CN105726023B - Electroencephalogram signal quality real-time judging system - Google Patents
Electroencephalogram signal quality real-time judging system Download PDFInfo
- Publication number
- CN105726023B CN105726023B CN201610066371.9A CN201610066371A CN105726023B CN 105726023 B CN105726023 B CN 105726023B CN 201610066371 A CN201610066371 A CN 201610066371A CN 105726023 B CN105726023 B CN 105726023B
- Authority
- CN
- China
- Prior art keywords
- eeg signals
- time window
- segment
- eeg
- quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004458 analytical method Methods 0.000 claims abstract description 51
- 238000004364 calculation method Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 15
- 210000004556 brain Anatomy 0.000 claims description 7
- 238000009795 derivation Methods 0.000 claims description 4
- 230000020509 sex determination Effects 0.000 claims 12
- 238000010223 real-time analysis Methods 0.000 claims 8
- 230000005611 electricity Effects 0.000 claims 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000004422 calculation algorithm Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 3
- 230000008451 emotion Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009223 counseling Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004630 mental health Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Psychiatry (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Psychology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
技术领域technical field
本发明涉及脑电信号数字信号处理领域,具体来讲是一种脑电信号质量实时判定系统。The invention relates to the field of digital signal processing of electroencephalogram signals, in particular to a real-time judgment system for the quality of electroencephalogram signals.
背景技术Background technique
脑电信号(EEG,electroencephalogram)是由人体大脑发出的电信号。这种信号极其微弱,一般只有几微伏到几百微伏。所以脑电信号需要由专用的脑电采集装置来捕获。脑电采集装置的脑电传感器一般由一个电极与参考电极或多个电极与参考电极共同组成。由于电极材料的电极标准电势不同,电极与参考电极在接触人类皮肤后会产生电压差。由于这些电压差往往会在数秒钟内处于不稳定状态,且这些电压差往往会远大于或远小于脑电信号的波动,所以在这一段时间内脑电采集装置所获取的电信号(我们称这一段电信号为不良脑电信号)不能被用于后续脑电信号的各种应用分析。EEG (electroencephalogram) is an electrical signal sent by the human brain. This signal is extremely weak, generally only a few microvolts to hundreds of microvolts. Therefore, EEG signals need to be captured by a dedicated EEG acquisition device. The EEG sensor of the EEG acquisition device generally consists of an electrode and a reference electrode or a plurality of electrodes and a reference electrode. Due to the different electrode standard potentials of the electrode materials, there will be a voltage difference between the electrode and the reference electrode after touching the human skin. Because these voltage differences tend to be in an unstable state within a few seconds, and these voltage differences are often much larger or smaller than the fluctuations of the EEG signal, so the electrical signal (we call it This section of electrical signal is a bad EEG signal) and cannot be used for various application analysis of subsequent EEG signals.
同时,由于人体的肌肉活动,人体皮肤与电极的接触可能发生短暂的脱离或位移。这种情形也会造成脑电采集装置捕获的电信号突发的不稳定,也需要一段时间才能由电极驱动电路被动稳定电信号。除此之外,当选用不恰当的电极材料或电极材料表面发生氧化后,会使得电极发生极化现象。这时电极将不能正常地捕获到脑电信号,除非更换电极或维修电极。At the same time, due to the muscle activity of the human body, the contact between the human skin and the electrodes may be temporarily detached or displaced. This situation will also cause sudden instability of the electrical signal captured by the EEG acquisition device, and it will take a period of time before the electrical signal can be passively stabilized by the electrode drive circuit. In addition, when an inappropriate electrode material is selected or the surface of the electrode material is oxidized, the electrode will be polarized. At this time, the electrodes will not be able to capture EEG signals normally unless the electrodes are replaced or repaired.
上述几种情形下产生的不良脑电信号如果错误地被参与大脑情绪分析,可能会产生与实际完全不符的错误的情绪判定结果。这些错误的情绪判定结果可能会进一步对心理辅导、个人休养等造成错误的引导。因此,无论是在脑电采集装置的实际应用过程还是产品测试过程,都需要对脑电信号质量进行判定分析。If the bad EEG signals generated in the above situations are mistakenly involved in brain emotion analysis, it may produce wrong emotion judgment results that are completely inconsistent with reality. These wrong emotional judgment results may further cause wrong guidance for psychological counseling, personal recuperation, etc. Therefore, whether it is in the actual application process of the EEG acquisition device or the product testing process, it is necessary to judge and analyze the quality of the EEG signal.
然而,目前还没有针对脑电信号质量进行有效判定分析的方法,无法对脑电采集装置所捕获的脑电信号加以有效地识别,以区分良好的脑电信号与不良的脑电信号,使得后续的脑电应用分析中出现大量误判的情况。However, there is currently no effective method for determining and analyzing the quality of EEG signals, and it is impossible to effectively identify the EEG signals captured by the EEG acquisition device to distinguish good EEG signals from bad EEG signals. A large number of misjudgments occurred in the analysis of EEG applications.
发明内容Contents of the invention
针对现有技术中存在的缺陷,本发明解决的技术问题为:快速、有效地对脑电信号质量做出实时判定分析,有效保障后续脑电应用分析的准确性。Aiming at the defects existing in the prior art, the technical problem solved by the present invention is: quickly and effectively make real-time judgment and analysis on the quality of EEG signals, and effectively guarantee the accuracy of subsequent EEG application analysis.
为达到以上目的,本发明采取的技术方案是:提供一种脑电信号质量实时判定系统,该系统包括顺次相连的分析数据生成模块、标准差计算模块和信号质量判定模块;所述分析数据生成模块用于:利用缓存的脑电信号数据和生成的时间窗口,获取与时间窗口相对应的脑电信号片段;所述标准差计算模块用于:计算出当前时间窗口内的脑电信号片段的平均值,利用该平均值计算出当前时间窗口内的脑电信号片段的标准差;所述信号质量判定模块用于:通过计算出的标准差得出当前时间窗口内的脑电信号片段的波动性判定结果;利用当前的脑电信号片段的波动性判定结果和之前的脑电信号片段的波动性判定结果,共同判定出当前脑电信号的质量。In order to achieve the above object, the technical solution adopted by the present invention is: provide a kind of EEG signal quality real-time judging system, this system comprises the analysis data generating module connected in sequence, the standard deviation calculation module and the signal quality judging module; The generation module is used to: use the buffered EEG signal data and the generated time window to obtain the EEG signal segment corresponding to the time window; the standard deviation calculation module is used to: calculate the EEG signal segment in the current time window The average value of the average value is used to calculate the standard deviation of the EEG signal segment in the current time window; the signal quality determination module is used to: obtain the EEG signal segment in the current time window through the calculated standard deviation. Volatility determination result: the quality of the current EEG signal is jointly determined by using the volatility determination result of the current EEG signal segment and the volatility determination result of the previous EEG signal segment.
在上述技术方案的基础上,所述分析数据生成模块包括脑电信号数据接收缓存单元和脑电分析时间窗口生成单元;所述脑电信号数据接收缓存单元用于:实时接收并存储由脑电采集设备传来的脑电信号数据;所述脑电分析时间窗口生成单元用于:按照指定的时间间隔周期和时间窗口长度生成用于脑电分析的时间窗口;从脑电信号数据接收缓存单元中,取出与时间窗口的时间窗口长度相对应的脑电信号片段。On the basis of the above technical solution, the analysis data generating module includes an EEG signal data receiving buffer unit and an EEG analysis time window generation unit; the EEG signal data receiving buffer unit is used to: The EEG signal data from the acquisition device; the EEG analysis time window generation unit is used to: generate a time window for EEG analysis according to the specified time interval cycle and time window length; receive the buffer unit from the EEG signal data In , extract the EEG signal segment corresponding to the time window length of the time window.
在上述技术方案的基础上,所述时间间隔周期记为ΔT,所述时间窗口长度记为L,所生成的时间窗口满足以下要求:On the basis of the above technical solution, the time interval period is denoted as ΔT, the length of the time window is denoted as L, and the generated time window meets the following requirements:
ΔT=T(n+1)–T(n);ΔT=T (n+1) -T (n) ;
Wh(n+1)=Wh(n)+ΔT;Wh (n+1) = Wh (n) +ΔT;
Wt(n+1)=Wt(n)+ΔT;Wt (n+1) = Wt (n) +ΔT;
L>ΔT;L>ΔT;
其中,T(n)为上一次脑电信号片段的分析时间,T(n+1)为当前脑电信号片段的分析时间,Wh(n+1)为所生成的时间窗口的起始时间,Wh(n)为上次时间窗口的起始时间,Wt(n+1)为所生成的时间窗口的终止时间,Wt(n)为上次时间窗口的终止时间。Wherein, T (n) is the analysis time of the last EEG signal segment, T (n+1) is the analysis time of the current EEG signal segment, Wh (n+1) is the start time of the generated time window, Wh (n) is the start time of the last time window, Wt (n+1) is the end time of the generated time window, and Wt (n) is the end time of the last time window.
在上述技术方案的基础上,所述标准差计算模块包括平均值运算单元和标准差运算单元:所述平均值运算单元用于:根据当前脑电信号片段所包含的各信号数据片的值,通过平均值计算公式,计算出当前脑电信号片段的平均值;所述标准差运算单元用于:根据平均值运算单元计算出的平均值以及脑电信号片段所包含的各信号数据片的值,通过标准差计算公式,计算出当前时间窗口内的脑电信号片段的标准差。On the basis of the above technical solution, the standard deviation calculation module includes an average value calculation unit and a standard deviation calculation unit: the average value calculation unit is used to: according to the value of each signal data piece contained in the current EEG signal segment, Calculate the average value of the current EEG signal segment through the average value calculation formula; the standard deviation calculation unit is used for: the average value calculated by the average value calculation unit and the value of each signal data piece contained in the EEG signal segment , calculate the standard deviation of the EEG signal segment in the current time window through the standard deviation calculation formula.
在上述技术方案的基础上,所述平均值计算公式为:On the basis of the above-mentioned technical scheme, the formula for calculating the average value is:
式中,为当前脑电信号片段的平均值,E1、E2以及EL分别为脑电信号片段的第1个信号数据片、第2个信号数据片以及第L个信号数据片,L为脑电信号片段的长度,即时间窗口长度。In the formula, is the average value of the current EEG signal segment, E 1 , E 2 and E L are the first signal data piece, the second signal data piece and the Lth signal data piece of the EEG signal piece respectively, and L is the EEG The length of the signal segment, that is, the length of the time window.
在上述技术方案的基础上,所述标准差计算公式为:On the basis of the above-mentioned technical scheme, the formula for calculating the standard deviation is:
式中,SD为当前时间窗口内的脑电信号片段的标准差,为当前脑电信号片段的平均值,Ei为脑电信号片段的第i个信号数据片,i为正整数,L为脑电信号片段的长度,即时间窗口长度。In the formula, SD is the standard deviation of the EEG signal segment in the current time window, is the average value of the current EEG signal segment, E i is the i-th signal data segment of the EEG signal segment, i is a positive integer, and L is the length of the EEG signal segment, that is, the length of the time window.
在上述技术方案的基础上,所述信号质量判定模块包括脑电信号波动判定单元、信号波动判定历史结果队列存储单元和信号质量关联判定单元;所述脑电信号波动判定单元用于:将计算出的标准差与阙值上限、阙值下限进行比较,得出当前时间窗口内的脑电信号片段的波动性判定结果;所述信号波动判定历史结果队列存储单元用于:存放当前时间窗口内的脑电信号片段的波动性判定结果;并向信号质量关联判定单元提供上一时间窗口的脑电信号片段的波动性判定结果;所述信号质量关联判定单元用于:利用当前时间窗口内的脑电信号片段的波动性判定结果和上一时间窗口的脑电信号片段的波动性判定结果,共同判定出当前脑电信号的质量。On the basis of the above technical solution, the signal quality judging module includes an EEG signal fluctuation judging unit, a signal fluctuation judging historical result queue storage unit, and a signal quality correlation judging unit; the EEG signal fluctuating judging unit is used for: The standard deviation obtained is compared with the upper limit of the threshold value and the lower limit of the threshold value to obtain the volatility determination result of the EEG signal segment in the current time window; the signal fluctuation determination history result queue storage unit is used for: storing in the current time window The determination result of the volatility of the EEG signal segment; and the determination result of the volatility of the EEG signal segment of the previous time window is provided to the signal quality correlation determination unit; the signal quality correlation determination unit is used for: using the current time window The determination result of the volatility of the EEG signal segment and the determination result of the volatility of the EEG signal segment in the previous time window jointly determine the quality of the current EEG signal.
在上述技术方案的基础上,所述信号质量关联判定单元判定出当前脑电信号质量的具体过程为:将当前时间窗口内的脑电信号片段的波动性判定结果与上一时间窗口的脑电信号片段的波动性判定结果进行逻辑与运算,得到当前脑电信号的质量。On the basis of the above technical solution, the specific process for the signal quality correlation determination unit to determine the quality of the current EEG signal is: compare the volatility determination result of the EEG signal segment in the current time window with the EEG signal in the previous time window The result of the volatility determination of the signal segment is logically ANDed to obtain the quality of the current EEG signal.
在上述技术方案的基础上,所述脑电信号波动判定单元得出当前时间窗口内的脑电信号片段的波动性判定结果时,遵循以下推导过程:On the basis of the above technical solution, when the EEG signal fluctuation determination unit obtains the volatility determination result of the EEG signal segment in the current time window, it follows the following derivation process:
若SD≥Lower且SD≤Upper,则MD为1;If SD≥Lower and SD≤Upper, then MD is 1;
若SD<Lower或SD>Upper,则MD为0;If SD<Lower or SD>Upper, then MD is 0;
其中,SD为当前时间窗口内的脑电信号片段的标准差,Lower为阈值下限,Upper为中阈值上限,MD为脑电信号片段的波动性判定结果。Among them, SD is the standard deviation of the EEG signal segment in the current time window, Lower is the lower limit of the threshold, Upper is the upper limit of the middle threshold, and MD is the determination result of the volatility of the EEG signal segment.
本发明的有益效果在于:The beneficial effects of the present invention are:
(1)本发明是在脑电信号数据采集之后,脑电应用分析之前,增设的一个脑电信号质量判定系统。该系统包括用于获取与时间窗口相对应的脑电信号片段的分析数据生成模块、用于计算当前时间窗口内脑电信号片段标准差的标准差计算模块,以及用于判定当前脑电信号质量的信号质量判定模块。通过上述三个模块的配合,该系统能快速、有效地对脑电信号质量做出实时判定分析,一旦识别了不良信号,后续的脑电应用将基于识别结果对其中的不良信号做出主动舍弃,或者在用户界面上同步给出信号质量不良的提示操作,从而有效保障了后续脑电应用分析的准确性。(1) The present invention is an EEG signal quality judgment system added after the EEG signal data collection and before the EEG application analysis. The system includes an analysis data generation module for obtaining the EEG signal segment corresponding to the time window, a standard deviation calculation module for calculating the standard deviation of the EEG signal segment in the current time window, and a module for judging the current EEG signal quality The signal quality judgment module. Through the cooperation of the above three modules, the system can quickly and effectively make real-time judgment and analysis on the quality of EEG signals. Once bad signals are identified, subsequent EEG applications will actively discard the bad signals based on the recognition results. , or synchronously give a prompt operation of poor signal quality on the user interface, thereby effectively ensuring the accuracy of subsequent EEG application analysis.
(2)本发明的分析数据生成模块中设置有一个脑电分析时间窗口生成单元。该单元采用重叠时间窗口的形式,使得新接收到的脑电信号可以迅速地参与信号质量判定的计算过程,不但降低了信号质量判定的时间窗口的延时,有利于脑电分析应用及时针对不良信号进行进一步的操作;而且提高了脑电分析应用的使用体验和分析结果的准确性。(2) An EEG analysis time window generation unit is set in the analysis data generation module of the present invention. The unit adopts the form of overlapping time windows, so that newly received EEG signals can quickly participate in the calculation process of signal quality judgment, which not only reduces the delay of the time window for signal quality judgment, but also helps EEG analysis applications to timely target bad The signal is further manipulated; and the experience of using the EEG analysis application and the accuracy of the analysis results are improved.
(3)本发明中,利用当前时间窗口内脑电信号片段的标准差来判定电信号的波动幅度,计算快速,对信号的中随机性抖动与非随机性抖动的识别都有较好的效果。并且,标准差对脑电信号的漂移并不敏感,不会在正常脑电信号捕获时因为脑电信号的漂移造成信号质量不良的误判,稳定性好。(3) In the present invention, the standard deviation of the EEG signal segment in the current time window is used to determine the fluctuation range of the electrical signal, the calculation is fast, and the identification of the random jitter and non-random jitter of the signal has a good effect . Moreover, the standard deviation is not sensitive to the drift of the EEG signal, and it will not cause misjudgment of poor signal quality due to the drift of the EEG signal when the normal EEG signal is captured, and the stability is good.
(4)本发明为了弥补直接利用标准差来衡量信号质量存在的不足,在标准差算法的基础上进行了优化。具体来说,在信号质量判定模块中设置有一个信号质量关联判定单元,该信号质量关联判定单元通过将本次标准差的阈值判定结果(波动性判定结果)与上一次标准差的阙值判定结果进行逻辑与运算,最终得到当前脑电信号的质量判定结果,从而降低了直接利用标准差来衡量信号质量的不足,提高了脑电信号质量判定的整体判定正确率,可以在多数情况下降低误判的发生。(4) In order to make up for the shortcomings of directly using the standard deviation to measure the signal quality, the present invention optimizes it on the basis of the standard deviation algorithm. Specifically, a signal quality correlation judgment unit is provided in the signal quality judgment module, and the signal quality correlation judgment unit judges the threshold value of the current standard deviation (fluctuation judgment result) with the threshold judgment result of the previous standard deviation. The results are logically ANDed, and finally the quality judgment result of the current EEG signal is obtained, thereby reducing the shortage of directly using the standard deviation to measure the signal quality, improving the overall judgment accuracy rate of the EEG signal quality judgment, and reducing the EEG signal quality in most cases. Misjudgments occur.
附图说明Description of drawings
图1为本发明实施例中脑电信号质量实时判定系统的结构框图;Fig. 1 is the structural block diagram of the real-time judgment system of EEG signal quality in the embodiment of the present invention;
图2为本发明实施例中脑电信号质量实时判定方法的流程图;Fig. 2 is the flowchart of the real-time judgment method of EEG signal quality in the embodiment of the present invention;
图3为不良信号的波形示意图。FIG. 3 is a schematic diagram of a waveform of a bad signal.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明作进一步的详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
参见图1所示,本发明实施例提供一种脑电信号质量实时判定系统,其根据脑电采集设备捕获的脑电信号,通过分析脑电信号的离散程度来判定脑电信号的质量。本实施例中,脑电采集设备可被用在家庭、心理健康诊室或瑜伽教室等需要采集、分析人类大脑脑电信号以判定人类情绪的地方。Referring to FIG. 1 , an embodiment of the present invention provides a real-time EEG signal quality determination system, which determines the quality of EEG signals by analyzing the degree of dispersion of EEG signals captured by EEG acquisition equipment. In this embodiment, the EEG acquisition device can be used in homes, mental health clinics, yoga classrooms and other places that need to collect and analyze human brain EEG signals to determine human emotions.
所述脑电信号质量实时判定系统包括顺次相连的分析数据生成模块、标准差计算模块和信号质量判定模块,所述分析数据生成模块还与外部的脑电采集设备相连。The real-time judgment system of EEG signal quality includes an analysis data generation module, a standard deviation calculation module and a signal quality judgment module connected in sequence, and the analysis data generation module is also connected with an external EEG acquisition device.
其中,分析数据生成模块用于:利用缓存的脑电信号数据和生成的时间窗口,获取与时间窗口相对应的脑电信号片段。Wherein, the analysis data generating module is used for: using the buffered EEG signal data and the generated time window to obtain the EEG signal segment corresponding to the time window.
具体来说,分析数据生成模块包括脑电信号数据接收缓存单元和脑电分析时间窗口生成单元。所述脑电信号数据接收缓存单元用于:实时接收并存储由脑电采集设备传来的脑电信号数据;所述脑电分析时间窗口生成单元用于:按照指定的时间间隔周期和时间窗口长度生成用于脑电分析的时间窗口;从脑电信号数据接收缓存单元中,取出与时间窗口的时间窗口长度相对应的脑电信号片段,供给脑电信号质量的分析、判定使用。Specifically, the analysis data generation module includes an EEG signal data receiving buffer unit and an EEG analysis time window generation unit. The EEG signal data receiving buffer unit is used for: receiving and storing the EEG signal data transmitted by the EEG acquisition device in real time; the EEG analysis time window generation unit is used for: according to the specified time interval period and time window The length generates a time window for EEG analysis; from the EEG signal data receiving buffer unit, the EEG signal segment corresponding to the time window length of the time window is taken out for use in the analysis and determination of the EEG signal quality.
本实施例中,时间间隔周期记为ΔT,时间窗口长度记为L,则可知:脑电信号片段的长度即为时间窗口长度L(因为取出的脑电信号片段是与时间窗口的时间窗口长度相对应的);且时间间隔周期ΔT=T(n+1)–T(n),其中,T(n)为上一次脑电信号片段的分析时间,T(n+1)为当前脑电信号片段的分析时间。另外,可以理解的是,在脑电信号质量实时判定系统中,除第一次时间窗口划定的脑电信号片段外,其他时间窗口划定的脑电信号片段均与上一次的脑电信号片段部分重叠。为了保证每次进行脑电信号片段分析时能获取到与时间窗口的时间窗口长度L相对应的脑电信号片段,同时也能实时分析最新接收到的脑电信号数据。所述脑电分析时间窗口生成单元所生成的时间窗口的起始时间Wh(n+1)=上次时间窗口的起始时间Wh(n)+ΔT,所生成的时间窗口的终止时间Wt(n+1)=上次时间窗口的终止时间Wt(n)+ΔT,且时间窗口长度L(即脑电信号片段的长度L)>时间间隔周期ΔT。In this embodiment, the time interval cycle is denoted as ΔT, and the length of the time window is denoted as L, then it can be known that the length of the EEG signal segment is the time window length L (because the EEG signal segment taken out is the same as the time window length of the time window Corresponding); and the time interval cycle ΔT=T (n+1) -T (n) , wherein, T (n) is the analysis time of the last EEG signal segment, T (n+1) is the current EEG The analysis time of the signal fragment. In addition, it can be understood that in the real-time judgment system of EEG signal quality, except for the EEG signal segment defined by the first time window, the EEG signal segments defined by other time windows are all consistent with the EEG signal segment of the last time window. Fragments partially overlap. In order to ensure that the EEG signal segment corresponding to the time window length L of the time window can be obtained each time the EEG signal segment analysis is performed, the latest received EEG signal data can also be analyzed in real time. The start time Wh (n+1) of the time window generated by the EEG analysis time window generation unit=the start time Wh (n) +ΔT of the last time window, the end time Wt ( n+1) = end time of the last time window Wt (n) +ΔT, and the length of the time window L (that is, the length L of the EEG signal segment) > the time interval period ΔT.
标准差计算模块用于:计算出当前脑电信号片段的平均值,利用该平均值计算出当前时间窗口内的脑电信号片段的标准差。The standard deviation calculation module is used to: calculate the average value of the current EEG signal segment, and use the average value to calculate the standard deviation of the EEG signal segment in the current time window.
具体来说,所述标准差计算模块包括平均值运算单元和标准差运算单元,其中:Specifically, the standard deviation calculation module includes an average value operation unit and a standard deviation operation unit, wherein:
所述平均值运算单元用于:根据当前脑电信号片段所包含的各信号数据片的值,通过平均值计算公式,计算出当前脑电信号片段的平均值本实施例中,所述平均值计算公式为:The average value calculation unit is used to calculate the average value of the current EEG signal segment according to the value of each signal data piece contained in the current EEG signal segment through the average value calculation formula In this embodiment, the formula for calculating the average value is:
式中,E1、E2以及EL分别为脑电信号片段的第1个信号数据片、第2个信号数据片以及第L个信号数据片,L为脑电信号片段的长度(也就是时间窗口长度L)。可以理解的是,脑电信号片段中信号数据片的个数等于脑电信号片段的长度。In the formula, E 1 , E 2 and E L are the first signal data slice, the second signal data slice and the Lth signal data slice of the EEG signal segment respectively, and L is the length of the EEG signal segment (that is, time window length L). It can be understood that the number of signal data pieces in the EEG signal segment is equal to the length of the EEG signal segment.
所述标准差运算单元用于:根据平均值运算单元计算出的平均值以及脑电信号片段所包含的各信号数据片的值,通过标准差计算公式,计算出当前时间窗口内的脑电信号片段的标准差SD。本实施例中,所述标准差计算公式为:The standard deviation operation unit is used to: calculate the EEG signal in the current time window according to the average value calculated by the average value operation unit and the value of each signal data piece included in the EEG signal segment, through the standard deviation calculation formula Standard deviation SD of fragments. In this embodiment, the formula for calculating the standard deviation is:
式中,Ei为脑电信号片段的第i个信号数据片,i为正整数。In the formula, E i is the i-th signal data slice of the EEG signal segment, and i is a positive integer.
信号质量判定模块用于:通过计算出的标准差得出当前时间窗口内的脑电信号片段的波动性判定结果;利用当前的脑电信号片段的波动性判定结果和之前的脑电信号片段的波动性判定结果,共同判定出当前脑电信号的质量。The signal quality determination module is used to: obtain the volatility determination result of the EEG signal segment in the current time window through the calculated standard deviation; use the volatility determination result of the current EEG signal segment and the previous EEG signal segment The results of the volatility judgment jointly determine the quality of the current EEG signal.
具体来说,所述信号质量判定模块包括脑电信号波动判定单元、信号波动判定历史结果队列存储单元和信号质量关联判定单元,其中:Specifically, the signal quality determination module includes an EEG signal fluctuation determination unit, a signal fluctuation determination history result queue storage unit, and a signal quality correlation determination unit, wherein:
所述脑电信号波动判定单元用于:将计算出的标准差与阙值上限、阙值下限进行比较,得出当前时间窗口内的脑电信号片段的波动性判定结果。本实施例中,所述脑电信号波动判定单元得出当前时间窗口内的脑电信号片段的波动性判定结果时,遵循以下推导过程:The EEG signal fluctuation judging unit is used for: comparing the calculated standard deviation with the upper limit of the threshold value and the lower limit of the threshold value, so as to obtain the determination result of the fluctuation of the EEG signal segment in the current time window. In this embodiment, when the EEG signal fluctuation determination unit obtains the volatility determination result of the EEG signal segment in the current time window, it follows the following derivation process:
若SD≥Lower且SD≤Upper,则MD为1;If SD≥Lower and SD≤Upper, then MD is 1;
若SD<Lower或SD>Upper,则MD为0;If SD<Lower or SD>Upper, then MD is 0;
其中,Lower为阈值下限,Upper为中阈值上限,MD为脑电信号片段的波动性判定结果。Among them, Lower is the lower limit of the threshold, Upper is the upper limit of the middle threshold, and MD is the determination result of the volatility of the EEG signal segment.
可以理解的是,脑电信号片段的标准差SD用于反映一个脑电信号片段的离散程度。质量良好的脑电信号的标准差一般小于或等于脑电信号波动判定单元中阈值上限Upper,也大于或等于脑电信号波动判定单元中阈值下限Lower。It can be understood that the standard deviation SD of the EEG signal segment is used to reflect the degree of dispersion of an EEG signal segment. The standard deviation of a good-quality EEG signal is generally less than or equal to the upper threshold upper limit of the EEG signal fluctuation determination unit, and is also greater than or equal to the lower threshold lower limit of the EEG signal fluctuation determination unit.
所述信号波动判定历史结果队列存储单元用于:存放当前时间窗口内的脑电信号片段的波动性判定结果MD(n);并向信号质量关联判定单元提供上一时间窗口的脑电信号片段的波动性判定结果MD(n-1)。The signal fluctuation determination history result queue storage unit is used to: store the volatility determination result MD (n) of the EEG signal segment in the current time window; and provide the EEG signal segment of the previous time window to the signal quality correlation determination unit The volatility determination result MD (n-1) of .
所述信号质量关联判定单元用于:利用当前时间窗口内的脑电信号片段的波动性判定结果MD(n)和上一时间窗口的脑电信号片段的波动性判定结果MD(n-1),共同判定出当前脑电信号的质量。The signal quality correlation determination unit is used to: use the volatility determination result MD (n) of the EEG signal segment in the current time window and the volatility determination result MD (n-1) of the EEG signal segment in the previous time window , jointly determine the quality of the current EEG signal.
本实施方式中,所述信号质量关联判定单元判定出当前脑电信号的质量的具体过程为:将当前时间窗口内的脑电信号片段的波动性判定结果与上一时间窗口的脑电信号片段的波动性判定结果进行逻辑与运算,得到当前脑电信号的质量,即MD(n)∧MD(n-1)=Q(n),其中,Q(n)为当前脑电信号的质量判定结果。In this embodiment, the specific process of determining the quality of the current EEG signal by the signal quality correlation determination unit is: combining the volatility determination result of the EEG signal segment in the current time window with the EEG signal segment in the previous time window Perform logical AND operations on the volatility judgment results to obtain the quality of the current EEG signal, that is, MD (n) ∧MD (n-1) = Q (n) , where Q (n) is the quality judgment of the current EEG signal result.
可以理解的是,为了保证计算的实时性,用于每次判定的当前时间窗口内的数据长度不能太长。由于脑电采集设备电极极化造成某些不良信号,难以用标准差来直接对较短数据长度的脑电信号来判定其波动性或良好与否,所以对这种情况需要借助历史结果MD(n-1)来联合判定当前脑电信号的质量。It can be understood that, in order to ensure the real-time performance of the calculation, the data length in the current time window used for each determination cannot be too long. Due to some bad signals caused by the electrode polarization of the EEG acquisition equipment, it is difficult to use the standard deviation to directly judge the volatility or goodness of the EEG signal with a short data length, so it is necessary to use the historical results MD ( n-1) to jointly determine the quality of the current EEG signal.
参见图2所示,本发明实施例提供一种脑电信号质量实时判定方法,包括以下步骤:Referring to Figure 2, an embodiment of the present invention provides a method for real-time determination of EEG signal quality, comprising the following steps:
S1:实时接收并存储由脑电采集设备传来的脑电信号数据;生成用于脑电分析的时间窗口,转到S2;S1: Receive and store the EEG signal data from the EEG acquisition device in real time; generate a time window for EEG analysis, and go to S2;
S2:利用生成的时间窗口,从存储的脑电信号数据中取出与时间窗口相对应的脑电信号片段,转到S3;S2: Using the generated time window, take out the EEG signal segment corresponding to the time window from the stored EEG signal data, and transfer to S3;
S3:根据当前时间窗口内的脑电信号片段所包含的各信号数据片的值,计算出当前脑电信号片段的平均值,转到S4;S3: Calculate the average value of the current EEG signal segment according to the value of each signal data piece contained in the EEG signal segment in the current time window, and turn to S4;
S4:根据计算出的平均值以及脑电信号片段所包含的各信号数据片的值,计算出当前时间窗口内的脑电信号片段的标准差,转到S5;S4: Calculate the standard deviation of the EEG signal segment in the current time window according to the calculated average value and the value of each signal data piece included in the EEG signal segment, and go to S5;
S5:将计算出的标准差与阙值上限、阙值下限进行比较,得出当前时间窗口内的脑电信号片段的波动性判定结果,转到S6;S5: Comparing the calculated standard deviation with the upper limit of the threshold value and the lower limit of the threshold value to obtain the determination result of the volatility of the EEG signal segment in the current time window, and go to S6;
S6:保存当前时间窗口内的脑电信号片段的波动性判定结果;并获取上一时间窗口的脑电信号片段的波动性判定结果,转到S7;S6: Save the volatility determination result of the EEG signal segment in the current time window; and obtain the volatility determination result of the EEG signal segment in the previous time window, and turn to S7;
S7:利用当前时间窗口内的脑电信号片段的波动性判定结果和上一时间窗口的脑电信号片段的波动性判定结果,共同判定出当前脑电信号的质量。S7: jointly determine the quality of the current EEG signal by using the fluctuation determination result of the EEG signal segment in the current time window and the fluctuation determination result of the EEG signal segment in the previous time window.
实际操作时,S1中所述生成用于脑电分析的时间窗口时,是按照指定的时间间隔周期ΔT和时间窗口长度L生成用于脑电分析的时间窗口;且所生成的时间窗口满足以下要求:In actual operation, when generating the time window for EEG analysis described in S1, the time window for EEG analysis is generated according to the specified time interval cycle ΔT and the length of the time window L; and the generated time window satisfies the following Require:
ΔT=T(n+1)–T(n);ΔT=T (n+1) -T (n) ;
Wh(n+1)=Wh(n)+ΔT;Wh (n+1) = Wh (n) +ΔT;
Wt(n+1)=Wt(n)+ΔT;Wt (n+1) = Wt (n) +ΔT;
L>ΔT;L>ΔT;
其中,T(n)为上一次脑电信号片段的分析时间,T(n+1)为当前脑电信号片段的分析时间,Wh(n+1)为所生成的时间窗口的起始时间,Wh(n)为上次时间窗口的起始时间,Wt(n+1)为所生成的时间窗口的终止时间,Wt(n)为上次时间窗口的终止时间。Wherein, T (n) is the analysis time of the last EEG signal segment, T (n+1) is the analysis time of the current EEG signal segment, Wh (n+1) is the start time of the generated time window, Wh (n) is the start time of the last time window, Wt (n+1) is the end time of the generated time window, and Wt (n) is the end time of the last time window.
进一步地,实际操作中,S3具体包括以下步骤:根据当前脑电信号片段所包含的各信号数据片的值,通过平均值计算公式,计算出当前脑电信号片段的平均值所述平均值计算公式为:Further, in actual operation, S3 specifically includes the following steps: according to the value of each signal data piece contained in the current EEG signal segment, calculate the average value of the current EEG signal segment through the average value calculation formula The formula for calculating the average value is:
式中,E1、E2以及EL分别为脑电信号片段的第1个信号数据片、第2个信号数据片以及第L个信号数据片,L为脑电信号片段的长度。In the formula, E 1 , E 2 and E L are respectively the first signal data piece, the second signal data piece and the Lth signal data piece of the EEG signal segment, and L is the length of the EEG signal segment.
进一步地,实际操作中,S4具体包括以下步骤:根据平均值运算单元计算出的平均值以及脑电信号片段所包含的各信号数据片的值,通过标准差计算公式,计算出当前时间窗口内的脑电信号片段的标准差SD;所述标准差计算公式为:Further, in actual operation, S4 specifically includes the following steps: according to the average value calculated by the average value calculation unit and the values of each signal data slice included in the EEG signal segment, and through the standard deviation calculation formula, calculate The standard deviation SD of the EEG signal segment; the standard deviation calculation formula is:
式中,Ei为脑电信号片段的第i个信号数据片,i为正整数。In the formula, E i is the i-th signal data slice of the EEG signal segment, and i is a positive integer.
再进一步地,S5中所述得出当前时间窗口内的脑电信号片段的波动性判定结果时,遵循以下推导过程:Further, when the determination result of the volatility of the EEG signal segment in the current time window is obtained as described in S5, the following derivation process is followed:
若SD≥Lower且SD≤Upper,则MD为1;If SD≥Lower and SD≤Upper, then MD is 1;
若SD<Lower或SD>Upper,则MD为0;If SD<Lower or SD>Upper, then MD is 0;
其中,Lower为阈值下限,Upper为中阈值上限,MD为脑电信号片段的波动性判定结果。Among them, Lower is the lower limit of the threshold, Upper is the upper limit of the middle threshold, and MD is the determination result of the volatility of the EEG signal segment.
更进一步地,实际操作时,S7具体包括以下步骤:将当前时间窗口内的脑电信号片段的波动性判定结果与上一时间窗口的脑电信号片段的波动性判定结果进行逻辑与运算,得到当前脑电信号的质量,即MD(n)∧MD(n-1)=Q(n),其中,Q(n)为当前脑电信号的质量判定结果。Furthermore, in actual operation, S7 specifically includes the following steps: perform logical AND operation on the volatility determination result of the EEG signal segment in the current time window and the volatility determination result of the EEG signal segment in the previous time window, to obtain The quality of the current EEG signal, that is, MD (n) ∧MD (n-1) = Q (n) , where Q (n) is the quality judgment result of the current EEG signal.
为了更好的理解本发明,下面对本发明的主要设计原理及依据进行详细分析:In order to better understand the present invention, the main design principles and basis of the present invention are analyzed in detail below:
由于在后续脑电分析应用中需要及时过滤不良信号,以避免少量不良信号进入脑电分析流程造成分析结果出现严重错误;并且,对信号质量的判定需要取一个时间段的脑电信号数据,客观上分析结果相对原始数据会有一定延迟。所以,为了向后续脑电应用提供更为实时的脑电信号质量判定结果,分析窗口的设计就显得至关重要。In the follow-up EEG analysis application, bad signals need to be filtered in time to avoid a small amount of bad signals entering the EEG analysis process and causing serious errors in the analysis results; moreover, the judgment of signal quality needs to take EEG signal data for a period of time, which is objective Compared with the original data, the above analysis results will have a certain delay. Therefore, in order to provide more real-time EEG signal quality determination results for subsequent EEG applications, the design of the analysis window is very important.
再者,通常情况下对信号波动程度的判定往往采用计算代价较低的标准差算法。标准差(Standard Deviation),在概率统计中常作为统计分布程度(statisticaldispersion)上的测量算法使用。它反映一组数据内个体间的离散程度。但是在特殊情况下,如图3所示,在不良信号的波形中段,信号以曲线上升,此时标准差并不大,但是平滑的信号也没有反应脑电50Hz以下的波动。所以,直接利用标准差来衡量信号质量存在先天的不足。Furthermore, the standard deviation algorithm with low calculation cost is usually used to judge the degree of signal fluctuation. Standard Deviation is often used as a measurement algorithm for statistical dispersion in probability statistics. It reflects the degree of dispersion among individuals in a set of data. But in special cases, as shown in Figure 3, in the middle of the waveform of the bad signal, the signal rises in a curve, and the standard deviation is not large at this time, but the smooth signal does not reflect the fluctuation of the EEG below 50Hz. Therefore, there are inherent deficiencies in directly using the standard deviation to measure the signal quality.
有鉴于此,本发明在标准差算法的基础上进行了优化,通过将本次标准差的阈值判定结果(波动性判定结果)与上一次标准差的阙值判定结果进行逻辑与运算,最终得到当前脑电信号的质量判定结果,从而降低了直接利用标准差来衡量信号质量的不足,进而提高了脑电信号质量判定的整体判定正确率,可以在多数情况下降低误判的发生。In view of this, the present invention optimizes on the basis of the standard deviation algorithm, and performs logical AND operations on the threshold judgment result (fluctuation judgment result) of the standard deviation this time and the threshold judgment result of the previous standard deviation, and finally obtains The current quality judgment results of EEG signals reduce the shortage of directly using the standard deviation to measure the signal quality, thereby improving the overall judgment accuracy rate of EEG signal quality judgments, and can reduce the occurrence of misjudgments in most cases.
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。The present invention is not limited to the above-mentioned embodiments. For those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered protection of the present invention. within range. The content not described in detail in this specification belongs to the prior art known to those skilled in the art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610066371.9A CN105726023B (en) | 2016-01-29 | 2016-01-29 | Electroencephalogram signal quality real-time judging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610066371.9A CN105726023B (en) | 2016-01-29 | 2016-01-29 | Electroencephalogram signal quality real-time judging system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105726023A CN105726023A (en) | 2016-07-06 |
CN105726023B true CN105726023B (en) | 2018-10-16 |
Family
ID=56247121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610066371.9A Expired - Fee Related CN105726023B (en) | 2016-01-29 | 2016-01-29 | Electroencephalogram signal quality real-time judging system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105726023B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106388811B (en) * | 2016-09-18 | 2020-09-22 | 惠州Tcl移动通信有限公司 | Method, system and device for reminding VR user of dizziness |
CN109497998B (en) * | 2018-12-14 | 2021-08-10 | 深圳和而泰数据资源与云技术有限公司 | Electroencephalogram signal quality evaluation method, electroencephalogram signal collector and head-mounted equipment |
WO2021007615A1 (en) * | 2019-07-12 | 2021-01-21 | Saluda Medical Pty Ltd | Monitoring a quality of neural recordings |
CN113274037B (en) * | 2021-06-30 | 2022-08-26 | 中国科学院苏州生物医学工程技术研究所 | Method, system and equipment for generating dynamic brain function network |
CN113951901B (en) * | 2021-11-19 | 2024-03-01 | 中国中医科学院西苑医院 | Automatic analysis system and method for data acquisition effectiveness of electroencephalogram |
CN117481629B (en) * | 2023-12-29 | 2024-03-26 | 成都水木医疗科技有限公司 | Multifunctional colloid osmotic pressure instrument and measuring method and application thereof |
CN119326423B (en) * | 2024-10-24 | 2025-04-25 | 南京易爱医疗设备有限公司 | Method for real-time judging signal quality in brain impedance measurement |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102488518A (en) * | 2011-12-14 | 2012-06-13 | 山东大学 | Electroencephalogram detection method and device by utilizing fluctuation index and training for promotion |
CN103720469A (en) * | 2014-01-02 | 2014-04-16 | 山东大学 | Wearable dynamic maternal and fetal ECG detection device |
CN103892797A (en) * | 2012-12-31 | 2014-07-02 | 中国移动通信集团公司 | Signal processing method and device for sleep structure analysis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120135452A (en) * | 2011-06-06 | 2012-12-14 | 소순상 | The method for estimation of mental states from brain signal |
US20140107521A1 (en) * | 2012-10-12 | 2014-04-17 | Case Western Reserve University | Functional brain connectivity and background noise as biomarkers for cognitive impairment and epilepsy |
-
2016
- 2016-01-29 CN CN201610066371.9A patent/CN105726023B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102488518A (en) * | 2011-12-14 | 2012-06-13 | 山东大学 | Electroencephalogram detection method and device by utilizing fluctuation index and training for promotion |
CN103892797A (en) * | 2012-12-31 | 2014-07-02 | 中国移动通信集团公司 | Signal processing method and device for sleep structure analysis |
CN103720469A (en) * | 2014-01-02 | 2014-04-16 | 山东大学 | Wearable dynamic maternal and fetal ECG detection device |
Also Published As
Publication number | Publication date |
---|---|
CN105726023A (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105726023B (en) | Electroencephalogram signal quality real-time judging system | |
CN105708451B (en) | Electroencephalogram signal quality real-time judgment method | |
JP2010068848A (en) | Drowsiness determination apparatus and program | |
CN104142583A (en) | Intelligent glasses with blinking detection function and implementation method thereof | |
CN103845038B (en) | A kind of sign signal acquisition method and apparatus | |
CN109299690B (en) | A method that can improve the accuracy of video real-time face recognition | |
CN111191671B (en) | Electrical appliance waveform detection method, system, electronic equipment and storage medium | |
CN105868712A (en) | Method for searching object image by combining potential vision and machine vision based on posterior probability model | |
CN104282292A (en) | Automatic control device and method for display brightness | |
CN112801000A (en) | Household old man falling detection method and system based on multi-feature fusion | |
CN105700687B (en) | Single examination time brain electricity P300 component detection methods based on folding HDCA algorithms | |
CN110705453A (en) | Real-time fatigue driving detection method | |
CN106073745A (en) | Heart rate detection method based on smart mobile phone | |
US20160317807A1 (en) | Closed-loop brain stimulation apparatus and method for generating stimulation voltage thereof | |
CN109657550B (en) | A kind of fatigue detection method and device | |
CN115500789A (en) | Non-contact sleep stage judgment method, system, computer equipment and medium | |
CN103340633A (en) | Sleeping posture identification method based on bioelectrical impedance | |
TW202247816A (en) | Non-contact heart rhythm category monitoring system and method | |
JP6973508B2 (en) | Signal processing equipment, analysis system, signal processing method and signal processing program | |
CN115844403A (en) | Emotion detection method and device based on multimedia signals | |
CN114642432A (en) | An attention evaluation method, device, equipment and storage medium | |
CN105825225A (en) | Method for making electroencephalogram target judgment with assistance of machine vision | |
CN115101205A (en) | Health status monitoring method, system, device and medium based on intelligent gateway | |
CN106108847A (en) | Signal processing method, Apparatus and system | |
CN114723494A (en) | Method, device, device and storage medium for judging validity of questionnaire processing results |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Room 603, Comprehensive R&D Building, No. 162 Guanghua Road, Qinhuai District, Nanjing, Jiangsu Province, 210000 Patentee after: Nanjing Hengsi Health Technology Co.,Ltd. Address before: 528437 No. 6 Number Trade Building, Xiangxing Road, Torch District, Zhongshan City, Guangdong Province, 1 5-storey 503 cards Patentee before: ZHONGSHAN HYPERNEURO HEALTH TECHNOLOGY Co.,Ltd. |
|
CP03 | Change of name, title or address | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190904 Address after: 210000 Sixth Floor of Baixia High-tech Industrial Park, No. 162 Guanghua Road, Qinhuai District, Nanjing City, Jiangsu Province Patentee after: Jiangsu Lunda Data Science and Technology Research Institute Co.,Ltd. Address before: Room 603, Comprehensive R&D Building, No. 162 Guanghua Road, Qinhuai District, Nanjing, Jiangsu Province, 210000 Patentee before: Nanjing Hengsi Health Technology Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181016 Termination date: 20220129 |
|
CF01 | Termination of patent right due to non-payment of annual fee |