CN105713597B - A kind of composite type heat mutagens mill base material and preparation method thereof - Google Patents
A kind of composite type heat mutagens mill base material and preparation method thereof Download PDFInfo
- Publication number
- CN105713597B CN105713597B CN201610111203.7A CN201610111203A CN105713597B CN 105713597 B CN105713597 B CN 105713597B CN 201610111203 A CN201610111203 A CN 201610111203A CN 105713597 B CN105713597 B CN 105713597B
- Authority
- CN
- China
- Prior art keywords
- vanadium dioxide
- base material
- type heat
- composite type
- mill base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 78
- 239000002131 composite material Substances 0.000 title claims abstract description 64
- 239000003471 mutagenic agent Substances 0.000 title claims 23
- 231100000707 mutagenic chemical Toxicity 0.000 title claims 23
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 claims abstract description 120
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 claims abstract description 120
- 239000003446 ligand Substances 0.000 claims abstract description 61
- 238000002835 absorbance Methods 0.000 claims abstract description 38
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 38
- 239000002002 slurry Substances 0.000 claims abstract description 30
- 239000011858 nanopowder Substances 0.000 claims abstract description 28
- 229920000642 polymer Polymers 0.000 claims abstract description 28
- 239000006185 dispersion Substances 0.000 claims description 62
- 238000003756 stirring Methods 0.000 claims description 40
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000007788 liquid Substances 0.000 claims description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 13
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 13
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 13
- -1 polypropylene Polymers 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 8
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 claims description 8
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 7
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 239000004814 polyurethane Substances 0.000 claims description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 229920002401 polyacrylamide Polymers 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- NYEZZYQZRQDLEH-UHFFFAOYSA-N 2-ethyl-4,5-dihydro-1,3-oxazole Chemical class CCC1=NCCO1 NYEZZYQZRQDLEH-UHFFFAOYSA-N 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229920001577 copolymer Polymers 0.000 claims description 5
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 5
- 239000011118 polyvinyl acetate Substances 0.000 claims description 5
- 229920002717 polyvinylpyridine Polymers 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 5
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 238000000498 ball milling Methods 0.000 claims description 4
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 claims description 3
- 235000019743 Choline chloride Nutrition 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 claims description 3
- 229960003178 choline chloride Drugs 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 claims description 3
- DPKBAXPHAYBPRL-UHFFFAOYSA-M tetrabutylazanium;iodide Chemical compound [I-].CCCC[N+](CCCC)(CCCC)CCCC DPKBAXPHAYBPRL-UHFFFAOYSA-M 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical class OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 claims description 2
- 229920000388 Polyphosphate Polymers 0.000 claims description 2
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 239000001205 polyphosphate Substances 0.000 claims description 2
- 235000011176 polyphosphates Nutrition 0.000 claims description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000019441 ethanol Nutrition 0.000 claims 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 claims 1
- RCEAADKTGXTDOA-UHFFFAOYSA-N OS(O)(=O)=O.CCCCCCCCCCCC[Na] Chemical compound OS(O)(=O)=O.CCCCCCCCCCCC[Na] RCEAADKTGXTDOA-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 150000001408 amides Chemical class 0.000 claims 1
- 238000002242 deionisation method Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 claims 1
- 235000011187 glycerol Nutrition 0.000 claims 1
- PHNWGDTYCJFUGZ-UHFFFAOYSA-N hexyl dihydrogen phosphate Chemical compound CCCCCCOP(O)(O)=O PHNWGDTYCJFUGZ-UHFFFAOYSA-N 0.000 claims 1
- VLCAYQIMSMPEBW-UHFFFAOYSA-N methyl 3-hydroxy-2-methylidenebutanoate Chemical compound COC(=O)C(=C)C(C)O VLCAYQIMSMPEBW-UHFFFAOYSA-N 0.000 claims 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 claims 1
- 239000002612 dispersion medium Substances 0.000 abstract description 10
- 238000001228 spectrum Methods 0.000 abstract description 4
- 239000011521 glass Substances 0.000 description 38
- 239000010408 film Substances 0.000 description 26
- 230000000694 effects Effects 0.000 description 20
- 238000010521 absorption reaction Methods 0.000 description 16
- 238000002834 transmittance Methods 0.000 description 15
- 239000000843 powder Substances 0.000 description 10
- 230000000007 visual effect Effects 0.000 description 9
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 8
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 7
- 229920000307 polymer substrate Polymers 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 238000004134 energy conservation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010335 hydrothermal treatment Methods 0.000 description 5
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 5
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- ZLQBNKOPBDZKDP-UHFFFAOYSA-L nickel(2+);diperchlorate Chemical compound [Ni+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O ZLQBNKOPBDZKDP-UHFFFAOYSA-L 0.000 description 3
- 229920002189 poly(glycerol 1-O-monomethacrylate) polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- BZRRQSJJPUGBAA-UHFFFAOYSA-L cobalt(ii) bromide Chemical compound Br[Co]Br BZRRQSJJPUGBAA-UHFFFAOYSA-L 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 2
- 229940041260 vanadyl sulfate Drugs 0.000 description 2
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BSWXAWQTMPECAK-UHFFFAOYSA-N 6,6-diethyloctyl dihydrogen phosphate Chemical compound CCC(CC)(CC)CCCCCOP(O)(O)=O BSWXAWQTMPECAK-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000533950 Leucojum Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- VKEQBMCRQDSRET-UHFFFAOYSA-N Methylone Chemical compound CNC(C)C(=O)C1=CC=C2OCOC2=C1 VKEQBMCRQDSRET-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- CPNMIJMTSNHGPH-UHFFFAOYSA-N [O-2].[V+5].C(C)O.[O-2].[O-2].[O-2].[O-2].[V+5] Chemical compound [O-2].[V+5].C(C)O.[O-2].[O-2].[O-2].[O-2].[V+5] CPNMIJMTSNHGPH-UHFFFAOYSA-N 0.000 description 1
- OSXVKBGTBPCIPT-UHFFFAOYSA-N [O-2].[V+5].CC(=O)C.[O-2].[O-2].[O-2].[O-2].[V+5] Chemical compound [O-2].[V+5].CC(=O)C.[O-2].[O-2].[O-2].[O-2].[V+5] OSXVKBGTBPCIPT-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- OSQPUMRCKZAIOZ-UHFFFAOYSA-N carbon dioxide;ethanol Chemical compound CCO.O=C=O OSQPUMRCKZAIOZ-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- GIZZQTOQMFIDHE-UHFFFAOYSA-N ethoxyethane;formaldehyde Chemical compound O=C.CCOCC GIZZQTOQMFIDHE-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical compound PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-O tributylazanium Chemical compound CCCC[NH+](CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-O 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K9/00—Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D129/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
- C09D129/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/10—Homopolymers or copolymers of methacrylic acid esters
- C09D133/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K9/00—Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
- C09K9/02—Organic tenebrescent materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/187—Metal complexes of the iron group metals, i.e. Fe, Co or Ni
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/188—Metal complexes of other metals not provided for in one of the previous groups
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及一种复合型热致变色浆料及其制备方法,所述复合型热致变色浆料包括:作为无机系热致变色材料的二氧化钒纳米粉体、作为有机系热致变色材料的配位基转换体、聚合物基材和分散介质,所述配位基转换体包含可转变金属离子、能与所述可转变金属离子形成低吸光度配合物的低吸光度配位体、和能与所述可转变金属离子形成高吸光度配合物的高吸光度配位体。本发明的复合型热致变色浆料,其特点是热致变色波段范围涵盖包括可见光在内的整个日射光谱,因而与传统二氧化钒热致变色材料相比具有极高的总日射调节率。
The invention relates to a composite thermochromic slurry and a preparation method thereof. The composite thermochromic slurry comprises: vanadium dioxide nano-powder as an inorganic thermochromic material, an organic thermochromic material A ligand switch body, a polymer base material, and a dispersion medium, the ligand switch body comprising a switchable metal ion, a low-absorbance ligand capable of forming a low-absorbance complex with the switchable metal ion, and an energy A high absorbance ligand that forms a high absorbance complex with the switchable metal ion. The composite thermochromic paste of the present invention is characterized in that the thermochromic wavelength range covers the entire solar spectrum including visible light, and thus has a very high total solar regulation rate compared with traditional vanadium dioxide thermochromic materials.
Description
技术领域technical field
本发明属于高性能无机-有机复合材料技术领域,特别涉及热致变色材料及其节能环保应用。The invention belongs to the technical field of high-performance inorganic-organic composite materials, and in particular relates to thermochromic materials and their energy-saving and environment-friendly applications.
背景技术Background technique
全球能源短缺问题日益严重,过度碳排放引起环境日益恶化,节能减排已成为当前各国的首要任务。据估计,在社会总能耗中建筑能耗占30%以上,因此,推进建筑节能是节能减排、实现可持续发展的重点措施之一。The problem of global energy shortage is becoming more and more serious, and excessive carbon emissions are causing the environment to deteriorate day by day. Energy conservation and emission reduction have become the top priority of all countries. It is estimated that building energy consumption accounts for more than 30% of the total energy consumption in society. Therefore, promoting building energy conservation is one of the key measures for energy conservation, emission reduction, and sustainable development.
建筑能耗中很大部分用于空调,而玻璃窗作为建筑与外界进行热交换的主要通道,成为空调能源流失的主要途径。因此,使用各种类型的节能窗,能有效地降低能耗,达到节能环保的目的。A large part of building energy consumption is used for air conditioning, and glass windows, as the main channel for heat exchange between buildings and the outside world, have become the main way for air conditioning energy loss. Therefore, the use of various types of energy-saving windows can effectively reduce energy consumption and achieve the purpose of energy conservation and environmental protection.
现有市场节能窗主流产品为低辐射(Low-E)玻璃和热反射玻璃等,由于技术成熟,价格便宜,隔热性能良好,被广泛应用于建筑节能。但由于上述节能窗光学性能不能因季节变化和认为需求随意改变,难以适应我国大多数冬寒夏热地区的节能需求和人们对居住环境舒适程度越来越高的要求。于是,被称为“智能节能窗”的新的节能产品便应运而生。The mainstream products of energy-saving windows in the existing market are low-emissivity (Low-E) glass and heat-reflecting glass, etc., which are widely used in building energy conservation due to mature technology, low price and good heat insulation performance. However, since the optical properties of the above-mentioned energy-saving windows cannot be changed arbitrarily due to seasonal changes and perceived needs, it is difficult to meet the energy-saving needs of most cold winter and hot summer regions in my country and people's increasingly higher requirements for living environment comfort. As a result, new energy-saving products called "smart energy-saving windows" came into being.
智能节能窗使用光学性能可变的致变色材料,利用其对各种物理刺激产生的透反射性能等变化,达到室内环境光热的可控调节目的。显然,智能节能窗可适应绝大部分地区和不同气候条件的需求,也使室内居住环境对人更加适宜。Smart energy-saving windows use chromogenic materials with variable optical properties, and use their transflective performance changes to various physical stimuli to achieve controllable adjustment of indoor ambient light and heat. Obviously, smart energy-saving windows can adapt to the needs of most regions and different climatic conditions, and also make the indoor living environment more suitable for people.
根据物理刺激种类与变色机理,有电致变色,气致变色,光致变色,热致变色等多个种类的智能节能窗。According to the types of physical stimuli and the mechanism of discoloration, there are various types of smart energy-saving windows such as electrochromic, aerochromic, photochromic, and thermochromic.
在各种类型的智能节能窗中,利用二氧化钒室温附近的半导体-金属可逆相变原理研制的热致变色节能窗,具有结构简单,材料用量少,完全不用开关或人工能源控制就能顺应环境温度变化而实现自动光热调控等显著优点,在各国获得重视并相继研发。其中,使用纳米二氧化钒的温控智能节能贴膜技术已率先在我国获得突破,制备出的二氧化钒基温控智能节能贴膜即将投放市场。Among various types of smart energy-saving windows, the thermochromic energy-saving window developed by using the semiconductor-metal reversible phase transition principle near room temperature of vanadium dioxide has the advantages of simple structure, less material consumption, and no need for switches or artificial energy control. Its remarkable advantages such as automatic light and heat regulation in response to changes in ambient temperature have gained attention and been developed in succession in various countries. Among them, the temperature-controlled intelligent energy-saving film technology using nano-vanadium dioxide has taken the lead in breaking through in my country, and the prepared vanadium dioxide-based temperature-controlled intelligent energy-saving film will be put on the market soon.
但是,作为上述技术的主要发明者,同时注意到上述二氧化钒温控智能节能窗依然存在以下若干不足:However, as the main inventor of the above-mentioned technology, at the same time, it is noticed that the above-mentioned vanadium dioxide temperature-controlled intelligent energy-saving window still has the following deficiencies:
(1)对日射红外波段具有较高的调节幅度,但对占日射总能量50%的可见光波段几乎不具有调节作用,其结果降低了总日射调节率;(1) It has a relatively high adjustment range for the solar infrared band, but has almost no adjustment effect on the visible light band, which accounts for 50% of the total solar energy, and as a result reduces the total solar adjustment rate;
(2)由于在可见光波段不具有明显的调节作用,无法利用这种调节产生足够的视觉变化,从而无助于对顾客进行强有力的调节效果演示,对产品的宣传和推广造成决定性的不良影响;(2) Since there is no obvious adjustment effect in the visible light band, this adjustment cannot be used to produce sufficient visual changes, which is not conducive to a strong adjustment effect demonstration for customers, and has a decisive adverse effect on product publicity and promotion. ;
(3)对短波段可见光具有强烈的吸收效应,导致薄膜黄色发色。(3) It has a strong absorption effect on short-wavelength visible light, resulting in yellow coloring of the film.
迄今尚无成熟技术从根本上解决上述若干问题。显而易见,上述问题的解决将意味着二氧化钒基热致变色节能窗应用技术的飞跃性突破。So far, there is no mature technology to fundamentally solve the above-mentioned problems. Obviously, the solution to the above problems will mean a breakthrough in the application technology of vanadium dioxide-based thermochromic energy-saving windows.
发明内容Contents of the invention
配位基转换体热致变色(Ligand Exchange Thermochromic简称LETC)材料通过不同温度下可转变金属离子与不同的配位基结合,形成具有不同吸收系数的配合物,从而产生热致变色效应,一般来说,在低温下,金属离子与低吸收系数配位基结合形成低吸收系数配合物,具有较高的透过率;在高温下,金属离子转而与高吸收系数配位基结合形成高吸收系数配合物,具有较低的透过率。这种温控光学变化是可逆的,主要产生于可见光波段特定波长范围。Ligand Exchange Thermochromic (LETC for short) materials combine transformable metal ions with different ligands at different temperatures to form complexes with different absorption coefficients, thereby producing thermochromic effects. That is to say, at low temperature, metal ions combine with low absorption coefficient ligands to form low absorption coefficient complexes, which have higher transmittance; at high temperature, metal ions turn to combine with high absorption coefficient ligands to form high absorption complexes. Coefficient complexes have lower transmittance. This temperature-controlled optical change is reversible and mainly occurs in a specific wavelength range in the visible light band.
但是,通常的LETC材料热致变色仅发生在可见光附近即日射全光谱中非常狭窄的波段范围,造成调节能力偏小。更由于是对人体温热感觉最为敏感的中远红外波段不能调节,无法进行保证人体舒适感觉的调节。However, the thermochromism of common LETC materials only occurs in a very narrow band range in the vicinity of visible light, that is, in the full spectrum of sunlight, resulting in a relatively small adjustment ability. What's more, the middle and far infrared wave band, which is most sensitive to the human body's thermal sensation, cannot be adjusted, so it cannot be adjusted to ensure the comfortable feeling of the human body.
另外,LETC材料仅能通过对上述波段范围光的吸收来达到调节目的,材料本身不具有反射效应,因此调节效果受到影响。In addition, the LETC material can only achieve the adjustment purpose by absorbing light in the above-mentioned wavelength range, and the material itself has no reflection effect, so the adjustment effect is affected.
本发明人基于对热致变色材料的长期研发经验,通过反复实验,首次发现通过结合二氧化钒材料与LETC材料构成一种全新的复合材料,可以使新材料的热致变色效应涵盖包括可见光和红外波段的日射全波段范围,在调节能力和舒适程度上都有了飞跃的进步,由此完成本发明。Based on the long-term research and development experience of thermochromic materials, the inventors discovered for the first time that by combining vanadium dioxide materials and LETC materials to form a new composite material, the thermochromic effects of the new materials can cover visible light and The full-band range of sunlight in the infrared band has made great progress in adjustment ability and comfort level, thus completing the present invention.
本发明提供一种复合型热致变色浆料,包括:作为无机系热致变色材料的二氧化钒纳米粉体、作为有机系热致变色材料的配位基转换体、聚合物基材和分散介质,所述配位基转换体包含可转变金属离子、能与所述可转变金属离子形成低吸光度配合物的低吸光度配位体、和能与所述可转变金属离子形成高吸光度配合物的高吸光度配位体。The invention provides a composite thermochromic slurry, comprising: vanadium dioxide nanopowder as an inorganic thermochromic material, a ligand converter as an organic thermochromic material, a polymer substrate and a dispersed medium, the ligand switcher comprises a transformable metal ion, a low-absorbance ligand capable of forming a low-absorbance complex with the transformable metal ion, and a ligand capable of forming a high-absorbance complex with the transformable metal ion High absorbance ligands.
本发明的复合型热致变色浆料,其特点是热致变色波段范围涵盖包括可见光在内的整个日射光谱,因而与传统二氧化钒热致变色材料相比具有极高的总日射调节率。同时,在可见光波段的较大调节效应,转变为视觉上的明显变化,对产品的效果展示和宣传推广具有决定性意义。另外,由于增加了可见光较长波段的吸收,使得二氧化钒的固有黄色发色得到了较大抑制。The composite thermochromic paste of the present invention is characterized in that the thermochromic wavelength range covers the entire solar spectrum including visible light, and thus has a very high total solar regulation rate compared with traditional vanadium dioxide thermochromic materials. At the same time, the large adjustment effect in the visible light band is transformed into an obvious visual change, which is of decisive significance to the effect display and promotion of the product. In addition, due to the increased absorption of longer wavelength bands of visible light, the intrinsic yellow color of vanadium dioxide has been greatly suppressed.
较佳地,所述二氧化钒纳米粉体为掺杂或非掺杂金红石相二氧化钒。Preferably, the vanadium dioxide nanopowder is doped or non-doped rutile phase vanadium dioxide.
较佳地,所述二氧化钒纳米粉体的粒径为20~80nm。Preferably, the particle diameter of the vanadium dioxide nanopowder is 20-80 nm.
较佳地,所述可转变金属离子为Fe(II)、Co(II)、Ni(II)、Cu(II)中的至少一种,所述低吸光度配位体为二元醇、三元醇、多元醇中的至少一种,优选新戊二醇,三羟甲基丙烷,乙二醇,丙三醇,2-甲基-1,3-丙二醇中的至少一种;所述高吸光度配位体包含能够与可转变金属离子形成高吸光度配位化合物的配位基团,优选四丁基溴化铵,四丁基氯化铵,四丁基碘化铵,氯化胆碱,三苯基膦,四硫代环十四烷中的至少一种。Preferably, the transformable metal ion is at least one of Fe(II), Co(II), Ni(II), Cu(II), and the low absorbance ligand is a dihydric alcohol, a ternary At least one of alcohols and polyols, preferably neopentyl glycol, trimethylolpropane, ethylene glycol, glycerol, at least one of 2-methyl-1,3-propanediol; the high absorbance The ligand comprises a coordinating group capable of forming a high-absorbance coordination compound with a transformable metal ion, preferably tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, choline chloride, tributylammonium At least one of phenylphosphine and tetrathiocyclotetradecane.
较佳地,二氧化钒与配位基转换体中的可转变金属离子的摩尔比为9:1~1:9,优选2:1~1:6,更优选1:1~1:4。Preferably, the molar ratio of vanadium dioxide to the transformable metal ion in the ligand switching body is 9:1-1:9, preferably 2:1-1:6, more preferably 1:1-1:4.
较佳地,所述聚合物基材为聚丙烯酰胺、聚甲基丙烯酸羟乙酯、聚醋酸乙烯酯、聚乙烯醇、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯、聚乙烯基甲醚、聚羟乙基丙烯酸甲酯、聚乙烯基吡啶、聚甲基丙烯酸甘油酯、羟乙基纤维素、聚氨酯、聚2-乙基-2-噁唑啉、聚乙烯吡咯烷酮以及含有上述聚合物官能团的共聚物中的至少一种。Preferably, the polymer substrate is polyacrylamide, polyhydroxyethyl methacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyvinyl formaldehyde Ether, polyhydroxyethyl acrylate, polyvinylpyridine, polyglyceryl methacrylate, hydroxyethyl cellulose, polyurethane, poly 2-ethyl-2-oxazoline, polyvinylpyrrolidone, and polymers containing the above at least one of functional group copolymers.
较佳地,所述分散介质为去离子水、乙醇、丙醇、异丙醇、乙酸乙酯、甲苯、丙酮、丁酮、γ-丁内酯、氯仿、丙二醇甲醚醋酸酯中的至少一种。Preferably, the dispersion medium is at least one of deionized water, ethanol, propanol, isopropanol, ethyl acetate, toluene, acetone, butanone, γ-butyrolactone, chloroform, and propylene glycol methyl ether acetate kind.
较佳地,在所述复合型热致变色浆料中,二氧化钒纳米粉体的浓度为0.1~2mol/L;二氧化钒纳米粉体与聚合物基材的浓度比为1:9~9:1,优选1:9~5:1,更优选1:5~1:1;可转变金属离子的浓度为0.5~5mol/L。Preferably, in the composite thermochromic slurry, the concentration of vanadium dioxide nanopowder is 0.1-2mol/L; the concentration ratio of vanadium dioxide nanopowder to polymer substrate is 1:9~ 9:1, preferably 1:9-5:1, more preferably 1:5-1:1; the concentration of the transformable metal ion is 0.5-5 mol/L.
另一方面,本发明还提供上述任意一种复合型热致变色浆料涂的制备方法,包括以下步骤:On the other hand, the present invention also provides a method for preparing any of the above composite thermochromic slurry coatings, comprising the following steps:
a.准备二氧化钒纳米粉体并分散于分散介质中,得分散液A;a. Prepare vanadium dioxide nanopowder and disperse it in the dispersion medium to obtain dispersion A;
b.在分散液A中加入可溶性聚合物,搅拌至聚合物完全溶解,得分散液B;b. Add soluble polymer to dispersion A, stir until the polymer is completely dissolved to obtain dispersion B;
c.在分散液B中加入配位基转换体,搅拌至完全溶解,得分散液C;c. Add the ligand conversion body into the dispersion B, and stir until completely dissolved to obtain the dispersion C;
d.持续搅拌分散液C并加热,蒸发部分多余分散介质,得所述复合型热致变色浆料。d. Continuously stirring the dispersion C and heating, evaporating part of the excess dispersion medium to obtain the composite thermochromic slurry.
较佳地,分散液A中二氧化钒浓度为0.01~1mol/L,优选0.05~0.5mol/L,更优选0.1~0.2mol/L;分散液B中二氧化钒与聚合物的浓度比为1:9~9:1,优选1:9~5:1,更优选1:5~1:1;分散液C中配位基转换体的可转变金属离子的浓度为0.01~5mol/L,0.1~2mol/L,更优选0.5~1mol/L。Preferably, the concentration of vanadium dioxide in dispersion A is 0.01-1 mol/L, preferably 0.05-0.5 mol/L, more preferably 0.1-0.2 mol/L; the concentration ratio of vanadium dioxide to polymer in dispersion B is 1:9 to 9:1, preferably 1:9 to 5:1, more preferably 1:5 to 1:1; the concentration of the transformable metal ion of the ligand switch in the dispersion C is 0.01 to 5 mol/L, 0.1-2 mol/L, more preferably 0.5-1 mol/L.
再一方面,本发明还提供一种复合型热致变色涂料,其由上述任意一种复合型热致变色浆料制得。In another aspect, the present invention also provides a composite thermochromic coating, which is prepared from any one of the above composite thermochromic pastes.
又一方面,本发明还提供一种复合型热致变色薄膜,其由上述任意一种复合型热致变色浆料涂覆于基体制得。In another aspect, the present invention also provides a composite thermochromic film, which is prepared by coating any one of the composite thermochromic pastes above on a substrate.
附图说明Description of drawings
图1为实施例1的二氧化钒基复合薄膜在20℃(左)和80℃(右)下的实物照片;Fig. 1 is the physical photograph of the vanadium dioxide-based composite film of embodiment 1 at 20 ℃ (left) and 80 ℃ (right);
图2为实施例1的二氧化钒基复合薄膜在20℃和80℃下的吸收曲线;Fig. 2 is the absorption curve of the vanadium dioxide-based composite thin film of embodiment 1 at 20 ℃ and 80 ℃;
图3为实施例3的二氧化钒基复合薄膜在20℃(左)和80℃(右)下的实物照片;Fig. 3 is the physical photograph of the vanadium dioxide-based composite film of embodiment 3 at 20 ℃ (left) and 80 ℃ (right);
图4为比较例1的二氧化钒单独薄膜在20℃(左)和80℃(右)下的实物照片。Fig. 4 is the real photo of the vanadium dioxide thin film of Comparative Example 1 at 20°C (left) and 80°C (right).
具体实施方式Detailed ways
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be further described below in conjunction with the drawings and the following embodiments. It should be understood that the drawings and the following embodiments are only used to illustrate the present invention rather than limit the present invention.
本发明提供了一种高性能二氧化钒基热致变色复合材料,该复合材料同时含有无机系热致变色材料和有机系热致变色材料,无机系热致变色材料为二氧化钒,有机系热致变色材料为配位基转换体。The invention provides a high-performance vanadium dioxide-based thermochromic composite material. The composite material contains both an inorganic thermochromic material and an organic thermochromic material. The inorganic thermochromic material is vanadium dioxide, and the organic thermochromic material is vanadium dioxide. The thermochromic material is a ligand conversion body.
本发明中,配位基转换体包含可转变金属离子、能与之形成低吸光度配合物的低吸光度配位体和能与之形成高吸光度配合物的高吸光度配位体这两种配位基材料。通过不同温度下可转变金属离子与不同的配位基结合,形成具有不同吸收系数的配合物,从而产生热致变色效应,在低温下,金属离子与低吸光度配位体结合形成低吸收系数配合物,具有较高的透过率;在高温下,金属离子转而与高吸光度配位体结合形成高吸收系数配合物,具有较低的透过率。这种温控光学变化是可逆的,主要产生于可见光波段特定波长范围。In the present invention, the ligand switching body comprises two kinds of ligands, namely a transformable metal ion, a low-absorbance ligand capable of forming a low-absorbance complex with it, and a high-absorbance ligand capable of forming a high-absorbance complex with it. Material. Through the combination of metal ions and different ligands at different temperatures, complexes with different absorption coefficients are formed, resulting in thermochromic effects. At low temperatures, metal ions combine with low-absorbance ligands to form complexes with low absorption coefficients. At high temperature, metal ions combine with high-absorbance ligands to form high-absorption complexes, which have low transmittance. This temperature-controlled optical change is reversible and mainly occurs in a specific wavelength range in the visible light band.
所述可转变金属离子可为过渡金属离子,优选为Fe(II)、Co(II)、Ni(II)、Cu(II)中的至少一种。选择其中至少一种与不同的配位基结合,根据需要可在不同波段获得特定的吸收。The transformable metal ion may be a transition metal ion, preferably at least one of Fe(II), Co(II), Ni(II), and Cu(II). At least one of them is selected to combine with different ligands, and specific absorption can be obtained in different wave bands as required.
配位基转换体对光的吸收能力可以用吸光度表示。所述低吸光度是指在400~1400nm波长范围内吸光度小于0.2,所述高吸光度是指在400~1400nm波长范围内吸光度为0.8以上。The light absorption ability of the ligand switching body can be expressed by absorbance. The low absorbance means that the absorbance is less than 0.2 in the wavelength range of 400-1400nm, and the high absorbance means that the absorbance is above 0.8 in the wavelength range of 400-1400nm.
低吸光度配位体包括但不限于二元醇、三元醇、多元醇中的至少一种,优选新戊二醇,三羟甲基丙烷,乙二醇,丙三醇,2-甲基-1,3-丙二醇中的至少一种。高吸光度配位体包含能够与可转变金属离子形成高吸光度配位化合物的配位基团,例如可含有N、P、S原子中的至少一种,和/或选自氯化物、溴化物、碘化物、类卤化物中的至少一种,优选四丁基溴化铵,四丁基氯化铵,四丁基碘化铵,氯化胆碱,三苯基膦,四硫代环十四烷中的至少一种。The low-absorbance ligands include but are not limited to at least one of diols, triols, and polyols, preferably neopentyl glycol, trimethylolpropane, ethylene glycol, glycerol, 2-methyl- At least one of 1,3-propanediol. The high-absorbance ligand comprises a coordination group capable of forming a high-absorbance coordination compound with a transformable metal ion, for example, may contain at least one of N, P, and S atoms, and/or be selected from chloride, bromide, At least one of iodide and halide-like compounds, preferably tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium iodide, choline chloride, triphenylphosphine, tetrathiocyclotetradecine at least one of alkanes.
在配位基转换体中,可转变金属离子与低吸光度配位体和高吸光度配位体的摩尔比可为(0.1~1):(1~10):(4~10)。In the ligand switch body, the molar ratio of the switchable metal ion to the ligand with low absorbance and the ligand with high absorbance can be (0.1-1):(1-10):(4-10).
另外,配位基转换体中还可包含聚合物,以作为配位体转换的桥梁。此外,应理解,配位基转换体中并非一定包含聚合物,有溶剂存在时不需要聚合物,溶剂和聚合物可以互相取代作为配位体转换桥梁。所述聚合物包括但不限于聚丙烯酰胺、聚甲基丙烯酸羟乙酯、聚醋酸乙烯酯、聚乙烯醇、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯、聚乙烯基甲醚、聚羟乙基丙烯酸甲酯、聚乙烯基吡啶、聚甲基丙烯酸甘油酯、羟乙基纤维素、聚氨酯、聚2-乙基-2-噁唑啉、聚乙烯吡咯烷酮以及含有上述聚合物官能团的共聚物中的至少一种。In addition, polymers may also be included in the ligand switching body to serve as a bridge for ligand switching. In addition, it should be understood that the ligand switching body does not necessarily contain a polymer, and the polymer is not required when there is a solvent, and the solvent and the polymer can replace each other as a ligand switching bridge. Such polymers include, but are not limited to, polyacrylamide, polyhydroxyethyl methacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyvinyl methyl ether, poly Methyl hydroxyethyl acrylate, polyvinylpyridine, polyglyceryl methacrylate, hydroxyethyl cellulose, polyurethane, poly-2-ethyl-2-oxazoline, polyvinylpyrrolidone, and copolymers containing functional groups of the above polymers at least one of the
本发明中的二氧化钒可以是非掺杂的二氧化钒,也可以是具有掺杂元素的二氧化钒。二氧化钒可以为金红石相。二氧化钒结晶在68℃具有可逆相变和巨大的光学性能变化。而通过元素掺杂等手段,可以将转变温度精确控制在室温附近。本发明中的二氧化钒包括了掺杂二氧化钒等传统二氧化钒基热致变色节能窗的各种要素。The vanadium dioxide in the present invention may be non-doped vanadium dioxide or vanadium dioxide with doping elements. The vanadium dioxide may be in the rutile phase. Vanadium dioxide crystals have a reversible phase transition and a huge change in optical properties at 68 °C. However, by element doping and other means, the transition temperature can be precisely controlled near room temperature. The vanadium dioxide in the present invention includes various elements of traditional vanadium dioxide-based thermochromic energy-saving windows such as doped vanadium dioxide.
掺杂二氧化钒粉体的化学组成可为V1-xMxO2,式中,0<x≤0.5。掺杂元素可以是元素周期表中钒附近的21~30过渡元素、锡及其附近的元素以及钨、钼、钌、铌、钽、镁等元素中的一个或任意组合。其中,元素周期表中钒附近的21~30过渡元素包括钪、钛、铬、锰、铁、钴、镍、铜和锌,所述锡及其附近的元素包括铟、锑、锡、镓、锗、铅和铋,优选的掺杂元素为钨、钼、铋、锡、铌、钽、镁、铁、锌和钛。采用上述掺杂元素,可以控制掺杂二氧化钒粉体的尺寸和形貌,或者同时也能调控二氧化钒的相转变温度。The chemical composition of the doped vanadium dioxide powder can be V 1-x M x O 2 , where 0<x≤0.5. The dopant element can be one or any combination of the 21-30 transition elements near vanadium in the periodic table of elements, tin and its nearby elements, tungsten, molybdenum, ruthenium, niobium, tantalum, magnesium and other elements. Among them, the 21-30 transition elements near vanadium in the periodic table of elements include scandium, titanium, chromium, manganese, iron, cobalt, nickel, copper and zinc, and the tin and its nearby elements include indium, antimony, tin, gallium, Germanium, lead and bismuth, preferred doping elements are tungsten, molybdenum, bismuth, tin, niobium, tantalum, magnesium, iron, zinc and titanium. By using the above-mentioned doping elements, the size and shape of the doped vanadium dioxide powder can be controlled, or at the same time the phase transition temperature of the vanadium dioxide can also be adjusted.
本发明中,二氧化钒可以是粉体,优选为颗粒状,即以二氧化钒纳米颗粒的形式存在。颗粒的长径比可为1:1~10:1,优选为1:1~5:1,更优选为1:1~2:1。颗粒尺寸在至少一个维度上不大于1μm,优选在至少一个维度上不大于100nm,更优选在三个维度上均不大于100nm,例如20~80nm。所述颗粒状可以为近球形、椭圆形、雪花形、立方形、片形等。In the present invention, vanadium dioxide can be powder, preferably granular, that is, exists in the form of vanadium dioxide nanoparticles. The aspect ratio of the particles may be 1:1-10:1, preferably 1:1-5:1, more preferably 1:1-2:1. The particle size is not greater than 1 μm in at least one dimension, preferably not greater than 100 nm in at least one dimension, more preferably not greater than 100 nm in all three dimensions, for example, 20-80 nm. The granular shape can be nearly spherical, oval, snowflake, cubic, flake, etc.
另外,二氧化钒纳米颗粒还可以具有外包覆层。该外包覆层优选为透明的,可以在提高二氧化钒颗粒的稳定性的同时又不影响二氧化钒颗粒的整体可见光透过性。作为外包覆层的材料,包括但不限于碳、氧化硅、氧化镁和氧化铝中的一种以上。外包覆层的厚度范围可为2~20nm。In addition, the vanadium dioxide nanoparticles may also have an outer coating. The outer cladding layer is preferably transparent, which can improve the stability of the vanadium dioxide particles without affecting the overall visible light transmittance of the vanadium dioxide particles. The material of the outer cladding layer includes, but is not limited to, one or more of carbon, silicon oxide, magnesium oxide, and aluminum oxide. The thickness of the outer cladding layer can range from 2 to 20 nm.
原则上二氧化钒与配位基转换体可根据需要以任何比例进行复合,但大量实验表明,二氧化钒与LETC材料中金属离子的摩尔比优选9:1~1:9,更优选2:1~1:6,最优选1:1~1:4。In principle, vanadium dioxide and the ligand converter can be compounded in any ratio according to needs, but a large number of experiments have shown that the molar ratio of vanadium dioxide to metal ions in the LETC material is preferably 9:1 to 1:9, more preferably 2: 1-1:6, most preferably 1:1-1:4.
本发明通过结合二氧化钒材料与LETC材料构成一种全新的复合材料,从而使新材料的热致变色效应涵盖了包括可见光和红外波段的日射全波段范围,在调节能力和舒适程度上都有了飞跃的进步。The present invention constitutes a brand-new composite material by combining vanadium dioxide material and LETC material, so that the thermochromic effect of the new material covers the full range of sunlight including visible light and infrared bands, and has both adjustment ability and comfort made leaps forward.
显而易见,通过对占日射总能量50%的可见光波段的调节作用,与传统二氧化钒材料相比,总日射调节率得到了决定性的提升。Obviously, by adjusting the visible light band, which accounts for 50% of the total solar energy, compared with traditional vanadium dioxide materials, the total solar radiation regulation rate has been decisively improved.
同时,由于可见光波段的明显的调节效应产生的足够的视觉变化,有助于对顾客进行强有力的效果演示,对产品的宣传推广起到决定性推动作用。克服了二氧化钒调节范围主要局限于红外波段,在可见光波段几乎没有视觉上的明显调节效应的问题。At the same time, due to the sufficient visual changes produced by the obvious adjustment effect of the visible light band, it is helpful to carry out a powerful effect demonstration to customers and play a decisive role in promoting the promotion of products. It overcomes the problem that the adjustment range of vanadium dioxide is mainly limited to the infrared band, and there is almost no visually obvious adjustment effect in the visible light band.
同时,LETC材料可见光特定波长的吸收,对二氧化钒固有发色起到了有益的调和作用。At the same time, the absorption of specific wavelengths of visible light by LETC materials plays a beneficial role in harmonizing the inherent color development of vanadium dioxide.
同时,二氧化钒对日射紫外波长具有很强的阻隔效果,可在复合材料中作为自然的紫外吸收剂,大大提高了LETC材料的抗紫外能力。At the same time, vanadium dioxide has a strong blocking effect on solar ultraviolet wavelengths, and can be used as a natural ultraviolet absorber in composite materials, which greatly improves the anti-ultraviolet ability of LETC materials.
本发明的复合材料的热致变色范围涵盖300~2500nm日射全波段,且具有明显视觉效果。所述热致变色在10℃到100℃之间可逆进行。The thermochromic range of the composite material of the invention covers the full band of 300-2500nm solar radiation, and has obvious visual effects. The thermochromism is reversible between 10°C and 100°C.
本发明的复合材料可以以多种形式存在,包括但不限于浆料、涂料、薄膜等。其中,无机系热致变色材料(二氧化钒)与有机系热致变色材料(配位基转换体)之间的存在关系也可以有多种,只要两者同时存在即可。在一个示例中,两者可以以混合状态存在于浆料、涂料、薄膜中。在另一个示例中,无机系热致变色材料与有机系热致变色材料以非混合状态存在。这种非混合状态包括各为层状但层间接触,或各为层状并且层间不接触。例如,本发明的复合材料可以是一种由二氧化钒薄膜和配位基转换体薄膜叠层而成的复合薄膜。在复合薄膜中,这两种薄膜可以分别具有一层或多层。这两种薄膜可以相邻地层叠,也可以在两者之间用其它层状物分隔。所述层状物例如可为柔性的PET(聚对苯二甲酸乙二醇酯)薄膜、刚性的玻璃等。The composite materials of the present invention may exist in a variety of forms including, but not limited to, slurries, coatings, films, and the like. Among them, there may be various relationships between the inorganic thermochromic material (vanadium dioxide) and the organic thermochromic material (ligand switch), as long as both exist at the same time. In one example, the two can exist in a slurry, paint, or film in a mixed state. In another example, the inorganic thermochromic material and the organic thermochromic material exist in a non-mixed state. Such a non-mixed state includes each being layered but having contact between layers, or being each being layered and having no contact between layers. For example, the composite material of the present invention may be a composite film formed by laminating a vanadium dioxide film and a ligand converter film. In the composite film, the two films may each have one or more layers. The two films can be stacked adjacently, or can be separated by other layers between them. The layer may be, for example, a flexible PET (polyethylene terephthalate) film, rigid glass, or the like.
另外,本发明的复合材料中还可含有聚合物基材。该聚合物基材一方面作为配位体转换的桥梁,另一方面可以在复合物材料中起到分散、支撑作用,例如在薄膜中作为成膜剂。在一个示例中,二氧化钒(优选纳米尺寸的二氧化钒粉体)与适当的LETC材料以适当比例复合,并均匀分散于聚合物基材之中,形成具有高度温控光学调节特性的热致变色复合薄膜材料。另外,该聚合物基材优选为与复合材料中的二氧化钒和配位基转换体具有互溶性,从而保持浆料不产生沉淀,并保持薄膜的透明性。作为示例,所述聚合物基材可选为聚丙烯酰胺、聚甲基丙烯酸羟乙酯、聚醋酸乙烯酯、聚乙烯醇、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯、聚乙烯基甲醚、聚羟乙基丙烯酸甲酯、聚乙烯基吡啶、聚甲基丙烯酸甘油酯、羟乙基纤维素、聚氨酯、聚2-乙基-2-噁唑啉、聚乙烯吡咯烷酮以及含有上述聚合物官能团的共聚物中的至少一种。In addition, a polymer matrix may also be included in the composite material of the present invention. On the one hand, the polymer substrate serves as a bridge for ligand conversion, and on the other hand, it can play a role in dispersion and support in composite materials, such as a film-forming agent in thin films. In one example, vanadium dioxide (preferably nano-sized vanadium dioxide powder) is compounded with an appropriate LETC material in an appropriate ratio, and uniformly dispersed in a polymer matrix to form a thermally controlled optical modulation characteristic with high temperature control. Chromogenic composite film material. In addition, the polymer base material is preferably compatible with the vanadium dioxide and the ligand switching body in the composite material, so as to keep the slurry from precipitation and maintain the transparency of the film. As examples, the polymer substrate may be polyacrylamide, polyhydroxyethylmethacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polymethylmethacrylate, polyvinyl Methyl ether, polyhydroxyethyl acrylate, polyvinylpyridine, polyglycerol methacrylate, hydroxyethyl cellulose, polyurethane, poly 2-ethyl-2-oxazoline, polyvinylpyrrolidone, and polymers containing the above At least one of the copolymers with functional groups.
在一个实施形态中,本发明的复合材料为一种复合型热致变色浆料,其中包含作为无机系热致变色材料的二氧化钒纳米粉体、作为有机系热致变色材料的配位基转换体、聚合物基材和分散介质。In one embodiment, the composite material of the present invention is a composite thermochromic slurry, which contains vanadium dioxide nanopowder as an inorganic thermochromic material, and a ligand as an organic thermochromic material. Transformers, polymer substrates and dispersion media.
所述分散介质包括但不限于为去离子水、乙醇、丙醇、异丙醇、乙酸乙酯、甲苯、丙酮、丁酮、γ-丁内酯、氯仿、丙二醇甲醚醋酸酯中的一种或几种,优选乙醇、异丙醇、丙酮、γ-丁内酯中的一种或几种。The dispersion medium includes but is not limited to one of deionized water, ethanol, propanol, isopropanol, ethyl acetate, toluene, acetone, methyl ethyl ketone, γ-butyrolactone, chloroform, and propylene glycol methyl ether acetate or more, preferably one or more of ethanol, isopropanol, acetone, and γ-butyrolactone.
在所述浆料中,二氧化钒纳米粉体的浓度可为0.1~2mol/L,优选为0.1~0.5mol/L。二氧化钒纳米粉体与聚合物基材的浓度比可为1:9~9:1,优选1:9~5:1,更优选1:5~1:1。可转变金属离子的浓度可为0.5~5mol/L,优选为0.5~2mol/L。二氧化钒与配位基转换体中的可转变金属离子的摩尔比如上所述可为9:1~1:9,优选2:1~1:6,更优选1:1~1:4。In the slurry, the concentration of vanadium dioxide nanopowder may be 0.1-2 mol/L, preferably 0.1-0.5 mol/L. The concentration ratio of the vanadium dioxide nanopowder to the polymer substrate may be 1:9-9:1, preferably 1:9-5:1, more preferably 1:5-1:1. The concentration of the transformable metal ions may be 0.5-5 mol/L, preferably 0.5-2 mol/L. As mentioned above, the molar ratio of vanadium dioxide to the transformable metal ion in the ligand switching body may be 9:1-1:9, preferably 2:1-1:6, more preferably 1:1-1:4.
所述浆料还可以包括分散助剂,该分散助剂可以是选自聚乙二醇、油酸、三乙基己基磷酸、硅烷偶联剂、十二烷基硫酸钠、甲基戊醇、脂肪酸聚乙二醇酯、聚丙烯酸盐、聚丙烯酰胺、多聚磷酸盐、聚乙烯醇、聚乙烯吡咯烷酮、改性聚酯、改性聚氨酯和改性丙烯酸分散剂中的一种或几种。Described slurry can also comprise dispersing aid, and this dispersing aid can be selected from polyethylene glycol, oleic acid, triethylhexyl phosphoric acid, silane coupling agent, sodium lauryl sulfate, methyl amyl alcohol, One or more of fatty acid polyethylene glycol ester, polyacrylate, polyacrylamide, polyphosphate, polyvinyl alcohol, polyvinylpyrrolidone, modified polyester, modified polyurethane and modified acrylic dispersant.
又,也可添加UV吸收剂、光安定剂、热安定剂和可塑剂中的一种或几种。In addition, one or more of UV absorbers, light stabilizers, heat stabilizers and plasticizers can also be added.
以下,作为示例,说明上述浆料的制备方法。Hereinafter, the preparation method of the said slurry is demonstrated as an example.
准备二氧化钒纳米粉体并分散于分散介质中,得分散液A。所述二氧化钒纳米粉体可以是通过水热法制得。其可为金红石相二氧化钒。分散液A中二氧化钒浓度可为0.01~1mol/L,优选0.05~0.5mol/L,更优选0.1~0.2mol/L。另外,分散液A中还可以加入分散助剂以促进二氧化钒纳米粉体的分散。分散方式可为球磨等。球磨转速可为500~1000r/min,球磨时间可为1~3小时。Prepare vanadium dioxide nanopowder and disperse it in a dispersion medium to obtain dispersion A. The vanadium dioxide nanopowder can be prepared by a hydrothermal method. It may be vanadium dioxide in the rutile phase. The concentration of vanadium dioxide in the dispersion A may be 0.01-1 mol/L, preferably 0.05-0.5 mol/L, more preferably 0.1-0.2 mol/L. In addition, a dispersing aid can also be added to the dispersion A to promote the dispersion of the vanadium dioxide nanopowder. The dispersion method can be ball milling and the like. The ball milling speed can be 500-1000r/min, and the ball milling time can be 1-3 hours.
在分散液A中加入可溶性聚合物,搅拌至聚合物完全溶解,得分散液B。分散液B中二氧化钒与聚合物的浓度比为1:9~9:1,优选1:9~5:1,更优选1:5~1:1。可溶性聚合物可为聚丙烯酰胺、聚甲基丙烯酸羟乙酯、聚醋酸乙烯酯、聚乙烯醇、聚乙烯醇缩丁醛、聚甲基丙烯酸甲酯、聚乙烯基甲醚、聚羟乙基丙烯酸甲酯、聚偏氟乙烯、聚乙烯基吡啶、聚甲基丙烯酸甘油酯、羟乙基纤维素、聚氨酯、聚2-乙基-2-噁唑啉、聚乙烯吡咯烷酮以及含有上述聚合物官能团的共聚物中的至少一种。根据所选分散介质,选择可溶解于分散介质的相应聚合物,作为成膜剂以及配位体转换的桥梁。Add the soluble polymer to the dispersion A, stir until the polymer is completely dissolved to obtain the dispersion B. The concentration ratio of vanadium dioxide to polymer in the dispersion B is 1:9-9:1, preferably 1:9-5:1, more preferably 1:5-1:1. Soluble polymers can be polyacrylamide, polyhydroxyethyl methacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyvinyl methyl ether, polyhydroxyethyl Methyl acrylate, polyvinylidene fluoride, polyvinylpyridine, polyglyceryl methacrylate, hydroxyethyl cellulose, polyurethane, poly 2-ethyl-2-oxazoline, polyvinylpyrrolidone, and polymers containing the above functional groups At least one of the copolymers. According to the selected dispersion medium, select the corresponding polymer that can be dissolved in the dispersion medium as a film-forming agent and a bridge for ligand conversion.
在分散液B中加入配位基转换体,搅拌至完全溶解,得分散液C,得到所述浆料。该配位基转换体可以是可转换金属离子源、上述低吸光度配位体和上述高吸光度配位体的混合物。这三者可以同时添加,也可以分开添加。作为可转换金属离子源,可为相应的金属盐,例如金属卤化物、金属硝酸盐、金属四氟硼酸盐、金属醋酸盐、金属碳酸盐、金属高氯酸盐等。分散液C中配位基转换体浓度可为0.01~5mol/L,优选0.1~2mol/L,更优选0.5~1mol/L。Add the ligand conversion body into the dispersion B, stir until completely dissolved to obtain the dispersion C, and obtain the slurry. The ligand switcher may be a mixture of a switchable metal ion source, the aforementioned low-absorbance ligand, and the aforementioned high-absorbance ligand. These three can be added at the same time or separately. As a source of switchable metal ions, there may be corresponding metal salts, such as metal halides, metal nitrates, metal tetrafluoroborates, metal acetates, metal carbonates, metal perchlorates, and the like. The concentration of the ligand converter in the dispersion C may be 0.01-5 mol/L, preferably 0.1-2 mol/L, more preferably 0.5-1 mol/L.
根据对浆料浓度的要求,还可以再持续搅拌分散液C并加热,蒸发部分多余分散介质。According to the requirements of the slurry concentration, the dispersion liquid C can also be continuously stirred and heated to evaporate part of the excess dispersion medium.
本发明的复合型热致变色浆料可根据需要制备成为热致变色涂料,以及各种贴膜或中间膜等热致变色薄膜。作为热致变色薄膜的制备方法,可以是将所述浆料涂布在基材而形成。涂布方式可以选择喷涂、刮涂、刷涂、淋涂或辊涂等方式。基材包括但不限于玻璃、或聚丙烯(PP)、聚乙烯(PE)、聚酰胺(PA)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)和聚甲基丙烯酸甲酯(PMMA)等材料的塑料薄膜。The composite thermochromic slurry of the present invention can be prepared into thermochromic coatings, various pasting films or intermediate films and other thermochromic films as required. As a preparation method of the thermochromic thin film, it may be formed by coating the slurry on a substrate. The coating method can be sprayed, scraped, brushed, flow coated or roller coated. Substrates include, but are not limited to, glass, or polypropylene (PP), polyethylene (PE), polyamide (PA), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and polymethyl Plastic films such as methyl acrylate (PMMA).
将上述浆料,涂料和薄膜应用于不同类型的透明基材,即可制备出建筑物和车辆用热致变色节能窗。By applying the above slurry, coating and film to different types of transparent substrates, thermochromic energy-saving windows for buildings and vehicles can be prepared.
例如针对建筑物或车辆节能需求,可通过对二氧化钒的掺杂或选择不同的LETC材料配合,使热致变色复合薄膜所产生的巨大光学效应在10℃到100℃之间可逆进行。For example, to meet the energy-saving requirements of buildings or vehicles, the huge optical effect produced by the thermochromic composite film can be reversible between 10°C and 100°C by doping vanadium dioxide or selecting different LETC materials.
本发明的高性能二氧化钒基热致变色复合材料,其特点是热致变色波段范围涵盖整个日射光谱。与传统二氧化钒热致变色材料相比,本发明具有更高的日射调节效率。同时,由于在可见光波段具有较大的调节效应,因而产生了明显的视觉变化,对产品的效果展示和宣传推广具有决定性意义。本发明成本低廉,适合大批量工业生产,可广泛用于智能节能窗等节能环保领域。The high-performance vanadium dioxide-based thermochromic composite material of the present invention is characterized in that the thermochromic wavelength range covers the entire sunlight spectrum. Compared with the traditional thermochromic material of vanadium dioxide, the invention has higher solar regulation efficiency. At the same time, due to the large adjustment effect in the visible light band, it produces obvious visual changes, which is of decisive significance for the effect display and promotion of products. The invention has low cost, is suitable for mass industrial production, and can be widely used in energy-saving and environment-friendly fields such as intelligent energy-saving windows.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention, and some non-essential improvements and adjustments made by those skilled in the art according to the above contents of the present invention belong to the protection scope of the present invention. The specific process parameters and the like in the following examples are only examples of suitable ranges, that is, those skilled in the art can make a selection within a suitable range through the description herein, and are not limited to the specific values exemplified below.
实施例1Example 1
首先配制含0.01mol/L的五氧化二钒溶液100ml,加入0.01g草酸并搅拌成均一的溶液。将上述溶液加入反应釜中密封,于240℃反应24h。冷却后取出,离心、洗涤、干燥得到二氧化钒粉体。First prepare 100ml of vanadium pentoxide solution containing 0.01mol/L, add 0.01g of oxalic acid and stir to form a uniform solution. Put the above solution into the reaction kettle and seal it, and react at 240°C for 24h. After cooling, take it out, centrifuge, wash and dry to obtain vanadium dioxide powder.
取0.5g上述水热制得的二氧化钒纳米粉体和0.25g聚乙烯吡咯烷酮加入100g乙醇中搅拌并超声分散30min后,将分散液转移至球磨罐,在900r/min条件下球磨1h获二氧化钒乙醇分散液;将10g聚乙烯醇缩丁醛加入上述分散液,搅拌至溶解;继续加入6.5g高氯酸镍、6g新戊二醇和24g四丁基溴化铵,搅拌至完全溶解并混合均匀;90℃下持续搅拌上述分散液30min,即得到二氧化钒与配位基转换体复合型热致变色浆料。将上述浆料均匀涂覆在市售普通玻璃表面,获得二氧化钒基热致变色玻璃。Take 0.5g of the vanadium dioxide nano-powder and 0.25g of polyvinylpyrrolidone prepared by the above-mentioned hydrothermal treatment, add them into 100g of ethanol, stir and ultrasonically disperse for 30min, transfer the dispersion to a ball mill tank, and ball mill for 1h under the condition of 900r/min to obtain two vanadium oxide ethanol dispersion; add 10g polyvinyl butyral to the above dispersion, stir until dissolved; continue to add 6.5g nickel perchlorate, 6g neopentyl glycol and 24g tetrabutylammonium bromide, stir until completely dissolved and Mix evenly; keep stirring the above-mentioned dispersion liquid at 90°C for 30 minutes to obtain a composite thermochromic slurry of vanadium dioxide and a ligand converter. The above slurry is evenly coated on the surface of commercially available common glass to obtain vanadium dioxide-based thermochromic glass.
用带有加热附件的分光光度计(日立U-3010)在低温(20℃)和高温(80℃)状态下测定了所述热致变色玻璃的分光透过率光谱,再根据公式计算得到了玻璃的可视光透过率(Tlum:380-780nm)和不同波段下的太阳光能量透过率(Tsol,260-380nm,380-780nm,780-2600nm),其计算公式如下:A spectrophotometer (Hitachi U-3010) with a heating accessory was used to measure the spectral transmittance spectrum of the thermochromic glass at low temperature (20°C) and high temperature (80°C), and then calculated according to the formula The visible light transmittance of glass (T lum : 380-780nm) and the solar energy transmittance in different wavelength bands (T sol , 260-380nm, 380-780nm, 780-2600nm) are calculated as follows:
其中,T(λ)表示波长λ处的透过率,φlum(λ)为人眼的相对光谱光视效率,φsol(λ)为太阳辐射光谱曲线。Among them, T(λ) represents the transmittance at the wavelength λ, φ lum (λ) is the relative spectral luminous efficiency of the human eye, and φ sol (λ) is the solar radiation spectral curve.
测试并计算结果由表1所示。可见,与通常的二氧化钒热致变色玻璃相比,本发明的玻璃具有极高的可见光透过率;并且,即便在高达68.32%的可见光透过率的前提下,由温度变化产生的太阳光调节率超过18%。与此同时,玻璃色调由浅入深,颜色亦由黄褐色变为墨绿色(图1,图中的文字是为了显示薄膜的透明性而设置的背景)。即,调光过程伴随的视觉变化显而易见。图2示出复合型热致变色浆料所制薄膜在20℃和80℃下的吸收曲线,可以看出薄膜在高温下吸收明显增强,并且在750nm和1300nm波长附近出现了特征吸收峰,分别对应于LETC和VO2。The test and calculation results are shown in Table 1. It can be seen that compared with common vanadium dioxide thermochromic glass, the glass of the present invention has a very high visible light transmittance; The light regulation rate exceeds 18%. At the same time, the color of the glass changes from light to dark, and the color changes from yellowish brown to dark green (Figure 1, the text in the picture is the background set to show the transparency of the film). That is, the visual changes accompanying the dimming process are noticeable. Figure 2 shows the absorption curves of films made of composite thermochromic paste at 20°C and 80°C. It can be seen that the absorption of the film is significantly enhanced at high temperatures, and characteristic absorption peaks appear near the wavelengths of 750nm and 1300nm, respectively. Corresponds to LETC and VO2 .
表1Table 1
实施例2Example 2
首先配制含0.01mol/L的硫酸氧钒溶液100ml,加入5g质量分数为10%的一水联氨,然后使用氢氧化钠滴定至pH为7形成悬浊液,将沉淀过滤洗涤再次分散于100mL水中搅拌成均一的溶液。将上述溶液加入反应釜中密封,于260℃反应24h。冷却后取出,在反应釜中加入0.1g葡萄糖,封闭反应釜,再于180℃反应8h并冷却至室温,离心、洗涤、干燥得到碳包覆的二氧化钒粉体。First prepare 100ml of vanadyl sulfate solution containing 0.01mol/L, add 5g of hydrazine monohydrate with a mass fraction of 10%, then use sodium hydroxide to titrate to pH 7 to form a suspension, filter and wash the precipitate and disperse it again in 100mL Stir in water to form a homogeneous solution. Put the above solution into the reaction kettle and seal it, and react at 260°C for 24h. Take it out after cooling, add 0.1g of glucose into the reactor, close the reactor, react at 180°C for 8h and cool to room temperature, centrifuge, wash and dry to obtain carbon-coated vanadium dioxide powder.
取1g上述水热制得的碳包覆二氧化钒纳米粉体和0.5g聚乙烯吡咯烷酮加入100g丙酮中搅拌并超声分散30min后,将分散液转移至球磨罐,在900r/min条件下球磨1h获二氧化钒丙酮分散液;将10g聚甲基丙烯酸甲酯加入上述分散液,搅拌至溶解;继续加入15g高氯酸镍、12g三羟甲基丙烷和52g四丁基溴化铵,搅拌至完全溶解并混合均匀;90℃下持续搅拌上述分散液30min,即得到二氧化钒与配位基转换体复合型热致变色浆料。将上述浆料均匀涂覆在市售普通玻璃表面,获得二氧化钒基热致变色玻璃。Take 1g of carbon-coated vanadium dioxide nanopowder and 0.5g of polyvinylpyrrolidone prepared by the above-mentioned hydrothermal treatment, add them into 100g of acetone, stir and ultrasonically disperse for 30min, then transfer the dispersion to a ball mill tank, and ball mill for 1h under the condition of 900r/min Obtain vanadium dioxide acetone dispersion liquid; 10g polymethyl methacrylate is added above-mentioned dispersion liquid, stir to dissolve; Continue to add 15g nickel perchlorate, 12g trimethylol propane and 52g tetrabutylammonium bromide, stir until Completely dissolve and mix evenly; keep stirring the above dispersion liquid at 90°C for 30 minutes to obtain a composite thermochromic slurry of vanadium dioxide and ligand conversion body. The above slurry is evenly coated on the surface of commercially available common glass to obtain vanadium dioxide-based thermochromic glass.
用实施例1同样方法对玻璃的性能进行了评价,其结果如表2所示。可见,本发明的玻璃在可见光透过率超过50%的前提下,其太阳光调节率达到24.59%。由于调节率提高,颜色变化更为明显。The performance of the glass was evaluated in the same manner as in Example 1, and the results are shown in Table 2. It can be seen that the solar light regulation rate of the glass of the present invention reaches 24.59% on the premise that the visible light transmittance exceeds 50%. The color change is more pronounced due to the increased modulation rate.
表2Table 2
实施例3Example 3
首先配制含0.01mol/L的五氧化二钒溶液100ml,加入0.005g三氧化钨和0.5g质量分数为10%的一水联氨,搅拌成均一的溶液。将上述溶液加入反应釜中密封,于260℃反应24h。冷却后取出,离心、洗涤、干燥得到二氧化钒粉体。First prepare 100 ml of vanadium pentoxide solution containing 0.01 mol/L, add 0.005 g of tungsten trioxide and 0.5 g of hydrazine monohydrate with a mass fraction of 10%, and stir to form a uniform solution. Put the above solution into the reaction kettle and seal it, and react at 260°C for 24h. After cooling, take it out, centrifuge, wash and dry to obtain vanadium dioxide powder.
取0.5g上述水热制得的二氧化钒纳米粉体和0.25g聚乙烯吡咯烷酮加入100g丙酮中搅拌并超声分散30min后,将分散液转移至球磨罐,在900r/min条件下球磨1h获二氧化钒丙酮分散液;将10g聚甲基丙烯酸甲酯加入上述分散液,搅拌至溶解;继续加入4g溴化钴、5g三羟甲基丙烷和24g四丁基溴化铵,搅拌至完全溶解并混合均匀;90℃下持续搅拌上述分散液30min,即得到二氧化钒与配位基转换体复合型热致变色浆料。将上述浆料均匀涂覆在市售普通玻璃表面,获得二氧化钒基热致变色玻璃。Take 0.5g of the vanadium dioxide nano-powder and 0.25g of polyvinylpyrrolidone prepared by the above-mentioned hydrothermal treatment, add them into 100g of acetone, stir and ultrasonically disperse for 30min, then transfer the dispersion to a ball mill tank, and ball mill for 1h under the condition of 900r/min to obtain two Vanadium oxide acetone dispersion; add 10g polymethyl methacrylate to the above dispersion, stir until dissolved; continue to add 4g cobalt bromide, 5g trimethylolpropane and 24g tetrabutylammonium bromide, stir until completely dissolved and Mix evenly; keep stirring the above-mentioned dispersion liquid at 90°C for 30 minutes to obtain a composite thermochromic slurry of vanadium dioxide and a ligand converter. The above slurry is evenly coated on the surface of commercially available common glass to obtain vanadium dioxide-based thermochromic glass.
用实施例1同样方法对玻璃的性能进行了评价,其结果如表3所示。可见,与通常的二氧化钒热致变色玻璃相比,本发明的玻璃具有极高的可见光透过率;并且,即便在高达66.12%的可见光透过率的前提下,由温度变化产生的太阳光调节率超过18%。与此同时,玻璃色调由浅入深,颜色亦由黄褐色变为深绿色(图3,图中的文字是为了显示薄膜的透明性而设置的背景)。即,调光过程伴随的视觉变化显而易见。The properties of the glass were evaluated in the same manner as in Example 1, and the results are shown in Table 3. It can be seen that, compared with common vanadium dioxide thermochromic glass, the glass of the present invention has a very high visible light transmittance; The light regulation rate exceeds 18%. At the same time, the glass tone changes from light to dark, and the color also changes from yellowish brown to dark green (Figure 3, the text in the picture is the background set to show the transparency of the film). That is, the visual changes accompanying the dimming process are noticeable.
表3table 3
实施例4Example 4
首先配制含0.01mol/L的硫酸氧钒溶液100ml,加入5g质量分数为10%的一水联氨,然后使用氢氧化钠滴定至pH为7形成悬浊液,将沉淀过滤洗涤再次分散于100mL水中搅拌成均一的溶液。将上述溶液加入反应釜中密封,于260℃反应24h。冷却后取出,将反应液加入到100mL无水乙醇中,再加入10mL去离子水、5mL氨水搅拌均匀,随后逐滴加入2.5mL正硅酸乙酯,室温下搅拌5h,过滤,洗涤,干燥,退火得到氧化硅包覆的二氧化钒粉体。First prepare 100ml of vanadyl sulfate solution containing 0.01mol/L, add 5g of hydrazine monohydrate with a mass fraction of 10%, then use sodium hydroxide to titrate to pH 7 to form a suspension, filter and wash the precipitate and disperse it again in 100mL Stir in water to form a homogeneous solution. Put the above solution into the reaction kettle and seal it, and react at 260°C for 24h. Take it out after cooling, add the reaction solution into 100mL of absolute ethanol, then add 10mL of deionized water and 5mL of ammonia water and stir evenly, then add 2.5mL of tetraethyl orthosilicate dropwise, stir at room temperature for 5h, filter, wash, and dry. Annealed to obtain silicon oxide-coated vanadium dioxide powder.
取1g上述水热制得的氧化硅包覆二氧化钒纳米粉体和0.5g聚乙烯吡咯烷酮加入100g乙醇中搅拌并超声分散30min后,将分散液转移至球磨罐,在900r/min条件下球磨1h获二氧化钒乙醇分散液;将10g聚乙烯醇缩丁醛加入上述分散液,搅拌至溶解;继续加入9g溴化钴、14g新戊二醇和52g四丁基溴化铵,搅拌至完全溶解并混合均匀;90℃下持续搅拌上述分散液30min,即得到二氧化钒与配位基转换体复合型热致变色浆料。将上述浆料均匀涂覆在市售普通玻璃表面,获得二氧化钒基热致变色玻璃。Take 1g of the above hydrothermally prepared silica-coated vanadium dioxide nanopowder and 0.5g of polyvinylpyrrolidone, add it to 100g of ethanol, stir and ultrasonically disperse for 30min, transfer the dispersion to a ball mill tank, and ball mill at 900r/min 1h to obtain vanadium dioxide ethanol dispersion; add 10g polyvinyl butyral to the above dispersion, stir until dissolved; continue to add 9g cobalt bromide, 14g neopentyl glycol and 52g tetrabutylammonium bromide, stir until completely dissolved And mix evenly; keep stirring the above dispersion liquid at 90° C. for 30 minutes to obtain the composite thermochromic paste of vanadium dioxide and ligand conversion body. The above slurry is evenly coated on the surface of commercially available common glass to obtain vanadium dioxide-based thermochromic glass.
用实施例1同样方法对玻璃的性能进行了评价,其结果如表4所示。可见,本发明的玻璃在可见光透过率超过50%的前提下,其太阳光调节率达到21.91%。由于调节率提高,颜色变化更为明显。The properties of the glass were evaluated in the same manner as in Example 1, and the results are shown in Table 4. It can be seen that the solar light regulation rate of the glass of the present invention reaches 21.91% on the premise that the visible light transmittance exceeds 50%. The color change is more pronounced due to the increased modulation rate.
表4Table 4
比较例1Comparative example 1
首先配制含0.01mol/L的五氧化二钒溶液100ml,加入0.01g草酸并搅拌成均一的溶液。将上述溶液加入反应釜中密封,于240℃反应24h。冷却后取出,离心干燥得到二氧化钒粉体。取0.5g上述水热制得的二氧化钒纳米粉体和0.25g聚乙烯吡咯烷酮加入100g乙醇中搅拌并超声分散30min后,将分散液转移至球磨罐,在900r/min条件下球磨1h获二氧化钒的乙醇分散液;将9g聚乙烯醇缩丁醛加入上述分散液,搅拌至溶解;90℃下持续搅拌上述分散液30min,即得到二氧化钒热致变色浆料。将上述浆料均匀涂覆在市售普通玻璃表面,获得二氧化钒基热致变色玻璃。First prepare 100ml of vanadium pentoxide solution containing 0.01mol/L, add 0.01g of oxalic acid and stir to form a uniform solution. Put the above solution into the reaction kettle and seal it, and react at 240°C for 24h. Take it out after cooling, and centrifugally dry to obtain vanadium dioxide powder. Take 0.5g of the vanadium dioxide nano-powder and 0.25g of polyvinylpyrrolidone prepared by the above-mentioned hydrothermal treatment, add them into 100g of ethanol, stir and ultrasonically disperse for 30min, transfer the dispersion to a ball mill tank, and ball mill for 1h under the condition of 900r/min to obtain two Ethanol dispersion of vanadium oxide; add 9g of polyvinyl butyral to the above dispersion and stir until dissolved; keep stirring the above dispersion at 90°C for 30min to obtain vanadium dioxide thermochromic slurry. The above slurry is evenly coated on the surface of commercially available common glass to obtain vanadium dioxide-based thermochromic glass.
用实施例1同样方法对玻璃的性能进行了评价,其结果如表5所示。可见,在仅使用二氧化钒作为热致变色材料的前提下,为获取实施例1相当的可见光透过率,其太阳光调节率仅有实施例1的一半前后。同时,由图4可见,调光时玻璃并不产生视觉上的色调变化。The properties of the glass were evaluated in the same manner as in Example 1, and the results are shown in Table 5. It can be seen that, on the premise that only vanadium dioxide is used as the thermochromic material, in order to obtain the visible light transmittance equivalent to Example 1, the solar light regulation rate is only about half of that of Example 1. At the same time, it can be seen from Figure 4 that the glass does not produce visual hue changes during dimming.
表5table 5
比较例2Comparative example 2
首先配制含0.01mol/L的五氧化二钒溶液100ml,加入0.005g三氧化钨和0.5g质量分数为10%的一水联氨,搅拌成均一的溶液。将上述溶液加入反应釜中密封,于260℃反应24h。冷却后取出,离心,洗涤,干燥得到二氧化钒粉体。取1g上述水热制得的二氧化钒纳米粉体和0.5g聚乙烯吡咯烷酮加入100g乙醇中搅拌并超声分散30min后,将分散液转移至球磨罐,在900r/min条件下球磨1h获二氧化钒的乙醇分散液;将9g聚乙烯醇缩丁醛加入上述分散液,搅拌至溶解;90℃下持续搅拌上述分散液30min,即得到二氧化钒热致变色浆料。将上述浆料均匀涂覆在市售普通玻璃表面,获得二氧化钒基热致变色玻璃。First prepare 100 ml of vanadium pentoxide solution containing 0.01 mol/L, add 0.005 g of tungsten trioxide and 0.5 g of hydrazine monohydrate with a mass fraction of 10%, and stir to form a uniform solution. Put the above solution into the reaction kettle and seal it, and react at 260°C for 24h. After cooling, take it out, centrifuge, wash and dry to obtain vanadium dioxide powder. Take 1g of the vanadium dioxide nanopowder and 0.5g of polyvinylpyrrolidone prepared by the above-mentioned hydrothermal treatment, add them into 100g of ethanol, stir and ultrasonically disperse for 30min, then transfer the dispersion to a ball mill tank, and ball mill for 1h under the condition of 900r/min to obtain the carbon dioxide Ethanol dispersion of vanadium; add 9g of polyvinyl butyral to the above dispersion, stir until dissolved; keep stirring the above dispersion at 90°C for 30min to obtain vanadium dioxide thermochromic slurry. The above slurry is evenly coated on the surface of commercially available common glass to obtain vanadium dioxide-based thermochromic glass.
用实施例1同样方法对玻璃的性能进行了评价,其结果如表6所示。可见,在仅使用二氧化钒作为热致变色材料的前提下,如增大二氧化钒固含量,其太阳光调节率也有所增加达到12.23%,但是,其可见光透过率迅速下降到仅有40%左右。此外,调光时未观察到明显的色调变化。The properties of the glass were evaluated in the same manner as in Example 1, and the results are shown in Table 6. It can be seen that under the premise of only using vanadium dioxide as a thermochromic material, if the solid content of vanadium dioxide is increased, the solar light regulation rate also increases to 12.23%, but its visible light transmittance drops rapidly to only About 40%. Furthermore, no noticeable hue change was observed upon dimming.
表6Table 6
比较例3Comparative example 3
将10g聚甲基丙烯酸甲酯加入100g丙酮并搅拌至溶解,然后顺次加入15g高氯酸镍、14g新戊二醇和52g四丁基溴化铵,搅拌至溶解获分散液。采用旋涂法将分散液涂覆于市售普通玻璃表面,获得仅含高分子基的热致变色玻璃。Add 10g of polymethyl methacrylate to 100g of acetone and stir until dissolved, then sequentially add 15g of nickel perchlorate, 14g of neopentyl glycol and 52g of tetrabutylammonium bromide, stir until dissolved to obtain a dispersion. The dispersion liquid is coated on the surface of a commercially available common glass by a spin coating method to obtain a thermochromic glass containing only polymer groups.
用实施例1同样方法对玻璃的性能进行了评价,其结果如表7所示。可见,在单独使用LETC热致变色材料的条件下,涂膜玻璃虽具有较高的可见光透过率和明显的温控视觉变化,但在日射红外波段范围内的温控调节幅度非常微弱仅为2.75%,不具有良好红外调节效果。同时,该玻璃整体红外透过率过高,在夏天不具有良好的红外阻隔效应。The properties of the glass were evaluated in the same manner as in Example 1, and the results are shown in Table 7. It can be seen that under the condition of using LETC thermochromic material alone, although the coated glass has a high visible light transmittance and obvious temperature control visual changes, the temperature control adjustment range in the solar infrared band is very weak. 2.75%, does not have a good infrared adjustment effect. At the same time, the overall infrared transmittance of the glass is too high, and it does not have a good infrared blocking effect in summer.
表7Table 7
本发明通过结合二氧化钒材料与LETC材料构成一种全新的复合材料,从而使新材料的热致变色效应涵盖了包括可见光和红外波段的日射全波段范围,在调节能力和舒适程度上都有了飞跃的进步,可广泛用于智能节能窗等节能环保领域。The present invention constitutes a brand-new composite material by combining vanadium dioxide material and LETC material, so that the thermochromic effect of the new material covers the full range of sunlight including visible light and infrared bands, and has both adjustment ability and comfort It has made great progress and can be widely used in energy-saving and environmental protection fields such as smart energy-saving windows.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610111203.7A CN105713597B (en) | 2016-02-29 | 2016-02-29 | A kind of composite type heat mutagens mill base material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610111203.7A CN105713597B (en) | 2016-02-29 | 2016-02-29 | A kind of composite type heat mutagens mill base material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105713597A CN105713597A (en) | 2016-06-29 |
CN105713597B true CN105713597B (en) | 2018-10-02 |
Family
ID=56156332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610111203.7A Active CN105713597B (en) | 2016-02-29 | 2016-02-29 | A kind of composite type heat mutagens mill base material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105713597B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108300002B (en) * | 2016-08-12 | 2020-03-17 | 中国科学院上海硅酸盐研究所 | Vanadium dioxide-based thermochromic solid-liquid composite material and preparation method and application thereof |
CN106634533B (en) * | 2016-12-26 | 2019-04-16 | 北京东方雨虹防水技术股份有限公司 | A kind of thermochromism polyurethane water-proof paint |
CN107868588A (en) * | 2017-12-12 | 2018-04-03 | 广东韩亚薄膜科技有限公司 | Reversible thermochromic coating and preparation method and application |
CN109913071B (en) * | 2017-12-12 | 2021-05-25 | 中国科学院上海硅酸盐研究所 | A temperature-controlled composite energy-saving material |
USD961100S1 (en) | 2018-03-01 | 2022-08-16 | Biofreeze Ip Holdings, Llc | Therapy pack |
USD985134S1 (en) | 2018-03-01 | 2023-05-02 | Biofreeze Ip Holdings, Llc | Therapy pack |
USD984659S1 (en) | 2018-03-01 | 2023-04-25 | Biofreeze Ip Holdings, Llc | Therapy pack |
USD961099S1 (en) | 2018-03-01 | 2022-08-16 | Biofreeze Ip Holdings, Llc | Therapy pack |
USD961096S1 (en) | 2018-03-01 | 2022-08-16 | Biofreeze Ip Holdings, Llc | Therapy pack |
USD961097S1 (en) | 2018-03-01 | 2022-08-16 | Biofreeze Ip Holdings, Llc | Therapy pack |
MX2019006200A (en) | 2018-03-02 | 2019-10-09 | Shanghai Chuangshi Ind Group Co Ltd | Polymers, thermochromic agents, and/or hydrogel compositions and apparatus, including products embodying the same, and methods and processes for making same. |
CN108410242A (en) * | 2018-04-04 | 2018-08-17 | 江苏新亿源环保科技有限公司 | A kind of preparation method of thermochromic coatings |
CN109575797B (en) * | 2018-11-12 | 2021-02-12 | 中国科学院上海硅酸盐研究所 | Color development adjustable vanadium dioxide-based thermochromic composite material and application thereof |
KR20220010361A (en) | 2020-07-17 | 2022-01-25 | 삼성전자주식회사 | Thermal interfacial material paste and semiconductor package |
CN114573935B (en) * | 2022-01-25 | 2023-09-26 | 青岛至慧新材料科技有限公司 | Thermochromic sheet material and preparation process and application thereof |
CN114920295B (en) * | 2022-06-06 | 2023-10-24 | 济南大学 | Thermochromic composite nanomaterial, preparation method and application thereof, and composite film formed by thermochromic composite nanomaterial |
CN117343585B (en) * | 2023-10-29 | 2024-12-06 | 董理 | Energy-saving intelligent control building water-based paint composition |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2082005B9 (en) * | 2006-09-01 | 2013-05-22 | Pleotint, L.L.C. | Ligand exchange thermochromic, (letc), systems |
CN103173208A (en) * | 2013-04-17 | 2013-06-26 | 中国科学院上海硅酸盐研究所 | Thermochromic composite nanometer powder as well as preparation method and use thereof |
CN103242821B (en) * | 2013-05-21 | 2014-12-24 | 中国科学院上海硅酸盐研究所 | Thermochromic composite powder with core-shell structure and preparation method of powder |
CN103525320B (en) * | 2013-10-16 | 2015-08-19 | 中国科学院上海硅酸盐研究所 | Thermochromism PVB intermediate coat and preparation method thereof |
CN105088198A (en) * | 2014-05-23 | 2015-11-25 | 武汉理工大学 | Method for preparing vanadium dioxide thermochromic thin film |
-
2016
- 2016-02-29 CN CN201610111203.7A patent/CN105713597B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105713597A (en) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105713597B (en) | A kind of composite type heat mutagens mill base material and preparation method thereof | |
Zhu et al. | Composite film of vanadium dioxide nanoparticles and ionic liquid–nickel–chlorine complexes with excellent visible thermochromic performance | |
Zhang et al. | A novel bidirectional fast self-responsive PVA-PNIPAM/LimCsnWO3 composite hydrogel for smart window applications | |
CN103242821B (en) | Thermochromic composite powder with core-shell structure and preparation method of powder | |
Chen et al. | Core-shell structured CsxWO3@ ZnO with excellent stability and high performance on near-infrared shielding | |
CN101168624B (en) | Intelligent temperature-control functional mica nacreous pigment with multi-layer structure and preparation thereof | |
Chen et al. | VO2/Nickel-bromine-ionic liquid composite film for thermochromic application | |
CN105694615A (en) | High-performance vanadium-dioxide-based thermochromism composite | |
CN104495928B (en) | A kind of preparation method of vanadium dioxide/zinc-oxide nano composite granule | |
CN108300002B (en) | Vanadium dioxide-based thermochromic solid-liquid composite material and preparation method and application thereof | |
CN103978203B (en) | A kind of spectrum local decorated thermocolour composite nano-powder and preparation method thereof | |
CN103173208A (en) | Thermochromic composite nanometer powder as well as preparation method and use thereof | |
CN113185140A (en) | Vanadium dioxide-based thermochromic composite film and preparation method thereof | |
Wen et al. | Mg‐Doped VO2@ ZrO2 Core− Shell Nanoflakes for Thermochromic Smart Windows with Enhanced Performance | |
CN103554997A (en) | Carbon-coated vanadium dioxide nanoparticles and preparation method thereof | |
Roy et al. | Smart glazing thermal comfort improvement through near-infrared shielding paraffin incorporated SnO2-Al2O3 composite | |
CN109913071B (en) | A temperature-controlled composite energy-saving material | |
Xu et al. | Anisotropic localized surface plasmon resonance of vanadium dioxide rods in flexible thermochromic film towards multifunctionality | |
Wang et al. | Durable and scalable superhydrophobic colored composite coating for subambient daytime radiative cooling | |
CN113355030B (en) | Preparation method of intelligent dimming glass color-changing heat insulation adhesive film based on quantum dots | |
CN104724757B (en) | Method for direct synthesis of rutile phase vanadium dioxide nanopowders based on solvothermal low temperature | |
CN103173207B (en) | Thermochromic composite nanometer powder preparation method | |
Zhou et al. | VO2 Nanoparticles‐Based Thermochromic Smart Windows | |
Wang et al. | Ion substitution strategy toward spectral tunability of environmentally friendly rare earth sulfide lattices for radiative cooling | |
Xu et al. | Thermochromic hydrogel-based energy efficient smart windows: fabrication, mechanisms, and advancements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |