, connect the washed carbon fibers with copper wires with conductive silver glue to make carbon fiber electrodes, and place the obtained carbon fiber electrodes in a concentration of 0.1 M, pH 7.0 phosphate buffer solution adopts cyclic voltammetry to carry out surface activation, and the scanning potential range is 0-2.5V, and the activated carbon fiber is removed and placed in an autoclave;
步骤2,在50mL水溶液中加入0.5g水合氯化铁(FeCl3·6H2O),搅拌溶解,再往水溶液中加入1.5g醋酸钠和1.0g聚乙二醇,磁力搅拌30min,将混合溶液倒入步骤1的高压釜中,密封,在220℃下恒温加热20h,然后冷却至室温,得到的黑色产物用乙醇清洗数次,在60℃烘箱中干燥6h;Step 2, add 0.5g ferric chloride hydrate (FeCl 3 6H 2 O) to 50mL aqueous solution, stir to dissolve, then add 1.5g sodium acetate and 1.0g polyethylene glycol to the aqueous solution, stir magnetically for 30min, and mix the solution Pour it into the autoclave in step 1, seal it, heat it at a constant temperature of 220°C for 20h, then cool it to room temperature, wash the obtained black product with ethanol several times, and dry it in an oven at 60°C for 6h;
步骤3,在显微镜下取出单根磁性纳米粒子修饰的碳纤维,采用导电银胶将碳纤维与1mm铜丝相粘结,同时将碳纤维另一端露出0.8cm,制备成碳纤维微电极。Step 3: Take out a single carbon fiber modified with magnetic nanoparticles under a microscope, use conductive silver glue to bond the carbon fiber to a 1mm copper wire, and expose the other end of the carbon fiber by 0.8cm to prepare a carbon fiber microelectrode.
将步骤3得到的碳纤维微电极与参比电极和对电极一起正确连接在电化学工作站上,以形成基于修饰碳纤维微电极的电化学传感器。The carbon fiber microelectrode obtained in step 3 is correctly connected with the reference electrode and the counter electrode on the electrochemical workstation to form an electrochemical sensor based on the modified carbon fiber microelectrode.
将三电极系统浸入含有0.1、0.2、0.3、0.5、0.8、1.0μM不同浓度氯霉素的磷酸电解质中,利用差分脉冲循环伏安法扫描,扫描电位为-1.0~0V,取各浓度下对氯苯酚的峰流值与对氯苯酚浓度作拟合曲线。该实施例得到的磁性纳米粒子修饰的碳纤维微电极对氯霉素的线性检测范围为0.1~1.0μM;电流值与氯霉素浓度的拟合曲线为:I(氯霉素)=0.88c(氯霉素)+1.59,R2=0.9967;灵敏度为0.88,检测限为0.03μM。The three-electrode system was immersed in the phosphoric acid electrolyte containing different concentrations of chloramphenicol at 0.1, 0.2, 0.3, 0.5, 0.8, and 1.0 μM, and scanned by differential pulse cyclic voltammetry. The peak flow value of chlorophenol was fitted with the concentration of p-chlorophenol. The carbon fiber microelectrode modified by the magnetic nanoparticles obtained in this embodiment has a linear detection range of 0.1~1.0 μM to chloramphenicol; the fitting curve of the current value and the concentration of chloramphenicol is: I (chloramphenicol)=0.88c( Chloramphenicol)+1.59, R 2 =0.9967; the sensitivity was 0.88, and the detection limit was 0.03 μM.
实施例2修饰后的碳纤维扫描电镜图如图4所示,由图4可见用以上方法成功的将磁性纳米粒子修饰到碳纤维表面,并且磁性纳米粒子粒径较小,粒径分布稍显不均匀,有利于提高电极比表面积,提高催化活性。The scanning electron microscope image of the modified carbon fiber in Example 2 is shown in Figure 4. It can be seen from Figure 4 that the magnetic nanoparticles have been successfully modified to the surface of the carbon fiber by the above method, and the magnetic nanoparticles have a small particle size and a slightly uneven particle size distribution. , which is beneficial to increase the specific surface area of the electrode and improve the catalytic activity.
