CN105729458A - Rigid-flexible coupled trunk-shaped continuous robot - Google Patents
Rigid-flexible coupled trunk-shaped continuous robot Download PDFInfo
- Publication number
- CN105729458A CN105729458A CN201610173284.3A CN201610173284A CN105729458A CN 105729458 A CN105729458 A CN 105729458A CN 201610173284 A CN201610173284 A CN 201610173284A CN 105729458 A CN105729458 A CN 105729458A
- Authority
- CN
- China
- Prior art keywords
- platform
- rigid
- control box
- robot
- fixed platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/0009—Constructional details, e.g. manipulator supports, bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
- B25J9/065—Snake robots
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
一种刚柔耦合象鼻型连续机器人,涉及机器人和先进制造技术领域。该机器人由控制箱和控制箱一侧安装的一组结构完全相同的关节首尾相连串接在一起构成。每一个关节均由运动平台、固定平台、联接上述两平台的一根支撑杆和三条驱动绳索组成,支撑杆的一端与固定平台垂直固连,另一端通过球副与运动平台相连;三条驱动绳索的一端分别与运动平台的三个端点固定连接,另一端穿过固定平台的三个端点并与控制箱内的绳轮连接,绳轮通过减速机与电机相连。每一个关节的工作平台可实现笛卡尔坐标系下的三维转动的运动输出,由于运动平台运动输出是刚性支撑杆和三条驱动绳索传动实现的,因而具有刚柔耦合的运动特性。
A rigid-flexible coupling elephant trunk type continuous robot relates to the field of robot and advanced manufacturing technology. The robot consists of a control box and a group of joints with the same structure installed on one side of the control box connected end to end in series. Each joint is composed of a moving platform, a fixed platform, a support rod connecting the above two platforms, and three driving ropes. One end of the supporting rod is vertically connected to the fixed platform, and the other end is connected to the moving platform through a ball pair; the three driving ropes One end of each is fixedly connected to the three endpoints of the moving platform, and the other end passes through the three endpoints of the fixed platform and is connected to the rope wheel in the control box, and the rope wheel is connected to the motor through a reducer. The working platform of each joint can realize the motion output of three-dimensional rotation in the Cartesian coordinate system. Since the motion output of the motion platform is realized by the rigid support rod and the transmission of three driving cables, it has the motion characteristics of rigid-flexible coupling.
Description
【技术领域】【Technical field】
本发明涉及机器人机构和先进制造技术领域,特别涉及一种刚柔耦合象鼻型连续机器人。The invention relates to the field of robot mechanism and advanced manufacturing technology, in particular to a rigid-flexible coupling elephant trunk type continuous robot.
【背景技术】【Background technique】
机器人技术是综合计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,在当代研究十分活跃,应用领域日益广泛。除了传统的仿人操作工业机器人等离散型机器人以外,连续型机器人以其优异的柔顺性受到了国内外广大学者的关注。连续机器人灵感来源于大象鼻子、章鱼触手等动物器官。该类动物器官没有特定骨架或软骨结构,但拥有惊人的操作能力。相对于传统离散型机器人,连续型机器人在缺乏刚性关节的基础上,可模仿上述动物器官操作。例如,大象利用鼻子从树上摘取树叶,从地上拾取大型树枝等操作。连续机器人可利用卷绕方式抓取大尺寸、形状未知、易碎物体,也可实现在非结构未知环境下的搜索与救援。然而,相对于传统工业机器人,连续机器人无论在结构设计还是在理论研究上均未成熟。Robot technology is a high-tech formed by integrating computer, cybernetics, mechanism, information and sensor technology, artificial intelligence, bionics and other disciplines. It is very active in contemporary research and its application fields are becoming more and more extensive. In addition to traditional discrete robots such as human-like operating industrial robots, continuous robots have attracted the attention of many scholars at home and abroad because of their excellent flexibility. Continuous robots are inspired by animal organs such as elephant trunks and octopus tentacles. The organs of this type of animal do not have a specific skeleton or cartilage structure, but they have amazing manipulation capabilities. Compared with traditional discrete robots, continuous robots can imitate the above-mentioned animal organ operations on the basis of lack of rigid joints. For example, elephants use their trunks to pick leaves from trees and large branches from the ground. The continuous robot can grasp large size, unknown shape and fragile objects by winding method, and can also realize search and rescue in unstructured unknown environment. However, compared with traditional industrial robots, continuous robots are immature both in structural design and theoretical research.
目前相关文献中,已有的象鼻型连续机器人均是采用气动柔性的方式来实现的,即通过气动柔性球关节、弯曲关节等气动关节构建出基于气动柔性驱动器的象鼻型连续机器人,该类机器人存在控制技术复杂,运动不够灵活以及加工装配复杂等缺点。In the current relevant literature, the existing elephant trunk continuous robots are all realized by aerodynamic flexibility, that is, the elephant trunk continuous robot based on pneumatic flexible drives is constructed through pneumatic flexible ball joints, bending joints and other pneumatic joints. Robot-like robots have disadvantages such as complex control technology, inflexible movement, and complex processing and assembly.
【发明内容】【Content of invention】
本发明目的是解决目前已有象鼻型连续机器人存在的上述问题,提供一种刚柔耦合象鼻型连续机器人,该机器人通过绳索驱动的方式模拟仿生象鼻子运动,具有结构简单、制造、安装容易,传动精度和运行速度高,成本低,且工作空间较大等特点。The purpose of the present invention is to solve the above-mentioned problems existing in the existing elephant trunk type continuous robot, and provide a rigid-flexible coupling elephant trunk type continuous robot, which simulates the movement of the bionic elephant trunk through a rope-driven mode, and has the advantages of simple structure, easy manufacture, installation Easy, high transmission precision and running speed, low cost, and large working space.
本发明所采用的技术方案Technical scheme adopted in the present invention
一种刚柔耦合象鼻型连续机器人,该机器人是由控制箱和控制箱一侧安装的一组结构完全相同的关节首尾相连串接在一起而形成的一种刚柔耦合象鼻型连续机器人,所述的每一个关节均由运动平台(1)、固定平台(2)、联接上述两平台的一根支撑杆(3)和三条驱动绳索(L1、L2、L3)组成;其中,所述的支撑杆(3)的一端与固定平台垂直固连,另一端通过球副(S1)与运动平台(1)相连;所述的三条驱动绳索的一端分别与运动平台的三个端点固定连接,另一端穿过固定平台的三个端点与控制箱内的绳轮连接,所述绳轮分别通过减速机与电机相连。A rigid-flexible coupled elephant-trunk continuous robot, which is a rigid-flexible coupled elephant-trunk continuous robot formed by a control box and a group of joints with the same structure installed on one side of the control box connected end-to-end. , each of the joints is composed of a moving platform (1), a fixed platform (2), a support rod (3) connecting the above two platforms, and three driving ropes (L1, L2, L3); wherein, the One end of the support rod (3) is vertically fixedly connected to the fixed platform, and the other end is connected to the moving platform (1) through a ball pair (S1); one end of the three driving ropes is respectively fixedly connected to the three endpoints of the moving platform, The other end passes through the three endpoints of the fixed platform and is connected with the sheave in the control box, and the sheave is respectively connected with the motor through the reducer.
所述的绳轮、减速机与电机都放置于与固定平台固连的控制箱内(4)。The sheave, reducer and motor are all placed in the control box (4) fixedly connected with the fixed platform.
本发明的优点和有益效果是:Advantage and beneficial effect of the present invention are:
1、机器人可实现模拟象鼻子的连续运动输出。1. The robot can realize the continuous motion output of the simulated elephant trunk.
2、机构的驱动装置完全放置于固定平台之上,大大减少了机构整体的运动惯性,从而可以实现机构的高速运动。2. The driving device of the mechanism is completely placed on the fixed platform, which greatly reduces the overall inertia of the mechanism, so that the high-speed movement of the mechanism can be realized.
3、通过在末端运动平台上串接一个夹持工具,可应用于高速拾取的场合。3. By connecting a clamping tool in series on the end motion platform, it can be applied to high-speed picking occasions.
【附图说明】【Description of drawings】
图1是本发明的一种刚柔耦合象鼻型连续机器人结构示意图。Fig. 1 is a structural schematic diagram of a rigid-flexible coupling elephant trunk type continuous robot of the present invention.
图2是本发明一种刚柔耦合象鼻型连续机器人关节结构示意图。Fig. 2 is a schematic diagram of the joint structure of a rigid-flexible elephant trunk type continuous robot according to the present invention.
图3是本发明一种刚柔耦合象鼻型连续机器人实施方案示意图。Fig. 3 is a schematic diagram of an embodiment of a rigid-flexible coupled elephant trunk type continuous robot of the present invention.
【具体实施方式】【detailed description】
实施例Example
如图1-3所示,本发明提供的一种刚柔耦合象鼻型连续机器人包括一个控制箱4,控制箱一侧安装有一组(n个)结构完全相同的关节,各关节首尾相连串接在一起形成一种刚柔耦合象鼻型连续机器人。As shown in Figures 1-3, a rigid-flexible coupling elephant trunk type continuous robot provided by the present invention includes a control box 4, a group (n) of joints with the same structure are installed on one side of the control box, and each joint is connected end to end in series. Join together to form a kind of rigid-flexible coupled elephant trunk type continuous robot.
如图2所示,所述的每一个关节均由运动平台1、固定平台2、联接上述两平台的一根支撑杆3和三条驱动绳索(L1、L2、L3)组成。其中:所述的支撑杆3的一端与固定平台垂直固连,另一端通过球副(S1)与运动平台1相连;As shown in Figure 2, each of the joints is composed of a moving platform 1, a fixed platform 2, a support rod 3 connecting the two platforms and three driving cables (L1, L2, L3). Wherein: one end of the support rod 3 is vertically fixedly connected to the fixed platform, and the other end is connected to the moving platform 1 through a ball pair (S1);
所述的三条驱动绳索的一端分别与运动平台的三个端点固定连接,另一端穿过固定平台的三个端点与控制箱4内的绳轮连接,所述绳轮分别通过减速机与电机相连(图中略)。One end of the three driving ropes is respectively fixedly connected to the three endpoints of the moving platform, and the other end passes through the three endpoints of the fixed platform and is connected to the sheave in the control box 4, and the sheave is respectively connected to the motor through a reducer (omitted in the figure).
所述的绳轮、减速机与电机都放置于控制箱4内。Described sheave, reducer and motor are all placed in the control box 4.
所述的首关节的固定平台与控制箱一侧固定连接在一起,所述的固定平台和运动平台可以做成圆形或圆形的一部分如三角形,平台上的三个顶点可以设在同一圆周上,或三角形的三个顶点山。The fixed platform of the first joint is fixedly connected with one side of the control box, the fixed platform and the moving platform can be made into a circle or a part of a circle such as a triangle, and the three vertices on the platform can be set on the same circumference On, or the three vertices of the triangle, Mt.
如图1、2所示,通过电机和减速机带动绳轮驱动各关节的运动,实现运动平台在工作空间内做三维转动运动。每个关节依次运动,从而实现模拟象鼻子的连续运动方式(如图3所示)。As shown in Figures 1 and 2, the motor and the reducer drive the rope pulley to drive the movement of each joint to realize the three-dimensional rotational movement of the motion platform in the working space. Each joint moves in sequence, so as to realize the continuous motion mode of simulating the elephant trunk (as shown in Fig. 3).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610173284.3A CN105729458A (en) | 2016-03-24 | 2016-03-24 | Rigid-flexible coupled trunk-shaped continuous robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610173284.3A CN105729458A (en) | 2016-03-24 | 2016-03-24 | Rigid-flexible coupled trunk-shaped continuous robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105729458A true CN105729458A (en) | 2016-07-06 |
Family
ID=56251480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610173284.3A Pending CN105729458A (en) | 2016-03-24 | 2016-03-24 | Rigid-flexible coupled trunk-shaped continuous robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105729458A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106313028A (en) * | 2016-09-23 | 2017-01-11 | 天津理工大学 | Unit module of software module robot |
CN106346464A (en) * | 2016-11-10 | 2017-01-25 | 燕山大学 | Rigid-flexible series-parallel transverse zooming-type flexible manipulator |
CN107856030A (en) * | 2017-12-25 | 2018-03-30 | 贵州大学 | A kind of finger of controllable multi-directional bending |
CN108214444A (en) * | 2018-03-23 | 2018-06-29 | 哈尔滨理工大学 | Small-sized deep hole pawl |
CN108209667A (en) * | 2017-11-30 | 2018-06-29 | 傅峰峰 | A kind of intelligence shower |
CN109107170A (en) * | 2018-08-02 | 2019-01-01 | 海宁哈工联新投资合伙企业(有限合伙) | A kind of bionical trunk mechanism and the amusement facility using it |
CN109124872A (en) * | 2018-08-30 | 2019-01-04 | 上海西地众创空间管理有限公司 | Femtosecond laser ophthalmology operation for myopia auxiliary joint |
CN109176474A (en) * | 2018-10-25 | 2019-01-11 | 汕头大学 | A kind of super redundant robot of rope bar combination drive |
CN109262603A (en) * | 2018-10-29 | 2019-01-25 | 燕山大学 | Rope driving manipulator refers to and its manipulator |
CN109278034A (en) * | 2018-10-24 | 2019-01-29 | 哈尔滨工业大学(深圳) | A rope-driven flexible gripper and robot |
CN109414816A (en) * | 2016-07-13 | 2019-03-01 | 佳能株式会社 | The amending method of non-individual body robot and its kinematics model and its control method |
CN109515654A (en) * | 2018-11-29 | 2019-03-26 | 上海海洋大学 | Water quality detects bionic mechanical snake |
CN109531561A (en) * | 2018-12-19 | 2019-03-29 | 汕头大学 | A kind of super redundant robot under Coupled Rigid-flexible rope, bar, spring immixture |
CN109774896A (en) * | 2019-01-31 | 2019-05-21 | 上海海洋大学 | Bionic sea snake for marine ranch monitoring |
CN109927021A (en) * | 2017-12-19 | 2019-06-25 | 广州中国科学院先进技术研究所 | A kind of bionical humanoid mechanical arm of 7 freedom degrees |
CN111230845A (en) * | 2020-02-24 | 2020-06-05 | 西安交通大学 | Stretch bending type continuum robot unit and robot |
CN111300385A (en) * | 2020-04-01 | 2020-06-19 | 大连理工大学 | A multi-DOF continuous robot with flexible target grasping function |
CN113211423A (en) * | 2021-04-21 | 2021-08-06 | 河海大学 | Spherical hinge pull wire variable auxiliary wheel type snake-shaped robot |
CN115070746A (en) * | 2022-08-22 | 2022-09-20 | 深圳时代能创能源科技有限公司 | Device for solving double-active signal switching |
CN115592655A (en) * | 2022-10-08 | 2023-01-13 | 赵勇(Cn) | a snake robot |
CN115625733A (en) * | 2022-09-26 | 2023-01-20 | 赵勇 | Robot joint |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101229641A (en) * | 2008-02-27 | 2008-07-30 | 哈尔滨工业大学 | Line-driven super-redundant degree of freedom robot |
CN101746237A (en) * | 2008-12-19 | 2010-06-23 | 中国科学院沈阳自动化研究所 | Amphibious snake-like robot |
CN101863018A (en) * | 2010-04-29 | 2010-10-20 | 汕头大学 | Three rotational degrees of freedom parallel mechanism driven by cables |
WO2012059791A1 (en) * | 2010-11-05 | 2012-05-10 | Rīgas Tehniskā Universitāte | Robotic snake-like movement device |
CN103203754A (en) * | 2013-04-11 | 2013-07-17 | 上海大学 | Mechanism capable of simulating human neck motions |
CN103895005A (en) * | 2014-04-10 | 2014-07-02 | 东南大学 | Humanoid-neck parallel robot and control method thereof |
CN104552286A (en) * | 2014-12-26 | 2015-04-29 | 上海大学 | Continuous multi-joint mechanical arm device |
AT514914A4 (en) * | 2013-09-30 | 2015-05-15 | Lungenschmid Dieter Dr | Curving device, in particular robotic arm |
-
2016
- 2016-03-24 CN CN201610173284.3A patent/CN105729458A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101229641A (en) * | 2008-02-27 | 2008-07-30 | 哈尔滨工业大学 | Line-driven super-redundant degree of freedom robot |
CN101746237A (en) * | 2008-12-19 | 2010-06-23 | 中国科学院沈阳自动化研究所 | Amphibious snake-like robot |
CN101863018A (en) * | 2010-04-29 | 2010-10-20 | 汕头大学 | Three rotational degrees of freedom parallel mechanism driven by cables |
WO2012059791A1 (en) * | 2010-11-05 | 2012-05-10 | Rīgas Tehniskā Universitāte | Robotic snake-like movement device |
CN103203754A (en) * | 2013-04-11 | 2013-07-17 | 上海大学 | Mechanism capable of simulating human neck motions |
AT514914A4 (en) * | 2013-09-30 | 2015-05-15 | Lungenschmid Dieter Dr | Curving device, in particular robotic arm |
CN103895005A (en) * | 2014-04-10 | 2014-07-02 | 东南大学 | Humanoid-neck parallel robot and control method thereof |
CN104552286A (en) * | 2014-12-26 | 2015-04-29 | 上海大学 | Continuous multi-joint mechanical arm device |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11331797B2 (en) | 2016-07-13 | 2022-05-17 | Canon Kabushiki Kaisha | Continuum robot, modification method of kinematic model of continuum robot, and control method of continuum robot |
CN109414816A (en) * | 2016-07-13 | 2019-03-01 | 佳能株式会社 | The amending method of non-individual body robot and its kinematics model and its control method |
CN106313028A (en) * | 2016-09-23 | 2017-01-11 | 天津理工大学 | Unit module of software module robot |
CN106346464A (en) * | 2016-11-10 | 2017-01-25 | 燕山大学 | Rigid-flexible series-parallel transverse zooming-type flexible manipulator |
CN108209667A (en) * | 2017-11-30 | 2018-06-29 | 傅峰峰 | A kind of intelligence shower |
CN109927021A (en) * | 2017-12-19 | 2019-06-25 | 广州中国科学院先进技术研究所 | A kind of bionical humanoid mechanical arm of 7 freedom degrees |
CN107856030A (en) * | 2017-12-25 | 2018-03-30 | 贵州大学 | A kind of finger of controllable multi-directional bending |
CN108214444A (en) * | 2018-03-23 | 2018-06-29 | 哈尔滨理工大学 | Small-sized deep hole pawl |
CN109107170A (en) * | 2018-08-02 | 2019-01-01 | 海宁哈工联新投资合伙企业(有限合伙) | A kind of bionical trunk mechanism and the amusement facility using it |
CN109124872A (en) * | 2018-08-30 | 2019-01-04 | 上海西地众创空间管理有限公司 | Femtosecond laser ophthalmology operation for myopia auxiliary joint |
CN109278034A (en) * | 2018-10-24 | 2019-01-29 | 哈尔滨工业大学(深圳) | A rope-driven flexible gripper and robot |
WO2020082723A1 (en) * | 2018-10-24 | 2020-04-30 | 哈尔滨工业大学(深圳) | Rope-driven flexible claw and robot |
CN109176474B (en) * | 2018-10-25 | 2020-10-09 | 汕头大学 | A Rope-Rod Hybrid Drive Hyper-redundant Robot |
CN109176474A (en) * | 2018-10-25 | 2019-01-11 | 汕头大学 | A kind of super redundant robot of rope bar combination drive |
CN109262603A (en) * | 2018-10-29 | 2019-01-25 | 燕山大学 | Rope driving manipulator refers to and its manipulator |
CN109515654A (en) * | 2018-11-29 | 2019-03-26 | 上海海洋大学 | Water quality detects bionic mechanical snake |
CN109515654B (en) * | 2018-11-29 | 2024-11-22 | 上海海洋大学 | Water quality detection bionic mechanical snake |
CN109531561A (en) * | 2018-12-19 | 2019-03-29 | 汕头大学 | A kind of super redundant robot under Coupled Rigid-flexible rope, bar, spring immixture |
CN109774896A (en) * | 2019-01-31 | 2019-05-21 | 上海海洋大学 | Bionic sea snake for marine ranch monitoring |
CN111230845A (en) * | 2020-02-24 | 2020-06-05 | 西安交通大学 | Stretch bending type continuum robot unit and robot |
CN111230845B (en) * | 2020-02-24 | 2021-04-20 | 西安交通大学 | A stretch-bending continuum robot unit and robot |
CN111300385B (en) * | 2020-04-01 | 2021-08-06 | 大连理工大学 | A multi-DOF continuous robot with flexible target grasping function |
CN111300385A (en) * | 2020-04-01 | 2020-06-19 | 大连理工大学 | A multi-DOF continuous robot with flexible target grasping function |
CN113211423A (en) * | 2021-04-21 | 2021-08-06 | 河海大学 | Spherical hinge pull wire variable auxiliary wheel type snake-shaped robot |
CN115070746A (en) * | 2022-08-22 | 2022-09-20 | 深圳时代能创能源科技有限公司 | Device for solving double-active signal switching |
CN115625733A (en) * | 2022-09-26 | 2023-01-20 | 赵勇 | Robot joint |
CN115592655A (en) * | 2022-10-08 | 2023-01-13 | 赵勇(Cn) | a snake robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105729458A (en) | Rigid-flexible coupled trunk-shaped continuous robot | |
Fang et al. | Advances in climbing robots for vertical structures in the past decade: A review | |
CN103722552B (en) | A kind of controllable multi-degree-of-freedom manipulator | |
CN105922244B (en) | A kind of continual curvature change robot of line driving | |
CN103639712B (en) | A kind of three rotation spherical parallel institutions | |
CN104552286A (en) | Continuous multi-joint mechanical arm device | |
CN103722553B (en) | A kind of controlled welding robot of multiple freedom parallel mechanism formula | |
CN103737209A (en) | Welding robot with symmetrical mechanisms | |
CN105150190A (en) | Six-freedom-degree bionic mechanical arm based on pneumatic muscle | |
CN107471197A (en) | A kind of apery both arms multiple degrees of freedom industrial robot | |
CN102941572A (en) | Spatial three-dimensional translation parallel mechanism with only lower pairs | |
CN103707288A (en) | Multi-degree-of-freedom palletizing robot | |
CN207564481U (en) | A freely rotating robot | |
CN104552243A (en) | Controllable mechanism type metamorphic wheeled mobile welding robot | |
CN103659793B (en) | A three-translational parallel mechanism with translational drive and closed loop with single branch chain | |
CN104476567A (en) | Six-degree-of-freedom parallel mechanism with rope-driven linear joint | |
CN103240737B (en) | Three-degree-of-freedom hybrid drive winding type flexible cable parallel mechanism | |
CN205310261U (en) | Two -degree -of -freedom 2 -PUS+U spherical surface parallel mechanism | |
CN104476538A (en) | Five-degree-of-freedom controllable mechanism mobile mechanical arm with ten connecting links | |
CN103273482B (en) | Master-slave branch chain separate type two-translational motion parallel robot | |
CN110294043B (en) | Series-parallel arm/leg mechanism for bionic robot forelimb mechanical system | |
CN108858139B (en) | High-speed parallel mechanism with reconfigurable characteristic for multi-motion platform | |
CN206717857U (en) | A kind of modularized bionic snake-shaped robot based on RSR configuration parallel institutions | |
CN104552231A (en) | Four-degree-of-freedom controllable mechanism type movable manipulator with four connecting rods | |
CN204712054U (en) | A kind of robot arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160706 |