[go: up one dir, main page]

CN105691388B - A kind of Automotive active anti-collision system and its method for planning track - Google Patents

A kind of Automotive active anti-collision system and its method for planning track Download PDF

Info

Publication number
CN105691388B
CN105691388B CN201610023691.6A CN201610023691A CN105691388B CN 105691388 B CN105691388 B CN 105691388B CN 201610023691 A CN201610023691 A CN 201610023691A CN 105691388 B CN105691388 B CN 105691388B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610023691.6A
Other languages
Chinese (zh)
Other versions
CN105691388A (en
Inventor
赵万忠
徐志江
王春燕
崔滔文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610023691.6A priority Critical patent/CN105691388B/en
Publication of CN105691388A publication Critical patent/CN105691388A/en
Application granted granted Critical
Publication of CN105691388B publication Critical patent/CN105691388B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明公开了一种汽车主动避撞系统及其轨迹规划方法,系统包括前视雷达、摄像头、车速传感器、横摆角速度传感器、质心侧偏角传感器、信号处理模块、电子控制电源ECU、油门控制器、转向控制器、制动控制器。汽车在行驶过程中,电子控制单元实时采集各个传感器经信号处理模块传来的信号,并实时判断当前时刻汽车所处的路况与车况,如若此时可能发生危险情况,则ECU通过执行内部预先设定的轨迹规划程序产生一条连续无碰的可执行轨迹,并将相关信号输出到油门控制器、转向控制器与制动控制器进行相应操作,以避免危险情况的发生。本发明能够在紧急情况下辅助驾驶员对汽车进行操作,能够提高行车主动安全性能。

The invention discloses a vehicle active collision avoidance system and a trajectory planning method thereof. The system includes a forward-looking radar, a camera, a vehicle speed sensor, a yaw rate sensor, a center-of-mass side slip angle sensor, a signal processing module, an electronic control power supply ECU, and a throttle control controller, steering controller, brake controller. During the driving process of the car, the electronic control unit collects the signals from various sensors through the signal processing module in real time, and judges the current road conditions and vehicle conditions of the car in real time. If a dangerous situation may occur at this time, the ECU executes the internal preset The predetermined trajectory planning program generates a continuous non-collision executable trajectory, and outputs relevant signals to the accelerator controller, steering controller and brake controller for corresponding operations to avoid dangerous situations. The invention can assist the driver to operate the car in an emergency, and can improve the driving active safety performance.

Description

一种汽车主动避撞系统及其轨迹规划方法A vehicle active collision avoidance system and its trajectory planning method

技术领域technical field

本发明涉及汽车辅助驾驶领域,尤其涉及一种汽车主动避撞系统及其轨迹规划方法。The invention relates to the field of automobile auxiliary driving, in particular to an automobile active collision avoidance system and a trajectory planning method thereof.

背景技术Background technique

随着智能交通在全球范围的兴起,汽车辅助驾驶技术受到了越来越多的关注,其研究的主要目的在于降低日趋严重的交通事故发生率,提高现有道路交通效率。国际上众多的研究机构,工业设计单位对其研发过程正投入大量的人力、物力、财力来进行相关关键技术的研发。With the rise of intelligent transportation on a global scale, automobile assisted driving technology has received more and more attention. The main purpose of its research is to reduce the incidence of increasingly serious traffic accidents and improve the efficiency of existing road traffic. Numerous research institutions and industrial design units in the world are investing a lot of manpower, material and financial resources in the research and development process of related key technologies.

主动避撞系统作为汽车辅助驾驶技术的一项重要研究内容,其研究的主要目的是提高车辆驾驶的安全性能,其主要利用现代信息技术、传感技术来扩展驾驶人员的感知能力,将外界信息(如车速、障碍物距离、速度、方向等)传递给驾驶人员的同时综合利用车况与路况信息,判断汽车当前运行状况的安全程度,在紧急情况下能自动的采取措施控制汽车,使得汽车主动地避开危险,保证汽车安全行驶或最大可能的减小事故的伤害程度。汽车只有具备了这样的主动安全性能,才可能从根本上减少交通事故,提高交通安全。Active collision avoidance system is an important research content of automobile assisted driving technology. The main purpose of its research is to improve the safety performance of vehicle driving. It mainly uses modern information technology and sensor technology to expand the driver's perception ability and integrate external information (such as vehicle speed, obstacle distance, speed, direction, etc.) are transmitted to the driver while comprehensively utilizing the vehicle condition and road condition information to judge the safety of the current operating condition of the vehicle, and automatically take measures to control the vehicle in an emergency, so that the vehicle takes the initiative Avoid the danger as much as possible, ensure the safe driving of the car or reduce the degree of injury of the accident to the greatest possible extent. Only when the car has such active safety performance can it be possible to fundamentally reduce traffic accidents and improve traffic safety.

轨迹规划技术是主动避撞系统中的一项关键技术,要想实现对车辆的智能控制,其前提条件是就要生成可行的参考轨迹,并将轨迹的参数提供给跟踪控制器,以便于控制器能够控制汽车按照所规划的轨迹行驶,因此,如何在紧急情况下规划一条可行的无碰轨迹显得尤为重要。Trajectory planning technology is a key technology in the active collision avoidance system. In order to realize the intelligent control of the vehicle, the prerequisite is to generate a feasible reference trajectory and provide the parameters of the trajectory to the tracking controller to facilitate the control. The controller can control the car to drive according to the planned trajectory. Therefore, how to plan a feasible collision-free trajectory in an emergency is particularly important.

发明内容Contents of the invention

本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种汽车主动避撞系统及其轨迹规划方法,解决了在紧急情况下主动避撞系统的轨迹规划问题,通过软硬件相结合的方式在保证汽车操纵稳定性的同时有效的避开障碍物,避免交通事故的发生,实现了汽车的主动安全功能。The technical problem to be solved by the present invention is to provide a kind of automobile active collision avoidance system and its trajectory planning method for the defects involved in the background technology, which solves the trajectory planning problem of the active collision avoidance system in emergency situations. The combined method can effectively avoid obstacles and avoid traffic accidents while ensuring the steering stability of the car, and realizes the active safety function of the car.

本发明为解决上述技术问题采用以下技术方案:The present invention adopts the following technical solutions for solving the problems of the technologies described above:

一种汽车主动避撞系统,包含前视雷达、摄像头、信号处理模块、车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器、电子控制电源ECU、油门控制器、转向控制器和制动控制器;An active collision avoidance system for a car, including a forward-looking radar, a camera, a signal processing module, a vehicle speed sensor, a yaw rate sensor, a center-of-mass side slip angle sensor, a steering wheel angle sensor, an electronic control power supply ECU, a throttle controller, a steering controller and brake controller;

所述前视雷达、摄像头通过信号处理模块和所述电子控制电源ECU相连;所述电子控制电源ECU分别和、车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器、油门控制器、转向控制器、制动控制器相连;The forward-looking radar and the camera are connected to the electronic control power supply ECU through a signal processing module; , the steering controller and the brake controller are connected;

所述前视雷达与摄像头均安装在汽车前方,用于检测汽车前方的道路情况,并将所测得的信号经信号处理模块处理后传递给所述电子控制单元ECU;Both the forward-looking radar and the camera are installed in front of the car to detect the road conditions in front of the car, and the measured signal is processed by the signal processing module and then transmitted to the electronic control unit ECU;

所述车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器分别用于感应汽车的速度、横摆角速度、质心侧偏角和前轮转向角,并将采集到的信号经处理后送入到电子控制单元ECU;The vehicle speed sensor, the yaw rate sensor, the center of mass side slip angle sensor, and the steering wheel angle sensor are respectively used to sense the speed, yaw rate, center of mass side slip angle and front wheel steering angle of the vehicle, and the collected signals are processed Send to the electronic control unit ECU;

所述电子控制单元ECU用于根据接收到的信号输出相应的信号到油门控制器、转向控制器、制动控制器,进行相应加速、减速、制动操作,以保证行车安全。The electronic control unit ECU is used to output corresponding signals to the throttle controller, steering controller, and brake controller according to the received signals, and perform corresponding acceleration, deceleration, and braking operations to ensure driving safety.

本发明还公开了一种基于以上汽车主动避撞系统的轨迹规划方法,包含以下步骤:The present invention also discloses a trajectory planning method based on the above active collision avoidance system for automobiles, which includes the following steps:

步骤1),通过前视雷达与摄像头获取汽车前方障碍物的距离、速度、加速度和宽度,并将前方障碍物的与汽车之间的距离与预先设定的安全距离阈值对比,如果其小于预设的安全距离阈值,则执行步骤2);Step 1), obtain the distance, speed, acceleration and width of the obstacle in front of the car through the forward-looking radar and the camera, and compare the distance between the obstacle in front and the car with the preset safety distance threshold, if it is less than the preset Set the safety distance threshold, then perform step 2);

步骤2),通过车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器获取汽车的速度、横摆角速度、质心侧偏角和前轮转向角;Step 2), obtain the speed of the car, the yaw rate, the side slip angle of the center of mass and the front wheel steering angle through the vehicle speed sensor, the yaw rate sensor, the center of mass side slip angle sensor, and the steering wheel angle sensor;

步骤3),根据汽车的横摆角、前轮转向角、纵向速度、前轴与后轴之间的间距、以及后轴中点的纵向坐标和侧向坐标建立汽车三自由度运动学模型;Step 3), according to the yaw angle of the car, the steering angle of the front wheels, the longitudinal speed, the distance between the front axle and the rear axle, and the longitudinal and lateral coordinates of the midpoint of the rear axle, the three-degree-of-freedom kinematics model of the car is established;

步骤4),用七次多项式参数化待生成轨迹;Step 4), parameterize the trajectory to be generated with a polynomial of degree seven;

步骤5),根据汽车三自由度运动学模型和参数化的待生成轨迹设置轨迹优化模型约束条件、设定目标函数以及优化变量,并根据汽车的纵向速度、横摆角速度、质心侧偏角、前轮转向角、以及汽车前方障碍物距离、速度、加速度对其进行求解,得到轨迹优化模型;Step 5), according to the vehicle three-degree-of-freedom kinematics model and the parameterized trajectory to be generated, set the trajectory optimization model constraints, set the objective function and optimization variables, and according to the vehicle's longitudinal velocity, yaw rate, center of mass sideslip angle, The front wheel steering angle, and the distance, speed, and acceleration of obstacles in front of the car are solved to obtain the trajectory optimization model;

步骤6),基于动态粒子群优化算法,对所建立的轨迹优化模型进行求解,得到规划轨迹。Step 6), based on the dynamic particle swarm optimization algorithm, the established trajectory optimization model is solved to obtain the planned trajectory.

作为该汽车主动避撞系统的轨迹规划方法的进一步优化方案,根据以下公式建立步骤3)中所述的汽车三自由度运动学模型:As a further optimization scheme of the trajectory planning method of the vehicle active collision avoidance system, the vehicle three-degree-of-freedom kinematics model described in step 3) is established according to the following formula:

其中,x和y分别是汽车后轴中点的纵向坐标和侧向坐标,θ是汽车的横摆角,δ是汽车前轮转向角,v是汽车的纵向速度,l是汽车前轴与后轴之间的间距,t是轨迹规划的当前时间。Among them, x and y are the longitudinal coordinates and lateral coordinates of the midpoint of the rear axle of the car respectively, θ is the yaw angle of the car, δ is the steering angle of the front wheels of the car, v is the longitudinal speed of the car, and l is the distance between the front axle and the rear axle of the car. The spacing between the axes, t is the current time of trajectory planning.

作为该汽车主动避撞系统的轨迹规划方法的进一步优化方案,步骤5)中所述的七次多项式参数化的轨迹方程为:As a further optimization scheme of the trajectory planning method of this automobile active collision avoidance system, the trajectory equation of the seventh degree polynomial parameterization described in step 5) is:

其中,xd0、xd1、xd2、xd3、xd4、xd5、xd6、xd7、yd0、yd1、yd2、yd3、yd4、yd5、yd6、yd7是多项式的待定系数,(xd(t),yd(t))为待生成轨迹。Among them, x d0 , x d1 , x d2 , x d3 , x d4 , x d5 , x d6 , x d7 , y d0 , y d1 , y d2 , y d3 , y d4 , y d5 , y d6 , y d7 are Undetermined coefficients of the polynomial, (x d (t), y d (t)) is the trajectory to be generated.

作为该汽车主动避撞系统的轨迹规划方法的进一步优化方案,步骤6所述的轨迹优化模型的约束条件为:As a further optimization scheme of the trajectory planning method of the vehicle active collision avoidance system, the constraints of the trajectory optimization model described in step 6 are:

(R0+R1)2≤[PL-1(H1-Mxd6-Nxd7)+xd6t6+xd7t7-x0-vx(t-t0)]2 (R 0 +R 1 ) 2 ≤[PL -1 (H 1 -Mx d6 -Nx d7 )+x d6 t 6 +x d7 t 7 -x 0 -v x (tt 0 )] 2

+[PL-1(H2-Myd6-Nyd7)+yd6t6+yd7t7-y0-vy(t-t0)]2+[PL -1 (H 2 -My d6 -Ny d7 )+y d6 t 6 +y d7 t 7 -y 0 -v y (tt 0 )] 2 ;

其中, in,

P=[1 t t2 t3 t4 t5],P = [1 tt 2 t 3 t 4 t 5 ],

t0为轨迹规划初始时刻,tf为轨迹规划终了时刻,为初始时刻t0汽车的状态,为终了时刻tf汽车的状态;t 0 is the initial time of trajectory planning, t f is the end time of trajectory planning, is the state of the car at the initial time t 0 , is the state of the car at the final moment t f ;

R0为汽车长度的一半,R1为与障碍物宽度的一半;R 0 is half the length of the car, R 1 is half the width of the obstacle;

目标函数为其中,w1和w2是权重系数,且w1+w2=1;ay是汽车侧向加速度;The objective function is Among them, w 1 and w 2 are weight coefficients, and w 1 +w 2 =1; a y is the lateral acceleration of the vehicle;

优化的变量为xd6、xd7、yd6、yd7The optimized variables are x d6 , x d7 , y d6 , y d7 .

本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme and has the following technical effects:

1.本发明所述的轨迹规划方法所生成的轨迹满足各种非完整约束和执行机构约束;1. The trajectory generated by the trajectory planning method of the present invention satisfies various incomplete constraints and actuator constraints;

2.本发明所述的轨迹规划方法所生成的轨迹轨迹曲率具有连续性,具有动态实时性,能够适应动态变化的道路环境;2. The trajectory trajectory curvature generated by the trajectory planning method of the present invention has continuity, has dynamic real-time performance, and can adapt to dynamically changing road environments;

3.通过跟踪本发明所述的轨迹规划方法所生成的轨迹能使汽车有效地避开障碍物,防止交通事故的发生。3. By tracking the trajectory generated by the trajectory planning method of the present invention, the vehicle can effectively avoid obstacles and prevent traffic accidents.

附图说明Description of drawings

图1是本发明主动避撞系统结构示意图;Fig. 1 is a schematic structural diagram of the active collision avoidance system of the present invention;

图2是本发明主动避撞过程示意图;Fig. 2 is a schematic diagram of the active collision avoidance process of the present invention;

图3是本发明的汽车三自由度运动学模型。Fig. 3 is the three-degree-of-freedom kinematics model of the automobile of the present invention.

具体实施方式detailed description

下面结合附图对本发明的技术方案做进一步的详细说明:Below in conjunction with accompanying drawing, technical scheme of the present invention is described in further detail:

如图1所示,本发明公开了一种汽车主动避撞系统,包含前视雷达、摄像头、信号处理模块、车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器、电子控制单元ECU、油门控制器、转向控制器和制动控制器;As shown in Figure 1, the present invention discloses an active collision avoidance system for automobiles, comprising a forward-looking radar, a camera, a signal processing module, a vehicle speed sensor, a yaw rate sensor, a side slip angle sensor, a steering wheel angle sensor, and an electronic control unit ECU, accelerator controller, steering controller and brake controller;

所述前视雷达、摄像头通过信号处理模块和所述电子控制电源ECU相连;所述电子控制电源ECU分别和、车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器、油门控制器、转向控制器、制动控制器相连;The forward-looking radar and the camera are connected to the electronic control power supply ECU through a signal processing module; , the steering controller and the brake controller are connected;

所述前视雷达与摄像头均安装在汽车前方,用于检测汽车前方的道路情况,并将所测得的信号经信号处理模块处理后传递给所述电子控制单元ECU;Both the forward-looking radar and the camera are installed in front of the car to detect the road conditions in front of the car, and the measured signal is processed by the signal processing module and then transmitted to the electronic control unit ECU;

所述车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器分别用于感应汽车的速度、横摆角速度、质心侧偏角和前轮转向角,并将采集到的信号经处理后送入到电子控制单元ECU;The vehicle speed sensor, the yaw rate sensor, the center of mass side slip angle sensor, and the steering wheel angle sensor are respectively used to sense the speed, yaw rate, center of mass side slip angle and front wheel steering angle of the vehicle, and the collected signals are processed Send to the electronic control unit ECU;

所述电子控制单元ECU用于根据接收到的信号输出相应的信号到油门控制器、转向控制器、制动控制器,进行相应加速、减速、制动操作,以保证行车安全。The electronic control unit ECU is used to output corresponding signals to the throttle controller, steering controller, and brake controller according to the received signals, and perform corresponding acceleration, deceleration, and braking operations to ensure driving safety.

本发明还公开了一种基于该汽车主动避撞系统的轨迹规划方法,包含以下具体步骤:The invention also discloses a trajectory planning method based on the automobile active collision avoidance system, which includes the following specific steps:

步骤1、通过前视雷达与摄像头获取汽车前方障碍物的距离、速度、加速度和宽度,并将前方障碍物的与汽车之间的距离与预先设定的安全距离阈值对比,如果其小于预设的安全距离阈值,则执行步骤2。Step 1. Obtain the distance, speed, acceleration and width of the obstacle in front of the car through the forward-looking radar and camera, and compare the distance between the obstacle in front of the car and the preset safety distance threshold, if it is less than the preset If the safety distance threshold is set, go to step 2.

步骤2、通过车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器获取汽车的纵向速度、横摆角速度、质心侧偏角和前轮转向角。Step 2. Obtain the longitudinal speed, yaw rate, side slip angle and front wheel steering angle of the car through the vehicle speed sensor, yaw rate sensor, mass center slip angle sensor, and steering wheel angle sensor.

步骤3、建立汽车三自由度运动学模型,如图3所示:Step 3. Establish a three-degree-of-freedom kinematics model of the car, as shown in Figure 3:

其中,x和y分别是汽车后轴中点的纵向坐标和侧向坐标,θ是汽车的横摆角,δ是汽车前轮转向角,v是汽车的纵向速度,l是汽车前轴与后轴之间的间距,t是轨迹规划的当前时间。Among them, x and y are the longitudinal coordinates and lateral coordinates of the midpoint of the rear axle of the car respectively, θ is the yaw angle of the car, δ is the steering angle of the front wheels of the car, v is the longitudinal speed of the car, and l is the distance between the front axle and the rear axle of the car. The spacing between the axes, t is the current time of trajectory planning.

步骤4、进入循环。Step 4, enter the cycle.

步骤5、设轨迹规划初始时刻为t0,轨迹规划终了时刻为tf,用七次多项式参数化待生成轨迹:Step 5. Set the initial time of trajectory planning as t 0 , and the end time of trajectory planning as t f , and parameterize the trajectory to be generated with a polynomial of degree seven:

其中,xd0、xd1、xd2、xd3、xd4、xd5、xd6、xd7、yd0、yd1、yd2、yd3、yd4、yd5、yd6、yd7是多项式的待定系数。Among them, x d0 , x d1 , x d2 , x d3 , x d4 , x d5 , x d6 , x d7 , y d0 , y d1 , y d2 , y d3 , y d4 , y d5 , y d6 , y d7 are The undetermined coefficients of the polynomial.

步骤6、根据汽车三自由度运动学模型和参数化的待生成轨迹设置轨迹优化模型约束条件、设定目标函数以及优化变量,并根据汽车的纵向速度、横摆角速度、质心侧偏角、前轮转向角,以及汽车前方障碍物距离、速度、加速度对其进行求解,得到轨迹优化模型:Step 6. Set trajectory optimization model constraint conditions, objective function and optimization variables according to the vehicle three-degree-of-freedom kinematics model and the parameterized trajectory to be generated, and according to the vehicle's longitudinal velocity, yaw rate, center of mass sideslip angle, front The wheel steering angle, and the distance, speed, and acceleration of obstacles in front of the car are solved to obtain the trajectory optimization model:

1)约束条件:1) Constraints:

设在初始时刻t0车辆A的状态为在终了时刻tf车辆A的状态为并且所设计轨迹为(xd(t),yd(t))。然后,根据车辆运动学模型(1),施加在所设计轨迹上的等式约束条件如下:Suppose the state of vehicle A at the initial time t0 is The state of vehicle A at the final moment t f is And the designed trajectory is (x d (t), y d (t)). Then, according to the vehicle kinematics model (1), the equation constraints imposed on the designed trajectory are as follows:

将轨迹方程(2)代入到等式约束条件(3)中,并将其化为矩阵形式,其系数可以由以下方程来确定:Substituting the trajectory equation (2) into the equality constraint (3) and transforming it into a matrix form, its coefficients can be determined by the following equations:

其中, in,

and

将方程(4)代入到轨迹方程(2)可以得到轨迹方程的进一步表达式:Substituting equation (4) into trajectory equation (2) can obtain a further expression of trajectory equation:

其中P=[1 t t2 t3 t4 t5]。where P = [1 tt 2 t 3 t 4 t 5 ].

为了实现避碰的要求,还需要满足一些不等式约束条件:In order to achieve the requirements of collision avoidance, some inequality constraints need to be satisfied:

(R0+R1)2≤[xd(t)-x0-vx(t-t0)]2+[yd(t)-y0-vy(t-t0)]2 (6)(R 0 +R 1 ) 2 ≤[x d (t)-x 0 -v x (tt 0 )] 2 +[y d (t)-y 0 -v y (tt 0 )] 2 (6)

其中,R0为汽车长度的一半,R1为与障碍物宽度的一半;Among them, R 0 is half of the length of the car, and R 1 is half of the width of the obstacle;

将方程(5)代入到(6)中可以得到进一步的表达式:Substituting equation (5) into (6) yields a further expression:

(R0+R1)2≤[PL-1(H1-Mxd6-Nxd7)+xd6t6+xd7t7-x0-vx(t-t0)]2 (R 0 +R 1 ) 2 ≤[PL -1 (H 1 -Mx d6 -Nx d7 )+x d6 t 6 +x d7 t 7 -x 0 -v x (tt 0 )] 2

+[PL-1(H2-Myd6-Nyd7)+yd6t6+yd7t7-y0-vy(t-t0)]2 (7)+[PL -1 (H 2 -My d6 -Ny d7 )+y d6 t 6 +y d7 t 7 -y 0 -v y (tt 0 )] 2 (7)

2)目标函数,一般来说,在智能汽车主动避撞的过程中,所规划轨迹必须满足一些条件,例如,在保证车辆稳定性的同时有效地避开障碍物,基于这样的考虑,选择以下函数作为优化的目标函数:2) The objective function, generally speaking, in the process of active collision avoidance of smart cars, the planned trajectory must meet some conditions, for example, to effectively avoid obstacles while ensuring the stability of the vehicle, based on this consideration, choose the following function as the objective function for optimization:

其中,w1和w2是权重系数,且w1+w2=1;ay是汽车侧向加速度;;Among them, w 1 and w 2 are weight coefficients, and w 1 +w 2 =1; a y is the lateral acceleration of the vehicle;

3)优化变量,从方程(5)中很容易看到,待优化的变量为:xd6、xd7、yd6、yd73) Optimizing variables, it is easy to see from equation (5), the variables to be optimized are: x d6 , x d7 , y d6 , y d7 .

步骤7、基于动态粒子群优化算法,对所建立的轨迹优化模型进行求解,以得到所需轨迹:Step 7. Based on the dynamic particle swarm optimization algorithm, solve the established trajectory optimization model to obtain the required trajectory:

粒子群优化算法,又称微粒群算法,其基于粒子构成的群体,针对每个优化问题的解都是寻找其可行空间中的一个粒子。为了让粒子能在全局范围内搜索并保持粒子的多样性,本发明采用动态粒子群算法(dynamic Particle Swarm Optimization,DPSO)对轨迹优化模型进行优化。Particle swarm optimization algorithm, also known as particle swarm optimization algorithm, is based on a group of particles, and the solution to each optimization problem is to find a particle in its feasible space. In order to allow particles to search globally and maintain particle diversity, the present invention uses dynamic particle swarm optimization (dynamic Particle Swarm Optimization, DPSO) to optimize the trajectory optimization model.

如果粒子群的D维空间位置向量为xi=(xi1,xi2,...,xiD),每个xi表示解空间中一个潜在的可行解,可根据目标函数计算出的适应值来判断其是否为最优解。第i个粒子的D维空间速度向量为vi=(vi1,vi2,...,viD),第i个粒子个体最优位置Pi=(Pi1,Pi2,...,PiD),粒子群群体最优位置Li=(Li1,Li2,...,LiD),粒子群群体全局最优位置G=(G1,G2,...,GD)迭代公式如下:If the D-dimensional space position vector of the particle swarm is x i =(x i1 , x i2 ,..., x iD ), each x i represents a potential feasible solution in the solution space, which can be calculated according to the objective function value to judge whether it is the optimal solution. The D-dimensional space velocity vector of the i-th particle is v i =(v i1 ,v i2 ,...,v iD ), the individual optimal position of the i-th particle P i =(P i1 ,P i2 ,... ,P iD ), the optimal position of particle swarm swarm L i =(L i1 ,L i2 ,...,L iD ), the global optimal position of particle swarm swarm G=(G 1 ,G 2 ,...,G D ) The iteration formula is as follows:

vi(t+1)=ωvit+b1r1(pi(t)-xi(t))+b2r2(Li(t)-xi(t))+b2r3(G(t)-xi(t)) (9)v i (t+1)=ωv i t+b 1 r 1 (p i (t)-x i (t))+b 2 r 2 (L i (t)-x i (t))+b 2 r 3 (G(t) -xi (t)) (9)

式中:b1、b2、b3为正常数;r1、r2、r3为[0,1]内的随机数;参数ω为惯性因子。In the formula: b 1 , b 2 , b 3 are normal numbers; r 1 , r 2 , r 3 are random numbers in [0,1]; parameter ω is the inertia factor.

设ω依据循环次数从ωs线性递减至ωe,最大循环次数为Imax,循环的当前次数为Ic,则ω的值可以通过下式得出:Assuming that ω decreases linearly from ω s to ω e according to the number of cycles, the maximum number of cycles is I max , and the current number of cycles is I c , then the value of ω can be obtained by the following formula:

式中:ωs为优化最初的惯性因子;ωe为优化结束的惯性因子。In the formula: ω s is the inertia factor at the beginning of optimization; ω e is the inertia factor at the end of optimization.

粒子群中粒子在t+1时刻的位置通过下式求出:The position of the particle in the particle swarm at time t+1 is obtained by the following formula:

xi(t+1)=xi(t)+vi(t+1) (11)x i (t+1) = x i (t) + v i (t+1) (11)

如果粒子群更新为之后超越了定义域界限,则需要重新调整粒子的位置,使其落在决策空间内,新位置可按照下式计算:If the particle swarm is updated beyond the boundary of the domain of definition, the position of the particle needs to be readjusted so that it falls within the decision space, and the new position can be calculated according to the following formula:

xi(t+1)=xi(t)+λvi(t+1) (12)x i (t+1)= xi (t)+λv i (t+1) (12)

λ=2/(γ2+2) (13)λ=2/(γ 2 +2) (13)

式中:λ为速度调整系数,其介于(0,1)之间;γ为调整次数,当γ大于3时,粒子速度变为反向。In the formula: λ is the speed adjustment coefficient, which is between (0,1); γ is the number of adjustments, and when γ is greater than 3, the particle speed becomes reversed.

粒子i和k之间的距离||xi-xk||可以通过下式求得:The distance between particles i and k ||x i -x k || can be obtained by the following formula:

式中:d为决策变量的维数。In the formula: d is the dimension of the decision variable.