实施例3Example 3
一种用磁性纳米粒子修饰的碳纤维微电极的制备方法,包括如下步骤:A method for preparing a carbon fiber microelectrode modified with magnetic nanoparticles, comprising the steps of:
步骤1,将一束碳纤维依次置于无水乙醇和超纯水中进行超声洗涤,将洗涤后的碳纤维与铜丝用导电银胶相连制成碳纤维电极,将得到的碳纤维电极置于浓度为0.1M、pH为7.0的磷酸缓冲溶液中采用循环伏安法进行表面活化,扫描电位范围为0~2.5V,将活化后的碳纤维取下并置入高压釜中;Step 1, put a bundle of carbon fibers in absolute ethanol and ultrapure water for ultrasonic cleaning, connect the washed carbon fibers with copper wires with conductive silver glue to make carbon fiber electrodes, and place the obtained carbon fiber electrodes in a concentration of 0.1 M, pH 7.0 phosphate buffer solution adopts cyclic voltammetry to carry out surface activation, and the scanning potential range is 0-2.5V, and the activated carbon fiber is removed and placed in an autoclave;
步骤2,在50mL水溶液中加入1.2g水合氯化铁(FeCl3·6H2O),搅拌溶解,再往水溶液中加入3.6g醋酸钠和1.0g聚乙二醇,磁力搅拌30min,将混合溶液倒入步骤1的高压釜中,密封,在200℃下恒温加热30h,然后冷却至室温,得到的黑色产物用乙醇清洗数次,在60℃烘箱中干燥6h;Step 2, add 1.2g ferric chloride hydrate (FeCl 3 6H 2 O) to 50mL aqueous solution, stir to dissolve, then add 3.6g sodium acetate and 1.0g polyethylene glycol to the aqueous solution, stir magnetically for 30min, and mix the solution Pour it into the autoclave in step 1, seal it, heat it at a constant temperature of 200°C for 30h, then cool it to room temperature, wash the obtained black product with ethanol several times, and dry it in an oven at 60°C for 6h;
步骤3,在显微镜下取出单根磁性纳米粒子修饰的碳纤维,采用导电银胶将碳纤维与1mm铜丝相粘结,同时将碳纤维另一端露出0.8cm,制备成碳纤维微电极。Step 3: Take out a single carbon fiber modified with magnetic nanoparticles under a microscope, use conductive silver glue to bond the carbon fiber to a 1mm copper wire, and expose the other end of the carbon fiber by 0.8cm to prepare a carbon fiber microelectrode.
将步骤3得到的碳纤维微电极与参比电极和对电极一起正确连接在电化学工作站上,以形成基于修饰碳纤维微电极的电化学传感器。The carbon fiber microelectrode obtained in step 3 is correctly connected with the reference electrode and the counter electrode on the electrochemical workstation to form an electrochemical sensor based on the modified carbon fiber microelectrode.
将三电极系统浸入含有0.1、0.2、0.3、0.5、0.8、1.0μM不同浓度氯霉素的磷酸电解质中,利用差分脉冲循环伏安法扫描,扫描电位为-1.0~0V,取各浓度下对氯苯酚的峰流值与对氯苯酚浓度作拟合曲线。该实施例得到的磁性纳米粒子修饰的碳纤维微电极对氯霉素的线性检测范围为0.1~1.0μM;电流值与氯霉素浓度的拟合曲线为:I(氯霉素)=0.83c(氯霉素)+1.57,R2=0.9902;灵敏度为0.83,检测限为0.03μM。The three-electrode system was immersed in the phosphoric acid electrolyte containing different concentrations of chloramphenicol at 0.1, 0.2, 0.3, 0.5, 0.8, and 1.0 μM, and scanned by differential pulse cyclic voltammetry. The peak flow value of chlorophenol was fitted with the concentration of p-chlorophenol. The carbon fiber microelectrode modified by the magnetic nanoparticles obtained in this embodiment has a linear detection range of 0.1~1.0 μM to chloramphenicol; the fitting curve of current value and chloramphenicol concentration is: I (chloramphenicol)=0.83c( Chloramphenicol)+1.57, R 2 =0.9902; the sensitivity was 0.83, and the detection limit was 0.03 μM.
实施例3修饰后的碳纤维扫描电镜图如图5所示,由图5可见用以上方法成功的将磁性纳米粒子修饰到碳纤维表面,并且磁性纳米粒子粒径均匀,有轻微团聚现象,有利于提高电极比表面积,提高催化活性。The carbon fiber scanning electron microscope picture after the modification of embodiment 3 is as shown in Figure 5, as can be seen from Figure 5, the magnetic nanoparticles have been successfully modified to the carbon fiber surface by the above method, and the magnetic nanoparticles have a uniform particle size and a slight agglomeration phenomenon, which is conducive to improving The specific surface area of the electrode increases the catalytic activity.
不同量的水合氯化铁制备出来的磁性纳米粒子的粒径不同,造成材料的比表面积差异以及磁性纳米离子团聚程度不同。比表面积相对较大且团聚程度相对较轻的磁性纳米粒子修饰到碳纤维上,电极电子的传递能力、导电性以及响应电流能力都有显著提高,进而电极催化性能也明显增强。The particle size of the magnetic nanoparticles prepared by different amounts of ferric chloride hydrate is different, resulting in the difference in the specific surface area of the material and the degree of agglomeration of the magnetic nano ions. The magnetic nanoparticles with relatively large specific surface area and relatively light agglomeration degree are modified on carbon fibers, and the electron transfer ability, conductivity, and current response ability of the electrode are significantly improved, and the catalytic performance of the electrode is also significantly enhanced.
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举,这些引伸出的变化或变动也处于本发明的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in different forms can also be made, and it is not necessary and impossible to exhaustively list all the implementation modes here, and these derived changes or changes are also in the Within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610177537.4A CN105738442A (en) | 2016-03-25 | 2016-03-25 | Preparation method for magnetic nanoparticle modified carbon fiber microelectrode and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610177537.4A CN105738442A (en) | 2016-03-25 | 2016-03-25 | Preparation method for magnetic nanoparticle modified carbon fiber microelectrode and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105738442A true CN105738442A (en) | 2016-07-06 |
Family
ID=56251435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610177537.4A Pending CN105738442A (en) | 2016-03-25 | 2016-03-25 | Preparation method for magnetic nanoparticle modified carbon fiber microelectrode and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105738442A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770574A (en) * | 2017-01-16 | 2017-05-31 | 华南理工大学 | A kind of multi-walled carbon nano-tubes modifying carbon fibers microelectrode and preparation method thereof |
CN108195904A (en) * | 2017-12-26 | 2018-06-22 | 延边大学 | A kind of micro-extraction/microelectrode double function probe and its preparation method and application |
CN110877902A (en) * | 2019-09-09 | 2020-03-13 | 华北水利水电大学 | Preparation method and application of flexible and high-selectivity non-enzymatic uric acid electrode carbon fiber membrane of self-supporting carbon fiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101899234A (en) * | 2009-12-16 | 2010-12-01 | 南京航空航天大学 | Preparation method of glucose-based mesoporous carbon-coated ZnFeO for electromagnetic wave absorbing coatings |
CN102358910A (en) * | 2011-11-03 | 2012-02-22 | 东南大学 | Chemiluminescence detection method for copy number polymorphism based on magnetic separation and primer extension |
CN103194222A (en) * | 2013-04-18 | 2013-07-10 | 扬州大学 | Preparation method and application of Fe3O4/ZnO composite nanoparticles |
CN103274396A (en) * | 2013-06-20 | 2013-09-04 | 电子科技大学 | Preparation method of grapheme and ferriferrous oxide composite nanometer material |
CN104047071A (en) * | 2014-07-07 | 2014-09-17 | 扬州大学 | Preparation method for magnetic active carbon fibers |
-
2016
- 2016-03-25 CN CN201610177537.4A patent/CN105738442A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101899234A (en) * | 2009-12-16 | 2010-12-01 | 南京航空航天大学 | Preparation method of glucose-based mesoporous carbon-coated ZnFeO for electromagnetic wave absorbing coatings |
CN102358910A (en) * | 2011-11-03 | 2012-02-22 | 东南大学 | Chemiluminescence detection method for copy number polymorphism based on magnetic separation and primer extension |
CN103194222A (en) * | 2013-04-18 | 2013-07-10 | 扬州大学 | Preparation method and application of Fe3O4/ZnO composite nanoparticles |
CN103274396A (en) * | 2013-06-20 | 2013-09-04 | 电子科技大学 | Preparation method of grapheme and ferriferrous oxide composite nanometer material |
CN104047071A (en) * | 2014-07-07 | 2014-09-17 | 扬州大学 | Preparation method for magnetic active carbon fibers |
Non-Patent Citations (3)
Title |
---|
FEI JIANG 等: "Fe3O4 nanoparticles-wrapped carbon nanofibers as high-performance anode for lithium-ion battery", 《JOURNAL OF NANOPARTICLE RESEARCH》 * |
L.AGÜÍ 等: "Voltammetric determination of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes", 《ANALYTICA CHIMICA ACTA》 * |
LIANGYUN YU 等: "Electrochemical detection of nitrate in PM2.5 with a copper-modfied carbon fiber micro-disk electrode", 《TALANTA》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106770574A (en) * | 2017-01-16 | 2017-05-31 | 华南理工大学 | A kind of multi-walled carbon nano-tubes modifying carbon fibers microelectrode and preparation method thereof |
CN106770574B (en) * | 2017-01-16 | 2023-10-03 | 华南理工大学 | Multi-wall carbon nanotube modified carbon fiber microelectrode and preparation method thereof |
CN108195904A (en) * | 2017-12-26 | 2018-06-22 | 延边大学 | A kind of micro-extraction/microelectrode double function probe and its preparation method and application |
CN110877902A (en) * | 2019-09-09 | 2020-03-13 | 华北水利水电大学 | Preparation method and application of flexible and high-selectivity non-enzymatic uric acid electrode carbon fiber membrane of self-supporting carbon fiber |
CN110877902B (en) * | 2019-09-09 | 2022-11-01 | 华北水利水电大学 | Preparation method and application of flexible and high-selectivity non-enzymatic uric acid electrode carbon fiber membrane of self-supporting carbon fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106383158B (en) | A kind of hydrogen peroxide based on silver-graphene nano-complex is without enzyme sensor and preparation method thereof | |
CN103323516A (en) | Preparation method of an enzyme-free H2O2 sensor based on ionic liquid functionalized carbon nanotubes and silver nanocomposites | |
CN104597091B (en) | A kind of preparation method of modified electrode | |
CN103336043A (en) | Preparation method of hydrogen peroxide biosensor | |
CN103616418A (en) | DNA (Deoxyribonucleic Acid) electrochemical biosensor and preparation method thereof | |
CN107941889A (en) | A kind of preparation and electrochemical sensing application study of stannic oxide three-dimensional grapheme nanocomposite fixing protein modified electrode | |
CN111103340A (en) | Preparation method and application of glassy carbon electrode modified by nano particles | |
CN102353712B (en) | Preparation method of modified electrode for detecting uric acid and detection method | |
CN107449816A (en) | All solid state ISE, preparation method and biology sensor | |
CN105259243B (en) | The preparation method of molybdenum sulfide compound and its in water is detected Cr VI application | |
CN105928996A (en) | Preparation of graphene oxide and polyaniline-modified electrode and assembled electrochemical detection device | |
CN104569122B (en) | Method for detecting concentration of copper ions in solution | |
CN106525938A (en) | A composite material modified electrode used for gallic acid concentration determination and applications thereof | |
CN108802143A (en) | A kind of preparation and application research based on myoglobins and titanium dioxide-carbon fiber nanometer composite material modified electrode | |
CN114563454A (en) | Based on Au/Ti3C2TxDopamine electrochemical sensor for modifying glassy carbon working electrode and preparation method thereof | |
CN105738442A (en) | Preparation method for magnetic nanoparticle modified carbon fiber microelectrode and application thereof | |
CN105181769A (en) | Electrochemical cell sensor based on peptide nanotubes/chitosan and preparation method thereof | |
CN106596697B (en) | The detection method of sunset yellow in food | |
CN109142475B (en) | Preparation and Application of Enzyme-Free Nickel Oxide Reduction Graphene Oxide Composite Electrode | |
CN110618186B (en) | A kind of preparation method of WO3-CNTs hybrid material and its application in tetracycline sensor | |
CN101545886A (en) | Composite sensing membrane preparation method with nano gold evenly distributed in conducting polymer | |
CN112858424B (en) | Preparation method of compound modified electrode for simultaneously detecting lead and cadmium ions | |
CN101271078A (en) | A kind of preparation method of biochemical sensor | |
CN205749393U (en) | Graphene oxide and phytic acid modified electrode and electrochemical sensor thereof | |
CN106018532B (en) | Preparation and Assembled Electrochemical Detection Device of Graphene Oxide and Phytic Acid Modified Electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160706 |