[go: up one dir, main page]

CN105701777B - A kind of spiral-fault radiotherapy image quality improving method - Google Patents

A kind of spiral-fault radiotherapy image quality improving method Download PDF

Info

Publication number
CN105701777B
CN105701777B CN201610012166.4A CN201610012166A CN105701777B CN 105701777 B CN105701777 B CN 105701777B CN 201610012166 A CN201610012166 A CN 201610012166A CN 105701777 B CN105701777 B CN 105701777B
Authority
CN
China
Prior art keywords
mrow
image
matrix
msubsup
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610012166.4A
Other languages
Chinese (zh)
Other versions
CN105701777A (en
Inventor
史振威
林浩宁
夏廷毅
吴伟章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610012166.4A priority Critical patent/CN105701777B/en
Publication of CN105701777A publication Critical patent/CN105701777A/en
Application granted granted Critical
Publication of CN105701777B publication Critical patent/CN105701777B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20028Bilateral filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

一种螺旋断层放疗图像质量提高方法,它是涉及一种基于视网膜‑大脑皮层理论的螺旋断层放疗图像质量提高方法,它有四大步骤:步骤一:计算机在MATLAB环境下读取螺旋断层放疗图像;步骤二:对图像进行双边滤波去噪;步骤三:对图像进行基于视网膜‑大脑皮层理论的对比度提升;步骤四:使用高斯‑赛格尔迭代法对图像边缘进行增强。本发明解决了原螺旋断层放疗图像噪声较多、对比度差和边缘不清晰的问题,取得了较好的质量增强结果,在螺旋断层治疗领域里具有广阔的应用前景。

A method for improving the image quality of helical tomotherapy, which relates to a method for improving the quality of helical tomotherapy images based on retina-cerebral cortex theory, it has four major steps: Step 1: computer reads the image of helical tomotherapy under MATLAB environment ; Step 2: Perform bilateral filtering and denoising on the image; Step 3: Enhance the contrast of the image based on the retina-cerebral cortex theory; Step 4: Use the Gauss-Segel iterative method to enhance the edge of the image. The invention solves the problems of high noise, poor contrast and unclear edges of the original spiral tomographic radiotherapy image, achieves better quality enhancement results, and has broad application prospects in the field of spiral tomographic therapy.

Description

一种螺旋断层放疗图像质量提高方法A method for improving the image quality of helical tomotherapy

(一)技术领域:(1) Technical field:

本发明提供一种螺旋断层放疗图像质量提高方法,它涉及一种基于视网膜-大脑皮层理论的螺旋断层放疗图像质量提高方法,属于医学图像处理领域。The invention provides a method for improving the image quality of helical tomotherapy, which relates to a method for improving the quality of helical tomotherapy images based on the retina-cerebral cortex theory, and belongs to the field of medical image processing.

(二)背景技术:(two) background technology:

随着信息技术及医学影像成像技术的发展,医学图像处理在医学临床和科研中发挥着越来越重要的作用,有力地推动着医学科学研究和临床医疗的进步。其中,针对CT(Computed Tomography,即电子计算机断层扫描)图像的图像处理技术有着重要作用。而针对螺旋断层放疗(Tomo therapy)的兆伏级CT(MVCT,Mega-Voltage Computed Tomography)图像的图像处理的研究目前仍处于初期阶段。螺旋断层放疗是一种依托于螺旋断层放射治疗设备的癌症放射治疗方法,是当今最先进的肿瘤放射治疗技术。螺旋断层放疗是影像介导的三维调强放射治疗,它将直线加速器和螺旋整合起来,使治疗计划、患者摆位和治疗过程融为一体,能够治疗不同的靶区,从立体定向治疗小的肿瘤到全身治疗,均由单一的螺旋射线束完成,通过每次治疗所得的MVCT图像,可以观察到肿瘤剂量分布及在治疗过程中肿瘤的变化,及时调整靶体积的治疗计划。有着常规加速器放疗所无法比拟的优势,为放射治疗医师开辟了一个新的治疗平台,在调强放射治疗发展史上占有重要地位。然而,使用治疗射线获得的MVCT图像的成像会有一些局限:相对于普通的诊断CT扫描仪,MVCT需要在施用剂量和成像效果之间进行折衷。即,图像的噪声、亮度均衡性、对比度和分辨率都会受到剂量的影响,从而影响医生对患者病情的准确判断。With the development of information technology and medical imaging technology, medical image processing plays an increasingly important role in medical clinical and scientific research, and strongly promotes the progress of medical scientific research and clinical treatment. Among them, image processing technology for CT (Computed Tomography, ie computerized tomography) images plays an important role. However, research on image processing for mega-voltage computed tomography (MVCT, Mega-Voltage Computed Tomography) images for tomotherapy is still at an early stage. Helical tomotherapy is a cancer radiotherapy method based on helical tomotherapy equipment, and it is the most advanced tumor radiotherapy technology today. Helical tomotherapy is image-mediated three-dimensional intensity-modulated radiation therapy, which integrates linear accelerator and helix, integrates treatment planning, patient positioning and treatment process, and can treat different target areas, from stereotactic treatment to small The treatment from the tumor to the whole body is completed by a single helical ray beam. Through the MVCT images obtained from each treatment, the tumor dose distribution and the changes of the tumor during the treatment can be observed, and the treatment plan of the target volume can be adjusted in time. It has the incomparable advantages of conventional accelerator radiation therapy, opens up a new treatment platform for radiation therapists, and occupies an important position in the development history of intensity-modulated radiation therapy. However, the imaging of MVCT images obtained with therapeutic rays has some limitations: Compared with common diagnostic CT scanners, MVCT requires a compromise between administered dose and imaging effect. That is, the noise, brightness balance, contrast and resolution of the image will all be affected by the dose, thus affecting the doctor's accurate judgment of the patient's condition.

目前针对螺旋断层放疗图像进行处理的方法较为有限,大多将CT图像处理中的方法直接移植到螺旋断层放疗图像的处理中。常见的有像素级的线性、非线性函数操作、直方图均衡算法、带有去噪效果的均值滤波、中值滤波方法,较为近期的自适应滤波、小波收缩等等方法、基于直方图均衡的改进算法和基于背景方差的中心/周围方法等等。这些方法都是针对CT图像甚至普通图像的普适方法,很难针对螺旋断层放疗图像的特点进行图像处理。本发明使用双边滤波方法,并根据视网膜-大脑皮层(Retinex)理论对螺旋断层放疗图像进行增强,同时使用基于泊松方程(Poisson Image Editing)的高斯-赛德尔迭代法的边缘增强方法,对现有的螺旋断层放疗图像进行增强,达到期望效果。At present, there are limited methods for processing helical tomotherapy images, and most of the methods in CT image processing are directly transplanted to the processing of helical tomotherapy images. Common ones include pixel-level linear and nonlinear function operations, histogram equalization algorithms, mean filtering and median filtering methods with denoising effects, relatively recent adaptive filtering, wavelet shrinkage and other methods, and methods based on histogram equalization. Improved algorithms and center/surround methods based on background variance and more. These methods are universal methods for CT images and even ordinary images, and it is difficult to perform image processing for the characteristics of helical tomotherapy images. The present invention uses a bilateral filtering method, and enhances the helical tomographic radiotherapy image according to the retina-cerebral cortex (Retinex) theory. Some helical tomotherapy images are enhanced to achieve the desired effect.

(三)发明内容:(3) Contents of the invention:

1、目的:本发明的目的是提供一种基于视网膜-大脑皮层理论的螺旋断层放疗图像质量增强方法,该方法利用双边滤波方法、视网膜-大脑皮层理论、高斯-赛德尔迭代法对螺旋断层放疗图像进行图像质量提高,解决螺旋断层放疗图像的噪声较多、对比度低和边缘不清晰的问题。1. Purpose: The purpose of the present invention is to provide a method for enhancing the image quality of helical tomotherapy based on the retina-cerebral cortex theory. The image quality is improved to solve the problems of more noise, low contrast and unclear edges in the helical tomotherapy image.

2、技术方案:本发明是通过以下技术方案实现的:2. Technical solution: the present invention is achieved through the following technical solutions:

本发明提供一种基于视网膜-大脑皮层理论的螺旋断层放疗图像质量提高方法,它是一种利用双边滤波方法、视网膜-大脑皮层理论和高斯-赛德尔迭代法对螺旋断层放疗图像进行图像质量提高的方法。该方法的具体步骤如下:The invention provides a method for improving the image quality of helical tomographic radiotherapy based on the retina-cerebral cortex theory, which is a method for improving the image quality of helical tomographic radiotherapy images by using the bilateral filtering method, the retina-cerebral cortex theory and the Gauss-Seidel iterative method Methods. The concrete steps of this method are as follows:

步骤一:首先通过螺旋断层放疗仪器输出计算机数字图像,然后使用Matlab语言中的imread函数读取该图像,将其信息转为Matlab矩阵形式,使Matlab语言可以对其进行处理;Step 1: first output the computer digital image through the helical tomotherapy instrument, then use the imread function in the Matlab language to read the image, and convert its information into a Matlab matrix form, so that the Matlab language can process it;

本发明中的螺旋断层放疗图像为512像素*512像素*c通道的数字图像,即读入的矩阵数据为512*512*c维度;其中符号c表示该图像中包含的断层数量,每一断层为一幅灰度图像,c通道数目的断层图像堆叠成完整的螺旋断层放疗图像;本方法没有使用通道之间的关联信息,所以以下步骤均是在单幅断层图像上完成;为方便说明,以下使用大写字母I表示图像被Matlab读入后的矩阵数据其中的某一通道(即512*512维度的矩阵);上标数字表明本方法中不同步骤的中间图像矩阵数据,如I0表示原始图像矩阵数据;使用下标表示矩阵中某一元素(对应图像中的某个坐标上的像素),即Ix,y表示矩阵I中位于坐标(x,y)的元素;The spiral tomotherapy image in the present invention is a digital image of 512 pixels*512 pixels*c channel, that is, the matrix data read in is 512*512*c dimension; wherein the symbol c represents the number of faults contained in the image, and each fault It is a gray-scale image, and the tomographic images of the c-channel number are stacked to form a complete helical tomotherapy image; this method does not use the correlation information between channels, so the following steps are all completed on a single tomographic image; for the convenience of explanation, The capital letter I is used below to represent a certain channel of the matrix data after the image is read by Matlab (that is, a matrix of 512*512 dimensions); the superscript number indicates the intermediate image matrix data of different steps in this method, such as I 0 represents the original Image matrix data; use a subscript to represent a certain element in the matrix (the pixel on a certain coordinate in the corresponding image), that is, I x, y represent the element at the coordinates (x, y) in the matrix I;

步骤二:在Matlab软件中,对上一步骤读入的矩阵(即I0)进行如下运算:Step 2: In the Matlab software, perform the following operations on the matrix (i.e. I 0 ) read in in the previous step:

其中,Ω表示(x,y)坐标的邻域范围,坐标(i,j)满足(i,j)∈Ω;权重系数w的取值为值域权重与空间域权重的乘积;该步骤为图像的双边滤波操作,可以在保持图像边缘的同时有良好的去噪效果;Among them, Ω represents the neighborhood range of (x, y) coordinates, and coordinates (i, j) satisfy (i, j) ∈ Ω; the value of the weight coefficient w is the range weight and spatial domain weights The product; this step is the bilateral filtering operation of the image, which can have a good denoising effect while maintaining the edge of the image;

步骤三:在Matlab软件中,对上一步骤的矩阵进行如下操作:Step 3: In Matlab software, perform the following operations on the matrix in the previous step:

其中,a,b,c为超参数,由手动设置,并有:Among them, a, b, c are hyperparameters, set manually, and have:

这里,符号*代表卷积,符号G表示高斯核,即分母为分子高斯核模糊后的图像;该步骤即为改进的Retinex算法,它没有采用以往常见的Retinex方法中采用的对数形式,而是使用了新的曲线函数形式;Here, the symbol * represents convolution, and the symbol G represents the Gaussian kernel, that is, the denominator is the image blurred by the numerator Gaussian kernel; this step is the improved Retinex algorithm, which does not use the logarithmic form used in the previous common Retinex method, but is to use a new curve function form;

步骤四:首先,使用Matlab中的索贝尔算子函数,对矩阵I2进行操作,获得的边缘图像矩阵标记为Gra;Step 4: At first, use the Sobel operator function in Matlab, matrix I 2 is operated, and the edge image matrix that obtains is marked as Gra;

然后,对边缘图像矩阵Gra进行逐像素遍历,寻找邻域内的边缘最大值,得到矩阵GraM来标记当前位置是否为矩阵Gra中的邻域最大值,再通过:Then, the edge image matrix Gra is traversed pixel by pixel to find the maximum value of the edge in the neighborhood, and the matrix Gra M is obtained to mark whether the current position is the maximum value of the neighborhood in the matrix Gra, and then pass:

更新矩阵Gra,其中fx,y为一以当前点(x,y)距离最近边缘最大点的距离为自变量的自定义函数,该函数值当与最近邻的边缘最大值点距离较小时大于1;距离较大时小于1,这样可以使新的Gra1相对应的边缘图像中的边缘的分布变窄、峰值变高;Update the matrix Gra, where f x, y is a self-defined function that takes the distance from the current point (x, y) to the maximum point of the nearest edge as an independent variable, and the value of this function is greater than 1; when the distance is larger, it is less than 1, so that the distribution of the edge in the edge image corresponding to the new Gra 1 can be narrowed and the peak value can be increased;

最后,使用高斯-赛德尔迭代方法,利用矩阵Gra1反推出边缘增强的图像,步骤如下:Finally, using the Gauss-Seidel iterative method, the matrix Gra 1 is used to deduce the edge-enhanced image, and the steps are as follows:

1.对矩阵Gra1再次进行差分运算,得到目标图像的二阶导图像矩阵Lap;1. Carry out the differential operation again on the matrix Gra 1 to obtain the second-order derivative image matrix Lap of the target image;

2.初始化矩阵dst0=I2 2. Initialize matrix dst 0 = I 2

3.反复进行如下迭代,直到迭代次数达到5次,其中n为迭代次数,n=0,1,2…:3. Repeat the following iterations until the number of iterations reaches 5, where n is the number of iterations, n=0,1,2...:

1) 1)

2) 2)

经过以上步骤迭代,获得最终图像,完成对螺旋断层放疗图像的质量提高。After the above steps are iterated, the final image is obtained, and the quality improvement of the helical tomotherapy image is completed.

3、优点及功效:本方法同时将双边滤波、改进的视网膜-大脑皮层理论与高斯-赛德尔迭代法对螺旋断层放疗图像进行增强。由图2可见,处理后图像的像素灰度值变化频率降低,变化幅度增大,说明本方法既可以有效去除图像中的噪点,也可以提高对比度,同时可以使图像中的边缘更加清晰。3. Advantages and efficacy: This method simultaneously enhances the helical tomotherapy images by bilateral filtering, improved retina-cerebral cortex theory and Gauss-Seidel iterative method. It can be seen from Figure 2 that the pixel gray value change frequency of the processed image decreases and the change range increases, which shows that this method can not only effectively remove the noise in the image, but also improve the contrast, and at the same time make the edge of the image clearer.

(四)附图说明:(4) Description of drawings:

图1本发明所述方法流程图。Fig. 1 is a flow chart of the method of the present invention.

图2本发明所述方法效果对比图。Fig. 2 is a comparative diagram of the method effects of the present invention.

(五)具体实施方式:(5) Specific implementation methods:

本发明一种基于视网膜-大脑皮层理论的螺旋断层放疗图像质量提高方法,见图1所示,其步骤如下:A method for improving the image quality of spiral tomotherapy based on the retina-cerebral cortex theory of the present invention is shown in Figure 1, and its steps are as follows:

步骤一:首先通过螺旋断层放疗仪器输出计算机数字图像,然后使用Matlab语言中的imread函数读取该图像,将其信息转为Matlab矩阵形式,使Matlab语言可以对其进行处理。Step 1: first output computer digital images through the helical tomotherapy apparatus, then use the imread function in Matlab language to read the image, and convert its information into Matlab matrix form, so that Matlab language can process it.

本发明中的螺旋断层放疗图像为512像素*512像素*c通道的数字图像,即读入的矩阵数据为512*512*c维度。其中符号c表示该图像中包含的断层数量,每一断层为一幅灰度图像,c通道数目的断层图像堆叠成完整的螺旋断层放疗图像。本方法没有使用通道之间的关联信息,所以以下步骤均是在单幅断层图像上完成。为方便说明,以下使用大写字母I表示图像被Matlab读入后的矩阵数据其中的某一通道(即512*512维度的矩阵);上标数字表明本方法中不同步骤的中间图像矩阵数据,如I0表示原始图像矩阵数据;使用下标表示矩阵中某一元素(对应图像中的某个坐标上的像素),即Ix,y表示矩阵I中位于坐标(x,y)的元素。The helical tomotherapy image in the present invention is a digital image of 512 pixels*512 pixels*c channel, that is, the read-in matrix data has dimensions of 512*512*c. The symbol c represents the number of slices contained in the image, each slice is a grayscale image, and the slice images with the number of c channels are stacked to form a complete helical tomotherapy image. This method does not use the correlation information between channels, so the following steps are all completed on a single tomographic image. For convenience of description, the capital letter I is used below to represent a certain channel (ie, a matrix of 512*512 dimensions) in the matrix data after the image is read in by Matlab; the superscript numbers indicate the intermediate image matrix data of different steps in the method, such as I 0 represents the original image matrix data; use a subscript to represent a certain element in the matrix (corresponding to a pixel on a certain coordinate in the image), that is, I x, y represent the element at the coordinate (x, y) in the matrix I.

步骤二:在Matlab软件中,对上一步骤读入的矩阵(即I0)进行如下运算:Step 2: In the Matlab software, perform the following operations on the matrix (i.e. I 0 ) read in in the previous step:

其中,Ω表示(x,y)坐标的邻域范围,坐标(i,j)满足(i,j)∈Ω。权重系数w的取值为值域权重与空间域权重的乘积。该步骤为图像的双边滤波操作,可以在保持图像边缘的同时有良好的去噪效果。Among them, Ω represents the neighborhood range of (x, y) coordinates, and coordinates (i, j) satisfy (i, j)∈Ω. The value of the weight coefficient w is the range weight and spatial domain weights product of . This step is a bilateral filtering operation of the image, which can have a good denoising effect while maintaining the edge of the image.

步骤三:在Matlab软件中,对上一步骤的矩阵进行如下操作:Step 3: In Matlab software, perform the following operations on the matrix in the previous step:

其中,a,b,c为超参数,由手动设置,并有:Among them, a, b, c are hyperparameters, set manually, and have:

这里,符号*代表卷积,符号G表示高斯核,即分母为分子高斯核模糊后的图像。该步骤即为改进的Retinex算法,它没有采用以往常见的Retinex方法中采用的对数形式,而是使用了新的曲线函数形式。Here, the symbol * represents convolution, and the symbol G represents the Gaussian kernel, that is, the image after the denominator is blurred by the numerator Gaussian kernel. This step is the improved Retinex algorithm, which does not use the logarithmic form used in the previous common Retinex method, but uses a new curve function form.

步骤四:首先,使用Matlab中的索贝尔算子函数,对矩阵I2进行操作,获得的边缘图像矩阵标记为Gra。Step 4: First, use the Sobel operator function in Matlab to operate on the matrix I2 , and the obtained edge image matrix is marked as Gra.

然后,对边缘图像矩阵Gra进行逐像素遍历,寻找邻域内的边缘最大值,得到矩阵GraM来标记当前位置是否为矩阵Gra中的邻域最大值。再通过:Then, the edge image matrix Gra is traversed pixel by pixel to find the maximum value of the edge in the neighborhood, and the matrix Gra M is obtained to mark whether the current position is the maximum value of the neighborhood in the matrix Gra. Then pass:

更新矩阵Gra,其中fx,y为一以当前点(x,y)距离最近边缘最大点的距离为自变量的自定义函数,该函数值当与最近邻的边缘最大值点距离较小时大于1,距离较大时小于1,这样可以使新的Gra1相对应的边缘图像中的边缘的分布变窄、峰值变高。Update the matrix Gra, where f x, y is a self-defined function that takes the distance from the current point (x, y) to the maximum point of the nearest edge as an independent variable, and the value of this function is greater than 1. When the distance is larger, it is less than 1, so that the distribution of edges in the edge image corresponding to the new Gra 1 can be narrowed and the peak value can be increased.

最后,使用高斯-赛德尔迭代方法,利用矩阵Gra1反推出边缘增强的图像,步骤如下:Finally, using the Gauss-Seidel iterative method, the matrix Gra 1 is used to deduce the edge-enhanced image, and the steps are as follows:

4.对矩阵Gra1再次差分,得到目标图像的二阶导图像矩阵Lap;4. Differentiate the matrix Gra 1 again to obtain the second-order derivative image matrix Lap of the target image;

5.初始化矩阵dst0=I2 5. Initialize matrix dst 0 = I 2

6.反复进行如下迭代,直到迭代次数达到5次,其中n为迭代次数,n=0,1,2…:6. Repeat the following iterations until the number of iterations reaches 5, where n is the number of iterations, n=0,1,2...:

3) 3)

4) 4)

经过以上步骤迭代,获得最终图像,完成对螺旋断层放疗图像的质量提高。After the above steps are iterated, the final image is obtained, and the quality improvement of the helical tomotherapy image is completed.

有益效果:Beneficial effect:

实验结果:为了验证本发明的有效性,我们使用该方法进行实验,取得了较好的增强效果。本发明实验所用数据为来自螺旋断层治疗仪输出的图像,分析图2可见,利用所发明的方法,得到了比较理想的图像质量增强结果,不仅有效地去除了图像中的噪声,也使图像对比度提高,边缘也更加清晰明确。Experimental results: In order to verify the effectiveness of the present invention, we used this method to conduct experiments and achieved a better enhancement effect. The data used in the experiment of the present invention is the image output from the helical tomography apparatus, and it can be seen from the analysis of Figure 2 that by using the invented method, a relatively ideal image quality enhancement result is obtained, which not only effectively removes the noise in the image, but also improves the image contrast. Enhanced, the edges are also more defined.

从实验结果来看,我们发明的方法很好的解决了螺旋断层治疗仪输出的图像质量较差的问题,将本方法与螺旋断层治疗仪相结合,可以有效提高医护人员使用治疗仪的效率,具有广阔的应用前景和价值。From the experimental results, the method we invented has solved the problem of poor image quality output by the helical tomotherapy instrument. Combining this method with the helical tomotherapy instrument can effectively improve the efficiency of medical staff in using the treatment instrument. It has broad application prospects and value.

Claims (1)

1.一种螺旋断层放疗图像质量提高方法,它是涉及一种基于视网膜-大脑皮层理论的螺旋断层放疗图像质量提高方法,其特征在于:该方法的具体步骤如下:1. a method for improving the image quality of helical tomotherapy, it relates to a method for improving the quality of helical tomotherapy images based on the retina-cerebral cortex theory, it is characterized in that: the specific steps of the method are as follows: 步骤一:首先通过螺旋断层放疗仪器输出计算机数字图像,然后使用Matlab语言中的imread函数读取该图像,将其信息转为Matlab矩阵形式,使用Matlab语言对其进行处理;Step 1: first output the computer digital image through the helical tomotherapy instrument, then use the imread function in the Matlab language to read the image, convert its information into a Matlab matrix form, and use the Matlab language to process it; 螺旋断层放疗图像为512像素*512像素*R通道的数字图像,即读入的矩阵数据为512*512*R维度;其中符号R表示该图像中包含的断层数量,每一断层为一幅灰度图像,R通道数目的断层图像堆叠成完整的螺旋断层放疗图像;以下使用大写字母I表示图像被Matlab读入后的矩阵数据其中的某一通道,即512*512维度的矩阵;上标数字表明不同步骤的中间图像矩阵数据,如I0表示原始图像矩阵数据;使用下标表示矩阵中某一元素,即对应图像中的某个坐标上的像素,即Ix,y表示矩阵I中位于坐标(x,y)的元素;The helical tomotherapy image is a digital image of 512 pixels*512 pixels*R channel, that is, the matrix data read in is 512*512*R dimensions; the symbol R indicates the number of faults contained in the image, and each fault is a gray The tomographic image with the number of R channels is stacked into a complete helical tomotherapy image; the capital letter I is used below to indicate a certain channel of the matrix data after the image is read into Matlab, that is, a matrix of 512*512 dimensions; superscript numbers Indicates the intermediate image matrix data of different steps, such as I 0 represents the original image matrix data; use a subscript to represent an element in the matrix, that is, a pixel on a certain coordinate in the corresponding image, that is, I x, y represents the position in the matrix I elements of coordinates (x, y); 步骤二:在Matlab软件中,对上一步骤读入的矩阵,即I0进行如下运算:Step 2: In the Matlab software, the matrix read in in the previous step, i.e. I 0 is carried out as follows: <mrow> <msubsup> <mi>I</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Sigma;</mi> <mi>&amp;Omega;</mi> </msub> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mi>w</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;Sigma;</mi> <mi>&amp;Omega;</mi> </msub> <mi>w</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msubsup><mi>I</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mn>1</mn></msubsup><mo>=</mo><mfrac><mrow><msub><mi>&amp;Sigma;</mi><mi>&amp;Omega;</mi></msub><msubsup><mi>I</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow><mn>0</mn></msubsup><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow></mrow><mrow><msub><mi>&amp;Sigma;</mi><mi>&amp;Omega;</mi></msub><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>i</mi><mo>,</mo><mi>j</mi>mi><mo>)</mo></mrow></mrow></mfrac></mrow> 其中,Ω表示(x,y)坐标的邻域范围,坐标(i,j)满足(i,j)∈Ω;权重系数w的取值为值域权重与空间域权重的乘积;该步骤为图像的双边滤波操作,在保持图像边缘的同时有良好的去噪效果;Among them, Ω represents the neighborhood range of (x, y) coordinates, and coordinates (i, j) satisfy (i, j)∈Ω; the value of the weight coefficient w is the range weight and spatial domain weights The product; this step is the bilateral filtering operation of the image, which has a good denoising effect while maintaining the edge of the image; 步骤三:在Matlab软件中,对上一步骤的矩阵进行如下操作:Step 3: In Matlab software, perform the following operations on the matrix in the previous step: <mrow> <msubsup> <mi>I</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>a</mi> <mo>*</mo> <msub> <mi>R</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mo>+</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mi>c</mi> <mo>)</mo> </mrow> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow><msubsup><mi>I</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><mrow><mo>(</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><mi>exp</mi><mrow><mo>(</mo><mo>-</mo><mi>a</mi><mo>*</mo><msub><mi>R</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mo>+</mo><mi>b</mi><mo>)</mo></mrow></mrow></mfrac><mo>+</mo><mi>c</mi><mo>)</mo></mrow><mrow><mi>c</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow> 其中,a,b,c为超参数,由手动设置,并有:Among them, a, b, c are hyperparameters, set manually, and have: <mrow> <msub> <mi>R</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msubsup> <mi>I</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> <mrow> <msubsup> <mi>I</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> <mo>*</mo> <mi>G</mi> </mrow> </mfrac> </mrow> <mrow><msub><mi>R</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mo>=</mo><mfrac><msubsup><mi>I</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mn>1</mn></msubsup><mrow><msubsup><mi>I</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mn>1</mn></msubsup><mo>*</mo><mi>G</mi></mrow></mfrac></mrow> 这里,符号*代表卷积,符号G表示高斯核,即分母为分子高斯核模糊后的图像;该步骤即为改进的Retinex算法,它没有采用以往常见的Retinex方法中采用的对数形式,而是使用了新的曲线函数形式;Here, the symbol * represents convolution, and the symbol G represents the Gaussian kernel, that is, the denominator is the image blurred by the numerator Gaussian kernel; this step is the improved Retinex algorithm, which does not use the logarithmic form used in the previous common Retinex method, but is to use a new curve function form; 步骤四:首先,使用Matlab中的索贝尔算子函数,对矩阵I2进行操作,获得的边缘图像矩阵标记为Gra;Step 4: At first, use the Sobel operator function in Matlab, matrix I 2 is operated, and the edge image matrix that obtains is marked as Gra; 然后,对边缘图像矩阵Gra进行逐像素遍历,寻找邻域内的边缘最大值,得到矩阵GraM来标记各个元素是否为矩阵Gra中的邻域最大值,再通过:Then, the edge image matrix Gra is traversed pixel by pixel to find the maximum value of the edge in the neighborhood, and the matrix Gra M is obtained to mark whether each element is the maximum value of the neighborhood in the matrix Gra, and then pass: <mrow> <msubsup> <mi>Gra</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mn>1</mn> </msubsup> <mo>=</mo> <msub> <mi>Gra</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>f</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> </mrow> <mrow><msubsup><mi>Gra</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow><mn>1</mn></msubsup><mo>=</mo><msub><mi>Gra</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub><mo>&amp;CenterDot;</mo><msub><mi>f</mi><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></msub></mrow> 更新矩阵Gra,其中fx,y为一以当前点(x,y)距离最近边缘最大值点的距离为自变量的自定义函数,若当前点(x,y)与最近边缘最大值点距离较小时,该函数值大于1;若当前点(x,y)与最近边缘最大值点距离较大时,该函数值小于1;这样使新的Gra1相对应的边缘图像中的边缘的分布变窄、峰值变高;Update the matrix Gra, where f x, y is a custom function that takes the distance from the current point (x, y) to the nearest edge maximum point as an argument, if the distance between the current point (x, y) and the nearest edge maximum point When it is small, the value of this function is greater than 1; if the distance between the current point (x, y) and the maximum point of the nearest edge is large, the value of this function is less than 1; in this way, the distribution of the edge in the edge image corresponding to the new Gra 1 narrower and higher peaks; 最后,使用高斯-赛德尔迭代方法,利用矩阵Gra1反推出边缘增强的图像,步骤如下:Finally, using the Gauss-Seidel iterative method, the matrix Gra 1 is used to deduce the edge-enhanced image, and the steps are as follows: 步骤4.1:对矩阵Gra1再次进行差分运算,得到目标图像的二阶导图像矩阵Lap;Step 4.1: Perform a differential operation on the matrix Gra 1 again to obtain the second-order derivative image matrix Lap of the target image; 步骤4.2:初始化矩阵dst0=I2 Step 4.2: Initialize matrix dst 0 =I 2 步骤4.3:反复进行如下迭代,直到迭代次数达到5次,其中n为迭代次数,n=0,1,2…:Step 4.3: Repeat the following iterations until the number of iterations reaches 5, where n is the number of iterations, n=0,1,2...: 1) 1) 2) 2) 经过以上步骤迭代,获得最终图像,完成对螺旋断层放疗图像的质量提高。After the above steps are iterated, the final image is obtained, and the quality improvement of the helical tomotherapy image is completed.
CN201610012166.4A 2016-01-08 2016-01-08 A kind of spiral-fault radiotherapy image quality improving method Expired - Fee Related CN105701777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610012166.4A CN105701777B (en) 2016-01-08 2016-01-08 A kind of spiral-fault radiotherapy image quality improving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610012166.4A CN105701777B (en) 2016-01-08 2016-01-08 A kind of spiral-fault radiotherapy image quality improving method

Publications (2)

Publication Number Publication Date
CN105701777A CN105701777A (en) 2016-06-22
CN105701777B true CN105701777B (en) 2018-04-27

Family

ID=56226984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610012166.4A Expired - Fee Related CN105701777B (en) 2016-01-08 2016-01-08 A kind of spiral-fault radiotherapy image quality improving method

Country Status (1)

Country Link
CN (1) CN105701777B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112102333B (en) * 2020-09-02 2022-11-04 合肥工业大学 Ultrasound region segmentation method and system for B-ultrasound DICOM images

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184403A (en) * 2011-05-20 2011-09-14 北京理工大学 Optimization-based intrinsic image extraction method
CN102682436A (en) * 2012-05-14 2012-09-19 陈军 Image enhancement method on basis of improved multi-scale Retinex theory

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009012659A1 (en) * 2007-07-26 2009-01-29 Omron Corporation Digital image processing and enhancing system and method with function of removing noise

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184403A (en) * 2011-05-20 2011-09-14 北京理工大学 Optimization-based intrinsic image extraction method
CN102682436A (en) * 2012-05-14 2012-09-19 陈军 Image enhancement method on basis of improved multi-scale Retinex theory

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种改进的Retinex彩色图像增强方法;李小鹏 等;《兰州交通大学学报》;20150228;第34卷(第1期);第55-59、70页 *
基于双边滤波的Retinex图像增强算法;胡韦伟;《工程图学学报》;20100630(第2期);第104-109页 *

Also Published As

Publication number Publication date
CN105701777A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
Huang et al. Metal artifact reduction on cervical CT images by deep residual learning
CN105321155A (en) Ring artifact elimination method for CBCT image
Li et al. Incorporation of residual attention modules into two neural networks for low‐dose CT denoising
Cui et al. Learning-based artifact removal via image decomposition for low-dose CT image processing
Gou et al. Gradient regularized convolutional neural networks for low-dose CT image enhancement
CN110599530B (en) MVCT image texture enhancement method based on double regular constraints
CN103606135A (en) Medical image enhancement processing method
Du et al. Stacked competitive networks for noise reduction in low-dose CT
Yuan et al. Head and neck synthetic CT generated from ultra‐low‐dose cone‐beam CT following Image Gently Protocol using deep neural network
Zheng et al. CTLformer: A Hybrid Denoising Model Combining Convolutional Layers and Self-Attention for Enhanced CT Image Reconstruction
Wu et al. Masked joint bilateral filtering via deep image prior for digital X-ray image denoising
Yao et al. Micro-CT image denoising with an asymmetric perceptual convolutional network
CN102024267A (en) Low-dose computed tomography (CT) image processing method based on wavelet space directional filtering
Kim et al. Wavelet subband-specific learning for low-dose computed tomography denoising
CN105184741A (en) Three-dimensional CBCT (cone-beam computed tomography) image denoising method on the basis of improved nonlocal means
Liu et al. A practical PET/CT data visualization method with dual-threshold PET colorization and image fusion
CN105701777B (en) A kind of spiral-fault radiotherapy image quality improving method
Shi et al. Fast shading correction for cone-beam CT via partitioned tissue classification
Ramlal et al. Multimodal medical image fusion using nonsubsampled shearlet transform and smallest uni-value segment assimilating nucleus
Xie et al. Generation of contrast-enhanced CT with residual cycle-consistent generative adversarial network (Res-CycleGAN)
Byeon et al. RETRACTED ARTICLE: Non-sample fuzzy based convolutional neural network model for noise artifact in biomedical images
CN111477304A (en) Tumor irradiation imaging combination method for fusing PET (positron emission tomography) image and MRI (magnetic resonance imaging) image
Zheng et al. Improving spatial adaptivity of nonlocal means in low‐dosed CT imaging using pointwise fractal dimension
CN116309647A (en) Brain lesion image segmentation model construction method, image segmentation method and equipment
Nam et al. A denoising model based on multi-agent reinforcement learning with data transformation for digital tomosynthesis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180427

CF01 Termination of patent right due to non-payment of annual fee