动态粒子群的生成:如果已生成m个粒子群,假设与粒子群a最近的粒子群为b,如果他们之间的距离大于Dmax,则需要生成一个粒子群xm+1,群内第i个粒子第k维分量可以由下式求得:Generation of dynamic particle swarms: If m particle swarms have been generated, assuming that the nearest particle swarm to particle swarm a is b, if the distance between them is greater than D max , then a particle swarm x m+1 needs to be generated, the first in the group The k-th dimension component of the i particle It can be obtained by the following formula:

式中:C1、C2为[0,1]内的随机数;round(·)为取整函数,因此,round(0.5+C2)为0或1。In the formula: C 1 and C 2 are random numbers within [0,1]; round(·) is a rounding function, therefore, round(0.5+C 2 ) is 0 or 1.

步骤8、ECU将所生成轨迹的相关参数输出到油门控制器、转向控制器、制动控制器,并执行相应操作,以精确跟踪所生成轨迹。Step 8. The ECU outputs relevant parameters of the generated trajectory to the accelerator controller, steering controller, and brake controller, and performs corresponding operations to accurately track the generated trajectory.

步骤9、跳转到步骤4,进行下一时刻的轨迹求解与跟踪,如此循环,直至规划结束,完成整个避撞过程,如图2所示。Step 9. Jump to step 4 to solve and track the trajectory at the next moment. This cycle continues until the planning is completed and the entire collision avoidance process is completed, as shown in Figure 2.

本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。Those skilled in the art can understand that, unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It should also be understood that terms such as those defined in commonly used dictionaries should be understood to have a meaning consistent with the meaning in the context of the prior art, and will not be interpreted in an idealized or overly formal sense unless defined as herein Explanation.

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (4)

1.一种汽车主动避撞系统的轨迹规划方法,其特征在于,所述汽车主动避撞系统包含前视雷达、摄像头、信号处理模块、车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器、电子控制电源ECU、油门控制器、转向控制器和制动控制器;1. A trajectory planning method of an automobile active collision avoidance system, characterized in that, the automobile active collision avoidance system comprises a forward-looking radar, a camera, a signal processing module, a vehicle speed sensor, a yaw rate sensor, a side slip angle sensor, Steering wheel angle sensor, electronic control power supply ECU, accelerator controller, steering controller and brake controller; 所述前视雷达、摄像头通过信号处理模块和所述电子控制电源ECU相连;所述电子控制电源ECU分别和、车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器、油门控制器、转向控制器、制动控制器相连;The forward-looking radar and the camera are connected to the electronic control power supply ECU through a signal processing module; , the steering controller and the brake controller are connected; 所述前视雷达与摄像头均安装在汽车前方,用于检测汽车前方的道路情况,并将所测得的信号经信号处理模块处理后传递给所述电子控制单元ECU;Both the forward-looking radar and the camera are installed in front of the car to detect the road conditions in front of the car, and the measured signal is processed by the signal processing module and then transmitted to the electronic control unit ECU; 所述车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器分别用于感应汽车的速度、横摆角速度、质心侧偏角和前轮转向角,并将采集到的信号经处理后送入到电子控制单元ECU;The vehicle speed sensor, the yaw rate sensor, the center of mass side slip angle sensor, and the steering wheel angle sensor are respectively used to sense the speed, yaw rate, center of mass side slip angle and front wheel steering angle of the vehicle, and the collected signals are processed Send to the electronic control unit ECU; 所述电子控制单元ECU用于根据接收到的信号输出相应的信号到油门控制器、转向控制器、制动控制器,进行相应加速、减速、制动操作,以保证行车安全;The electronic control unit ECU is used to output corresponding signals to the throttle controller, steering controller, and brake controller according to the received signals, and perform corresponding acceleration, deceleration, and braking operations to ensure driving safety; 所述汽车主动避撞系统的轨迹规划方法包含以下步骤:The trajectory planning method of the automobile active collision avoidance system comprises the following steps: 步骤1),通过前视雷达与摄像头获取汽车前方障碍物的距离、速度、加速度和宽度,并将前方障碍物的与汽车之间的距离与预先设定的安全距离阈值对比,如果其小于预设的安全距离阈值,则执行步骤2);Step 1), obtain the distance, speed, acceleration and width of the obstacle in front of the car through the forward-looking radar and the camera, and compare the distance between the obstacle in front and the car with the preset safety distance threshold, if it is less than the preset Set the safety distance threshold, then perform step 2); 步骤2),通过车速传感器、横摆角速度传感器、质心侧偏角传感器、方向盘转角传感器获取汽车的速度、横摆角速度、质心侧偏角和前轮转向角;Step 2), obtain the speed of the car, the yaw rate, the side slip angle of the center of mass and the front wheel steering angle through the vehicle speed sensor, the yaw rate sensor, the center of mass side slip angle sensor, and the steering wheel angle sensor; 步骤3),根据汽车的横摆角、前轮转向角、纵向速度、前轴与后轴之间的间距、以及后轴中点的纵向坐标和侧向坐标建立汽车三自由度运动学模型;Step 3), according to the yaw angle of the car, the steering angle of the front wheels, the longitudinal speed, the distance between the front axle and the rear axle, and the longitudinal and lateral coordinates of the midpoint of the rear axle, the three-degree-of-freedom kinematics model of the car is established; 步骤4),用七次多项式参数化待生成轨迹;Step 4), parameterize the trajectory to be generated with a polynomial of degree seven; 步骤5),根据汽车三自由度运动学模型和参数化的待生成轨迹设置轨迹优化模型约束条件、设定目标函数以及优化变量,并根据汽车的纵向速度、横摆角速度、质心侧偏角、前轮转向角、以及汽车前方障碍物距离、速度、加速度对其进行求解,得到轨迹优化模型;Step 5), according to the vehicle three-degree-of-freedom kinematics model and the parameterized trajectory to be generated, set the trajectory optimization model constraints, set the objective function and optimization variables, and according to the vehicle's longitudinal velocity, yaw rate, center of mass sideslip angle, The front wheel steering angle, and the distance, speed, and acceleration of obstacles in front of the car are solved to obtain the trajectory optimization model; 步骤6),基于动态粒子群优化算法,对所建立的轨迹优化模型进行求解,得到规划轨迹。Step 6), based on the dynamic particle swarm optimization algorithm, the established trajectory optimization model is solved to obtain the planned trajectory. 2.根据权利要求1所述的汽车主动避撞系统的轨迹规划方法,其特征在于,根据以下公式建立步骤3)中所述的汽车三自由度运动学模型:2. the trajectory planning method of automobile active collision avoidance system according to claim 1, is characterized in that, set up the automobile three-degree-of-freedom kinematics model described in step 3) according to following formula: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>v</mi> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>v</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>v</mi> <mi>tan</mi> <mi>&amp;delta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>l</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mover><mi>x</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><mi>v</mi><mi>cos</mi><mrow><mo>(</mo><mi>&amp;theta;</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mover><mi>y</mi><mo>&amp;CenterDot;</mo></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>v</mo>mi><mi>sin</mi><mrow><mo>(</mo><mi>&amp;theta;</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>v</mi><mi>tan</mi><mi>&amp;delta;</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>/</mo><mi>l</mi></mrow></mtd></mtr></mtable></mfenced> 其中,x和y分别是汽车后轴中点的纵向坐标和侧向坐标,θ是汽车的横摆角,δ是汽车前轮转向角,v是汽车的纵向速度,l是汽车前轴与后轴之间的间距,t是轨迹规划的当前时间。Among them, x and y are the longitudinal coordinates and lateral coordinates of the midpoint of the rear axle of the car respectively, θ is the yaw angle of the car, δ is the steering angle of the front wheels of the car, v is the longitudinal speed of the car, and l is the distance between the front axle and the rear axle of the car. The spacing between the axes, t is the current time of trajectory planning. 3.根据权利要求2所述的汽车主动避撞系统的轨迹规划方法,其特征在于,步骤5)中所述的七次多项式参数化的轨迹方程为:3. the trajectory planning method of automobile active collision avoidance system according to claim 2, is characterized in that, step 5) described in the trajectory equation of the seven degree polynomial parameterization is: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>5</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>5</mn> </msup> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>6</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>6</mn> </msup> <mo>+</mo> <msub> <mi>x</mi> <mrow> <mi>d</mi> <mn>7</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>7</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>2</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>3</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>3</mn> </msup> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>4</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>4</mn> </msup> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>5</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>5</mn> </msup> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>6</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>6</mn> </msup> <mo>+</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mn>7</mn> </mrow> </msub> <msup> <mi>t</mi> <mn>7</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> 1 <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>x</mi><mi>d</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>0</mn></mrow></msub><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>1</mn></mrow></msub><mi>t</mi><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>2</mn></mrow></msub><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>3</mn></mrow></msub><msup><mi>t</mi><mn>3</mn></msup><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>4</mn></mrow></msub><msup><mi>t</mi><mn>4</mn></msup><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>5</mn></mrow></msub><msup><mi>t</mi><mn>5</mn></msup><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>6</mn></mrow></msub><msup><mi>t</mi><mn>6</mn></msup><mo>+</mo><msub><mi>x</mi><mrow><mi>d</mi><mn>7</mn></mrow></msub><msup><mi>t</mi><mn>7</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>y</mi><mi>d</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>0</mn></mrow></msub><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>1</mn></mrow></msub><mi>t</mi><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>2</mn></mrow></msub><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>3</mn></mrow></msub><msup><mi>t</mi><mn>3</mn></msup><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>4</mn></mrow></msub><msup><mi>t</mi><mn>4</mn></msup><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>5</mn></mrow></msub><msup><mi>t</mi><mn>5</mn></msup><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>6</mn></mrow></msub><msup><mi>t</mi><mn>6</mn></msup><mo>+</mo><msub><mi>y</mi><mrow><mi>d</mi><mn>7</mn></mrow></msub><msup><mi>t</mi><mn>7</mn></msup></mrow></mtd></mtr></mtable></mfenced> 1 其中,xd0、xd1、xd2、xd3、xd4、xd5、xd6、xd7、yd0、yd1、yd2、yd3、yd4、yd5、yd6、yd7是多项式的待定系数,(xd(t),yd(t))为待生成轨迹的纵横坐标。Among them, x d0 , x d1 , x d2 , x d3 , x d4 , x d5 , x d6 , x d7 , y d0 , y d1 , y d2 , y d3 , y d4 , y d5 , y d6 , y d7 are The undetermined coefficients of the polynomial, (x d (t), y d (t)) are the vertical and horizontal coordinates of the trajectory to be generated. 4.根据权利要求3所述的汽车主动避撞系统的轨迹规划方法,其特征在于,步骤6所述的轨迹优化模型的约束条件为:4. the trajectory planning method of automobile active collision avoidance system according to claim 3, is characterized in that, the constraint condition of the trajectory optimization model described in step 6 is: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>tan&amp;delta;</mi> <mn>0</mn> </msub> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>l</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mi>f</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mi>f</mi> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mi>f</mi> <mn>2</mn> </msubsup> <msub> <mi>tan&amp;delta;</mi> <mi>f</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>f</mi> </msub> <mo>/</mo> <mi>l</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> <msub> <mi>sin&amp;theta;</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>v</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msub> <mi>tan&amp;delta;</mi> <mn>0</mn> </msub> <msub> <mi>cos&amp;theta;</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>l</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mi>f</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>v</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mi>f</mi> </msub> <mo>+</mo> <msubsup> <mi>v</mi> <mi>f</mi> <mn>2</mn> </msubsup> <msub> <mi>tan&amp;delta;</mi> <mi>f</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mi>f</mi> </msub> <mo>/</mo> <mi>l</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>x</mi><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>x</mi><mn>0</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>x</mi><mo>&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>v</mi><mn>0</mn></msub><msub><mi>cos&amp;theta;</mi><mn>0</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>x</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mover><mi>v</mi><mo>&amp;CenterDot;</mo></mover><mn>0</mn></msub><msub><mi>cos&amp;theta;</mi><mn>0</mn></msub><mo>-</mo><msubsup><mi>v</mi><mn>0</mn><mn>2</mn></msubsup><msub><mi>tan&amp;delta;</mi><mn>0</mn></msub><msub><mi>sin&amp;theta;</mi><mn>0</mn></msub><mo>/</mo><mi>l</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>x</mi><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>x</mi><mi>f</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>x</mi><mo>&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>v</mi><mi>f</mi></msub><msub><mi>cos&amp;theta;</mi><mi>f</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>x</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mover><mi>v</mi><mo>&amp;CenterDot;</mo></mover><mi>f</mi></msub><msub><mi>cos&amp;theta;</mi><mi>f</mi></msub><mo>-</mo><msubsup><mi>v</mi><mi>f</mi><mn>2</mn></msubsup><msub><mi>tan&amp;delta;</mi><mi>f</mi></msub><msub><mi>sin&amp;theta;</mi><mi>f</mi></msub><mo>/</mo><mi>l</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>y</mi><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>y</mi><mo>&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>v</mi><mn>0</mn></msub><msub><mi>sin&amp;theta;</mi><mn>0</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>y</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mover><mi>v</mi><mo>&amp;CenterDot;</mo></mover><mn>0</mn></msub><msub><mi>sin&amp;theta;</mi><mn>0</mn></msub><mo>+</mo><msubsup><mi>v</mi><mn>0</mn><mn>2</mn></msubsup><msub><mi>tan&amp;delta;</mi><mn>0</mn></msub><msub><mi>cos&amp;theta;</mi><mn>0</mn></msub><mo>/</mo><mi>l</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>y</mi><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>y</mi><mi>f</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>y</mi><mo>&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>v</mi><mi>f</mi></msub><msub><mi>sin&amp;theta;</mi><mi>f</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mover><mi>y</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mi>d</mi></msub><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>=</mo><msub><mover><mi>v</mi><mo>&amp;CenterDot;</mo></mover><mi>f</mi></msub><msub><mi>sin&amp;theta;</mi><mi>f</mi></msub><mo>+</mo><msubsup><mi>v</mi>mi><mi>f</mi><mn>2</mn></msubsup><msub><mi>tan&amp;delta;</mi><mi>f</mi></msub><msub><mi>cos&amp;theta;</mi><mi>f</mi></msub><mo>/</mo><mi>l</mi></mrow></mtd></mtr></mtable></mfenced> (R0+R1)2≤[PL-1(H1-Mxd6-Nxd7)+xd6t6+xd7t7-x0-vx(t-t0)]2 (R 0 +R 1 ) 2 ≤[PL -1 (H 1 -Mx d6 -Nx d7 )+x d6 t 6 +x d7 t 7 -x 0 -v x (tt 0 )] 2 +[PL-1(H2-Myd6-Nyd7)+yd6t6+yd7t7-y0-vy(t-t0)]2+[PL -1 (H 2 -My d6 -Ny d7 )+y d6 t 6 +y d7 t 7 -y 0 -v y (tt 0 )] 2 ; 其中, in, P=[1 t t2 t3 t4 t5],P = [1 tt 2 t 3 t 4 t 5 ], <mrow> <mi>L</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>t</mi> <mn>0</mn> </msub> </mtd> <mtd> <msubsup> <mi>t</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>t</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>t</mi> <mn>0</mn> <mn>4</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>t</mi> <mn>0</mn> <mn>5</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>3</mn> <msubsup> <mi>t</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <msubsup> <mi>t</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mtd> <mtd> <mrow> <mn>5</mn> <msubsup> <mi>t</mi> <mn>0</mn> <mn>4</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mrow> <mn>6</mn> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mn>12</mn> <msubsup> <mi>t</mi> <mn>0</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>20</mn> <msubsup> <mi>t</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>t</mi> <mi>f</mi> </msub> </mtd> <mtd> <msubsup> <mi>t</mi> <mi>f</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>t</mi> <mi>f</mi> <mn>3</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>t</mi> <mi>f</mi> <mn>4</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>t</mi> <mi>f</mi> <mn>5</mn> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mn>2</mn> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>3</mn> <msubsup> <mi>t</mi> <mi>f</mi> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>4</mn> <msubsup> <mi>t</mi> <mi>f</mi> <mn>3</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>5</mn> <msubsup> <mi>t</mi> <mi>f</mi> <mn>4</mn> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mrow> <mn>6</mn> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>12</mn> <msubsup> <mi>t</mi> <mi>f</mi> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>20</mn> <msubsup> <mi>t</mi> <mi>f</mi> <mn>3</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> <mrow><mi>L</mi><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mn>1</mn></mtd><mtd><msub><mi>t</mi><mn>0</mn></msub></mtd><mtd><msubsup><mi>t</mi><mn>0</mn><mn>2</mn></msubsup></mtd><mtd><msubsup><mi>t</mi><mn>0</mn><mn>3</mn></msubsup></mtd><mtd><msubsup><mi>t</mi><mn>0</mn><mn>4</mn></msubsup></mtd><mtd><msubsup><mi>t</mi><mn>0</mn><mn>5</mn></msubsup></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mrow><mn>2</mn><msub><mi>t</mi><mn>0</mn></msub></mrow></mtd><mtd><mrow><mn>3</mn><msubsup><mi>t</mi><mn>0</mn><mn>2</mn></msubsup></mrow></mtd><mtd><msubsup><mi>t</mi><mn>0</mn><mn>3</mn></msubsup></mtd><mtd><mrow><mn>5</mn><msubsup><mi>t</mi><mn>0</mn><mn>4</mn></msubsup></mrow></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mrow><mn>6</mn><msub><mi>t</mi><mn>0</mn></msub></mrow></mtd><mtd><mrow><mn>12</mn><msubsup><mi>t</mi><mn>0</mn><mn>2</mn></msubsup></mrow></mtd><mtd><mrow><mn>20</mn><msubsup><mi>t</mi><mn>0</mn><mn>3</mn></msubsup></mrow></mtd></mtr><mtr><mtd><mn>1</mn></mtd><mtd><msub><mi>t</mi><mi>f</mi></msub></mtd><mtd><msubsup><mi>t</mi><mi>f</mi><mn>2</mn></msubsup></mtd><mtd><msubsup><mi>t</mi><mi>f</mi><mn>3</mn></msubsup></mtd><mtd><msubsup><mi>t</mi><mi>f</mi><mn>4</mn></msubsup></mtd><mtd><msubsup><mi>t</mi><mi>f</mi><mn>5</mn></msubsup></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mrow><mn>2</mn><msub><mi>t</mi><mi>f</mi></msub></mrow></mtd><mtd><mrow><mn>3</mn><msubsup><mi>t</mi><mi>f</mi><mn>2</mn></msubsup></mrow></mtd><mtd><mrow><mn>4</mn><msubsup><mi>t</mi><mi>f</mi><mn>3</mn></msubsup></mrow></mtd><mtd><mrow><mn>5</mn><msubsup><mi>t</mi><mi>f</mi><mn>4</mn></msubsup></mrow></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>2</mn></mtd><mtd><mrow><mn>6</mn><msub><mi>t</mi><mi>f</mi></msub></mrow></mtd><mtd><mrow><mn>12</mn><msubsup><mi>t</mi><mi>f</mi><mn>2</mn></msubsup></mrow></mtd><mtd><mrow><mn>20</mn><msubsup><mi>t</mi><mi>f</mi><mn>3</mn></msubsup></mrow></mtd></mtr></mtable></mfenced><mo>,</mo></mrow> t0为轨迹规划初始时刻,tf为轨迹规划终了时刻,为初始时刻t0汽车的状态,为终了时刻tf汽车的状态;t 0 is the initial time of trajectory planning, t f is the end time of trajectory planning, is the state of the car at the initial time t 0 , is the state of the car at the final moment t f ; R0为汽车长度的一半,R1为与障碍物宽度的一半;R 0 is half the length of the car, R 1 is half the width of the obstacle; 目标函数为其中,w1和w2是权重系数,且w1+w2=1;ay是汽车侧向加速度;The objective function is Among them, w 1 and w 2 are weight coefficients, and w 1 +w 2 =1; a y is the lateral acceleration of the vehicle; <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>y</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> </mrow> <mrow> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msup><mi>x</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mfrac><mrow><msub><mi>x</mi><mi>f</mi></msub><mo>-</mo><msub><mi>x</mi><mn>0</mn></msub></mrow><mrow><msub><mi>t</mi><mi>f</mi></msub><mo>-</mo><msub><mi>t</mi><mn>0</mn></msub></mrow></mfrac><mrow><mo>(</mo><mi>t</mi><mo>-</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msup><mi>y</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mfrac><mrow><msub><mi>y</mi><mi>f</mi></msub><mo>-</mo><msub><mi>y</msub>mi><mn>0</mn></msub></mrow><mrow><msub><mi>t</mi><mi>f</mi></msub><mo>-</mo><msub><mi>t</mi><mn>0</mn></msub></mrow></mfrac><mrow><mo>(</mo><mi>t</mi><mo>-</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mfenced> 优化的变量为xd6、xd7、yd6、yd7The optimized variables are x d6 , x d7 , y d6 , y d7 .
CN201610023691.6A 2016-01-14 2016-01-14 A kind of Automotive active anti-collision system and its method for planning track Active CN105691388B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610023691.6A CN105691388B (en) 2016-01-14 2016-01-14 A kind of Automotive active anti-collision system and its method for planning track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610023691.6A CN105691388B (en) 2016-01-14 2016-01-14 A kind of Automotive active anti-collision system and its method for planning track

Publications (2)

Publication Number Publication Date
CN105691388A CN105691388A (en) 2016-06-22
CN105691388B true CN105691388B (en) 2017-11-14

Family

ID=56227380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610023691.6A Active CN105691388B (en) 2016-01-14 2016-01-14 A kind of Automotive active anti-collision system and its method for planning track

Country Status (1)

Country Link
CN (1) CN105691388B (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106347324A (en) * 2016-09-30 2017-01-25 张家港长安大学汽车工程研究院 Back-spraying automobile anti-collision system
CN106564495B (en) * 2016-10-19 2018-11-06 江苏大学 The intelligent vehicle safety for merging space and kinetic characteristics drives envelope reconstructing method
CN106864457B (en) * 2016-12-22 2019-05-07 新华三技术有限公司 A kind of data processing method and device
CN107226089B (en) * 2017-04-14 2019-06-04 南京航空航天大学 A collision avoidance method for driverless cars
CN107117167B (en) * 2017-04-24 2023-05-09 南京航空航天大学 Automobile differential steering system with multiple collision avoidance modes and control method thereof
DE102017215844A1 (en) * 2017-09-08 2019-03-14 Robert Bosch Gmbh Method for operating a vehicle
CN107561943A (en) * 2017-09-13 2018-01-09 青岛理工大学 Method for establishing mathematical model of maximum-speed-control inverse dynamics of automobile
CN107839683B (en) * 2017-11-07 2019-07-30 长春工业大学 A kind of automobile emergency collision avoidance control method considering moving obstacle
CN107878453B (en) * 2017-11-07 2019-07-30 长春工业大学 A kind of automobile emergency collision avoidance integral type control method for hiding dynamic barrier
WO2019127310A1 (en) * 2017-12-29 2019-07-04 深圳市大疆创新科技有限公司 Vehicle control method, vehicle control device, and vehicle
CN108839652B (en) * 2018-06-27 2019-12-20 聊城大学 Automatic driving emergency avoidance system for vehicle instability controllable domain
CN109017975B (en) * 2018-07-02 2021-04-06 南京航空航天大学 Control method and control system of intelligent steering system
CN108801286B (en) * 2018-08-01 2021-11-30 奇瑞汽车股份有限公司 Method and device for determining a driving trajectory
CN109283843B (en) * 2018-10-12 2021-08-03 江苏大学 A lane-changing trajectory planning method based on the fusion of polynomial and particle swarm optimization
CN111399489B (en) * 2018-12-14 2023-08-04 北京京东乾石科技有限公司 Method and device for generating information
CN109910878B (en) * 2019-03-21 2020-10-20 山东交通学院 Automatic driving vehicle obstacle avoidance control method and system based on track planning
CN110288847B (en) * 2019-06-28 2021-01-19 浙江吉利控股集团有限公司 An automatic driving decision-making method, device, system, storage medium and terminal
CN111098842B (en) * 2019-12-13 2022-03-04 北京京东乾石科技有限公司 Vehicle speed control method and related equipment
CN111645676B (en) * 2020-01-19 2022-08-26 摩登汽车有限公司 Vehicle avoidance method, device, equipment and automobile
CN111497825A (en) * 2020-03-31 2020-08-07 南京航空航天大学 Phase space vehicle stability judging method
CN111413990A (en) * 2020-05-07 2020-07-14 吉林大学 Lane change track planning system
CN111703419B (en) * 2020-05-29 2022-07-22 江苏大学 A collision avoidance trajectory planning method for intelligent vehicles under emergency conditions
CN112242059B (en) * 2020-09-30 2021-10-01 南京航空航天大学 Intelligent decision-making method for unmanned vehicles based on motivation and risk assessment
CN113264067B (en) * 2021-06-25 2022-06-07 合肥工业大学 A kind of unmanned racing car braking and steering cooperative collision avoidance control method and system
CN118597106B (en) * 2024-07-22 2024-11-08 东北大学 Robust tracking control method for safe motion state of driverless vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847875B2 (en) * 2003-02-26 2005-01-25 Ford Global Technologies, Llc Method for determining a longitudinal vehicle velocity by compensating individual wheel speeds
JP5397231B2 (en) * 2010-01-12 2014-01-22 トヨタ自動車株式会社 Risk avoidance support device
CN102806911B (en) * 2012-08-23 2015-06-03 浙江吉利汽车研究院有限公司杭州分公司 Traffic safety auxiliary control method and system thereof
CN103035121A (en) * 2012-12-06 2013-04-10 南京航空航天大学 Planning method of intelligent vehicle autonomous running dynamic trajectory and system of the same
CN103496366B (en) * 2013-09-09 2016-02-24 北京航空航天大学 A kind of initiative lane change collision avoidance control method based on collaborative truck and device
CN103935265B (en) * 2014-04-24 2016-10-05 吴刚 A kind of vehicle body stabilizing control system of electric automobile
CN104176054B (en) * 2014-08-18 2016-07-06 大连理工大学 A kind of vehicle active anti-collision automatic lane change control system and its working method
CN205396080U (en) * 2016-01-14 2016-07-27 南京航空航天大学 Car initiative collision avoidance system

Also Published As

Publication number Publication date
CN105691388A (en) 2016-06-22

Similar Documents

Publication Publication Date Title
CN105691388B (en) A kind of Automotive active anti-collision system and its method for planning track
CN205396080U (en) Car initiative collision avoidance system
CN104176054B (en) A kind of vehicle active anti-collision automatic lane change control system and its working method
CN109131312B (en) An intelligent electric vehicle ACC/ESC integrated control system and method thereof
WO2019218097A1 (en) Automobile tire blowout security and stability control system
US11634146B2 (en) Method and system for integrated path planning and path tracking control of autonomous vehicle
CN103754224B (en) A kind of vehicle multi-objective coordinated changing assists self-adapting cruise control method
CN108725453A (en) Human-machine co-driving control system and its switching mode based on driver model and handling inverse dynamics
CN109334564B (en) An anti-collision vehicle active safety early warning system
CN106427998A (en) Control method for avoiding collision during emergent lane changing of vehicle in high-speed state
CN107226089A (en) A collision avoidance strategy for driverless cars
CN110723142B (en) A kind of intelligent vehicle emergency collision avoidance control method
CN108717268A (en) The fastest maneuvering control system and control method for automatic driving based on optimal control and safety distance
CN106428197A (en) Controller and control method based on multi-mode steering system auxiliary power coupler
CN103640622A (en) Automobile direction intelligent control method and control system based on driver model
CN110096748A (en) A kind of people-the Che based on vehicle kinematics model-road model modelling approach
CN106882079A (en) An adaptive cruise control method for electric vehicles with optimal switching of drive and brake
CN104527638A (en) Curve false-alarm eliminating method and false-alarm eliminating device for active collision avoidance of automobile
CN106965808A (en) Automobile transverse and longitudinal active negotiation anti-collision system and its coordination approach
Huang et al. Development and performance enhancement of an overactuated autonomous ground vehicle
CN108528522A (en) A kind of active safety control method after vehicle flat tire
CN111873990A (en) A lane-changing collision avoidance device suitable for high-speed emergency conditions and method thereof
CN115071699B (en) Intelligent automobile lane changing collision avoidance control method
CN103273913B (en) A kind of automatic braking device for car optimized based on orthogonal configuration
Yue et al. Automated hazard escaping trajectory planning/tracking control framework for vehicles subject to tire blowout on expressway

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant