CN105689919A - Nickel-based alloy welding wire with weld deposit metal capable of being recrystallized - Google Patents
Nickel-based alloy welding wire with weld deposit metal capable of being recrystallized Download PDFInfo
- Publication number
- CN105689919A CN105689919A CN201610230578.5A CN201610230578A CN105689919A CN 105689919 A CN105689919 A CN 105689919A CN 201610230578 A CN201610230578 A CN 201610230578A CN 105689919 A CN105689919 A CN 105689919A
- Authority
- CN
- China
- Prior art keywords
- welding
- nickel
- welding wire
- less
- weld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 98
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 33
- 239000000956 alloy Substances 0.000 title claims abstract description 33
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 19
- 239000002184 metal Substances 0.000 title claims abstract description 19
- 239000007789 gas Substances 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 238000001953 recrystallisation Methods 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 239000011261 inert gas Substances 0.000 claims abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000010937 tungsten Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 5
- 239000011229 interlayer Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- NGONBPOYDYSZDR-UHFFFAOYSA-N [Ar].[W] Chemical compound [Ar].[W] NGONBPOYDYSZDR-UHFFFAOYSA-N 0.000 claims description 2
- 238000000137 annealing Methods 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000010622 cold drawing Methods 0.000 claims description 2
- 238000005242 forging Methods 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims 1
- 238000001465 metallisation Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 10
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 8
- 239000010953 base metal Substances 0.000 abstract description 6
- 238000005204 segregation Methods 0.000 abstract description 5
- 210000001787 dendrite Anatomy 0.000 abstract description 4
- 239000006104 solid solution Substances 0.000 abstract description 3
- 238000005728 strengthening Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 230000035882 stress Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000012876 topography Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
Abstract
Description
技术领域:Technical field:
本发明属于超超临界电站焊接材料领域,具体涉及一种焊缝熔敷金属可再结晶的镍基合金焊丝。The invention belongs to the field of welding materials for ultra-supercritical power stations, and in particular relates to a recrystallizable nickel-based alloy welding wire for welding deposited metal.
背景技术:Background technique:
随着火力发电技术的发展,发展600℃及以上超超临界燃煤发电技术,对我国节约能源、降低污染物和二氧化碳排放具有十分重要的战略意义和实际应用价值。电站高温材料的焊接一直是电站建设和生产的关键技术环节,而蒸汽参数地不断提高,所使用高温材料的合金化程度不断提高,奥氏体不锈钢和镍基合金大量使用,使得焊接技术难度亦随之增大。With the development of thermal power generation technology, the development of 600 ℃ and above ultra-supercritical coal-fired power generation technology has very important strategic significance and practical application value for my country's energy saving, reduction of pollutants and carbon dioxide emissions. The welding of high-temperature materials in power stations has always been a key technical link in the construction and production of power stations. With the continuous improvement of steam parameters, the alloying degree of high-temperature materials used has been continuously improved, and austenitic stainless steel and nickel-based alloys are widely used, making welding technology difficult. Then increase.
传统的焊缝组织由于熔敷金属没有控轧和形变热处理的机会,带有方向性的柱状(树枝)晶不可能由此获得细化;同时又由于焊缝冷却速度快,合金元素偏析严重,且熔敷金属中的Nb、V等在凝固冷却过程中难以呈微细的碳化物、氮化物析出,故焊缝的综合力学性能远不及母材、且存在各向异性。随着焊接接头服役时间的延长,焊缝力学性能(尤其是韧性)衰减显著,使用寿命缩短;同时由于焊接残余应力,易发生应力腐蚀(SCC),成为整个(焊接)部件的薄弱环节,影响电站的安全运行。In the traditional weld structure, because the deposited metal has no chance of controlled rolling and deformation heat treatment, the directional columnar (dendritic) grains cannot be refined; at the same time, due to the fast cooling rate of the weld, the segregation of alloy elements is serious, Moreover, Nb, V, etc. in the deposited metal are difficult to precipitate as fine carbides and nitrides during the solidification and cooling process, so the comprehensive mechanical properties of the weld are far inferior to those of the base metal, and there is anisotropy. With the prolongation of the service time of welded joints, the mechanical properties (especially toughness) of the welds are significantly attenuated, and the service life is shortened; at the same time, due to the welding residual stress, stress corrosion (SCC) is prone to occur, becoming the weak link of the entire (welded) component, affecting safe operation of the power station.
针对该类焊缝存在的问题,且国内现有的焊材体系中,还未发现有此类镍基合金焊丝,也未发现相关的技术报导。对该焊接材料的焊缝熔敷金属具有如下技术要求:焊缝熔敷金属经过焊后再结晶处理,原焊缝组织内的带有明显方向性的柱状(树枝)晶全部转变为等轴晶,硬度由290~310HV下降到200~220HV,同时最大程度地消除成分偏析和焊接残余应力,使焊缝组织和母材具有一致性。In view of the problems existing in this type of welding seam, and in the existing domestic welding material system, no such nickel-based alloy welding wire has been found, and no relevant technical reports have been found. The weld deposited metal of this welding material has the following technical requirements: the weld deposited metal is crystallized after welding, and the columnar (dendritic) crystals with obvious direction in the original weld structure are all transformed into equiaxed crystals. , the hardness is reduced from 290 to 310HV to 200 to 220HV, and at the same time, the component segregation and welding residual stress are eliminated to the greatest extent, so that the weld structure is consistent with the base metal.
固溶强化镍基合金焊材热稳定性好,基体无固相相变。通过合金元素对基体的作用机制来提高材料的热膨胀系数和塑性,从而在焊接过程中产生大的热(膨胀)应力使熔敷金属高温下发生塑性变形;同时由于奥氏体基体良好的塑性,避免了在较大的焊接残余应力和变形量下发生开裂。由于焊缝凝固及冷却速度很快,焊缝熔敷金属残余变形量和塑性变形的畸变能存留下来,在随后的焊后热处理中,焊缝熔敷金属在再结晶温度以上发生了(静态)再结晶。The solid solution strengthened nickel-based alloy welding material has good thermal stability, and the matrix has no solid phase transformation. The thermal expansion coefficient and plasticity of the material are improved through the action mechanism of the alloying elements on the matrix, so that a large thermal (expansion) stress is generated during the welding process to cause plastic deformation of the deposited metal at high temperature; at the same time, due to the good plasticity of the austenite matrix, Cracking under large welding residual stress and deformation is avoided. Due to the rapid solidification and cooling rate of the weld, the residual deformation of the weld deposit and the distortion of plastic deformation can remain. In the subsequent post-weld heat treatment, the weld deposit occurs above the recrystallization temperature (static) re-crystallize.
焊接热应力引起的焊缝熔敷金属塑性变形,超过其再结晶的临界变形量εcr,且小于其最大塑性变形量δmax。The plastic deformation of weld deposit metal caused by welding thermal stress exceeds its critical deformation ε cr of recrystallization and is smaller than its maximum plastic deformation δ max .
即,εcr<ε焊缝<δmax That is, ε cr < ε weld < δ max
Mn、B元素的添加减弱了合金的因瓦特性,会增大合金的热膨胀系数。Ti和Al均为有序结构的强化相′(Ni3(Al,Ti))的形成元素,作为固溶强化的合金焊材,应尽量降低Ti和Al元素的含量,可避免焊后热处理再热裂纹的产生;同时要控制Ti/Al比,Ti/Al比过高时会降低高温时的组织稳定性,发生脆性η(Ni3Ti)相转变,降低合金的高温塑性。严格控制W和Zr元素含量,以避免焊接性发生劣化。The addition of Mn and B elements weakens the Invar characteristic of the alloy and increases the thermal expansion coefficient of the alloy. Both Ti and Al are forming elements of the strengthening phase '(Ni 3 (Al,Ti)) with an ordered structure. As a solid solution strengthening alloy welding consumable, the content of Ti and Al elements should be reduced as much as possible to avoid post-weld heat treatment. The generation of hot cracks; at the same time, the ratio of Ti/Al should be controlled. When the ratio of Ti/Al is too high, the structural stability at high temperature will be reduced, brittle η (Ni 3 Ti) phase transformation will occur, and the high temperature plasticity of the alloy will be reduced. Strictly control the content of W and Zr elements to avoid deterioration of weldability.
此外,稀土元素会降低镍基合金液态的流动性,增大焊缝结晶裂纹敏感性,故焊丝化学成分中不含稀土元素。In addition, rare earth elements will reduce the liquid fluidity of nickel-based alloys and increase the sensitivity of weld crystal cracks, so the chemical composition of welding wire does not contain rare earth elements.
发明内容:Invention content:
本发明的目的是针对现有的超超临界电站锅炉过热器/再热器管焊接接头残余应力大、成分偏析严重、焊缝区凝固(铸)态组织明显等问题,提供了一种焊缝熔敷金属可再结晶的镍基合金焊丝。The purpose of the present invention is to provide a welding seam for the existing ultra-supercritical power plant boiler superheater/reheater tube welding joints with large residual stress, serious composition segregation, and obvious solidified (cast) state structure in the weld zone. Deposit metal recrystallizable nickel base alloy welding wire.
为达到上述目的,本发明采用如下的技术方案来实现的:In order to achieve the above object, the present invention adopts following technical scheme to realize:
一种焊缝熔敷金属可再结晶的镍基合金焊丝,该镍基合金焊丝由以下成分按重量百分比制备而成:Fe<3%,Cr:14-18%,Al+Ti≤0.45%且Ti/Al<0.9,Nb:1.0-1.5%,Mo:7.0-9.8%,W<0.4%,Si≤1.0%,Mn:0.5-1.0%,C≤0.1%,B:0.003-0.005%,Zr≤0.03%,其余为Ni,以及其他杂质元素总和<0.1%。A nickel-based alloy welding wire with recrystallizable weld deposit metal, the nickel-based alloy welding wire is prepared by weight percentage from the following components: Fe<3%, Cr: 14-18%, Al+Ti≤0.45% and Ti/Al<0.9, Nb: 1.0-1.5%, Mo: 7.0-9.8%, W<0.4%, Si≤1.0%, Mn: 0.5-1.0%, C≤0.1%, B: 0.003-0.005%, Zr ≤0.03%, the rest is Ni, and the sum of other impurity elements <0.1%.
本发明进一步的改进在于,该镍基合金焊丝使用真空炉冶炼,经过锻造、轧制、冷拉及退火后,最终形成镍基合金焊丝。The further improvement of the present invention is that the nickel-based alloy welding wire is smelted in a vacuum furnace, and finally formed into a nickel-based alloy welding wire after forging, rolling, cold drawing and annealing.
本发明进一步的改进在于,镍基合金焊丝的规格为Φ1.5-2.4mm,采用焊接工艺为:手工TIG焊或半自动填丝钨极惰性气体焊TIG,焊接电流强度:105-210A,焊接电弧电压:10.5-18V,焊接速度为:100~150mm/min,电流种类/极性:直流DC/正接SP,层间温度不高于100℃,保护气体:Ar,气体流量12~16L/min。The further improvement of the present invention is that the specification of the nickel-based alloy welding wire is Φ1.5-2.4mm, the welding process is: manual TIG welding or semi-automatic tungsten inert gas welding TIG welding, welding current intensity: 105-210A, welding arc Voltage: 10.5-18V, welding speed: 100-150mm/min, current type/polarity: direct current DC/positive connection to SP, interlayer temperature not higher than 100°C, shielding gas: Ar, gas flow rate 12-16L/min.
本发明进一步的改进在于,使用时,采用钨极氩弧焊焊接,使用Ar作为保护气体,形成焊缝熔敷金属。The further improvement of the present invention lies in that, when in use, argon tungsten arc welding is used, and Ar is used as a shielding gas to form weld deposit metal.
本发明进一步的改进在于,焊缝熔敷金属经过在1000~1100℃热处理30~60分钟后,空冷,焊缝熔敷金属发生再结晶。The further improvement of the present invention lies in that the weld deposited metal is recrystallized after being heat-treated at 1000-1100° C. for 30-60 minutes and air-cooled.
本发明进一步的改进在于,镍基焊丝适用于超超临界锅炉用过热器及再热器管的焊接,过热器及再热器管与锅炉集气联箱的焊接。The further improvement of the present invention lies in that the nickel-based welding wire is suitable for welding superheater and reheater tubes for ultra-supercritical boilers, and welding superheater and reheater tubes and boiler gas headers.
相对于现有技术,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、经实验,本发明适用于超超临界电站锅炉高温部件的焊接,镍基焊丝适用于超超临界锅炉用过热器及再热器管的焊接,过热器及再热器管与锅炉集气联箱(包括接管座)的焊接。1. Through experiments, the present invention is suitable for welding high-temperature parts of ultra-supercritical power plant boilers. Nickel-based welding wire is suitable for welding superheater and reheater tubes for ultra-supercritical boilers, superheater and reheater tubes and boiler gas collectors Welding of headers (including sockets).
2、利用本发明焊丝焊接时,焊缝熔敷金属高温塑性好,不易产生焊接裂纹。2. When the welding wire of the invention is used for welding, the deposited metal of the weld seam has good high-temperature plasticity and is not easy to produce welding cracks.
3、本发明焊丝能够实现焊缝的微合金化,得到符合标准要求的焊缝。3. The welding wire of the present invention can realize the microalloying of the welding seam, and obtain the welding seam meeting the requirements of the standard.
4、利用本发明焊丝焊接时,焊缝熔敷金属经过焊后再结晶(热)处理后,焊缝区凝固态的柱状晶和树枝晶的转变为等轴晶,最大程度地消除焊缝成分偏析和焊接残余应力,保持和母材组织的一致性。4. When welding with the welding wire of the present invention, after the weld deposited metal is recrystallized (heated) after welding, the solidified columnar crystals and dendrites in the weld zone will transform into equiaxed crystals, eliminating the weld components to the greatest extent. Segregation and welding residual stress, maintaining the consistency with the base metal structure.
附图说明:Description of drawings:
图1为焊接IN740H镍基合金(母材)焊接接头组织的光学显微镜形貌照片;其中,图1(a)为焊态组织的光学显微镜形貌照片,图1(b)为焊后再结晶热处理组织的光学显微镜形貌照片。Figure 1 is an optical microscope topography photo of the welded joint structure of welded IN740H nickel-based alloy (base metal); among them, Fig. 1(a) is an optical microscope topography photo of the welded structure, and Fig. 1(b) is recrystallization after welding Optical microscope topography photos of heat-treated tissues.
图2为焊接GH2984镍铁基合金(母材)焊接接头组织的光学显微镜形貌照片;其中,图2(a)为焊态组织的光学显微镜形貌照片,图2(b)为焊后再结晶热处理组织的光学显微镜形貌照片。Figure 2 is an optical microscope topography photo of the welded joint structure of the welded GH2984 nickel-iron-based alloy (base metal); among them, Fig. 2 (a) is an optical microscope topography photo of the welded structure, and Fig. 2 (b) is the post-weld Optical microscope topography of crystallized heat-treated tissue.
具体实施方式:detailed description:
下面将结合实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with examples.
实施例1:Example 1:
参见图1,使用该焊丝(Φ1.5mm)采用手工TIG焊,对IN740H镍基合金进行焊接,焊接电流:140A,焊接电压:13V,焊接速度为:110mm/min,电流种类/极性:直流DC/正接SP,层间温度不高于100℃,保护气体:Ar,气体流量13L/min。焊后进行1050℃/1h热处理,焊缝组织由焊后的柱状晶和树枝晶变为等轴晶,且无焊接裂纹等缺陷产生。焊后焊缝处硬度为310HV,冲击韧性为22kJ;焊后热处理后,硬度降为215HV,冲击韧性为31kJ。See Figure 1, use this welding wire (Φ1.5mm) to weld IN740H nickel-based alloy by manual TIG welding, welding current: 140A, welding voltage: 13V, welding speed: 110mm/min, current type/polarity: DC DC/connected to SP, interlayer temperature not higher than 100°C, protective gas: Ar, gas flow rate 13L/min. Heat treatment at 1050℃/1h after welding, the weld microstructure changed from post-weld columnar crystals and dendrites to equiaxed crystals, and no defects such as welding cracks occurred. After welding, the hardness of the weld is 310HV, and the impact toughness is 22kJ; after post-weld heat treatment, the hardness is reduced to 215HV, and the impact toughness is 31kJ.
实施例2:Example 2:
参见图2,使用该焊丝(Φ2.4mm)采用手工TIG焊,对GH2984镍铁基合金进行焊接,焊接电流:160A,焊接电压:14V,焊接速度为:120mm/min,电流种类/极性:直流DC/正接SP,层间温度不高于100℃,保护气体:Ar,气体流量15L/min。焊后进行1100℃/30min热处理,焊缝组织由焊后的柱状晶和树枝晶变为等轴晶,且无焊接裂纹等缺陷产生。焊后焊缝处硬度为300HV,冲击韧性为26kJ;焊后热处理后,硬度降为210HV,冲击韧性为46kJ。See Figure 2, use this welding wire (Φ2.4mm) to weld GH2984 nickel-iron-based alloy by manual TIG welding, welding current: 160A, welding voltage: 14V, welding speed: 120mm/min, current type/polarity: Direct current DC/positive connection to SP, interlayer temperature not higher than 100°C, protective gas: Ar, gas flow rate 15L/min. Heat treatment at 1100℃/30min after welding, the weld microstructure changed from post-weld columnar crystals and dendrites to equiaxed crystals, and no defects such as welding cracks occurred. After welding, the hardness of the weld is 300HV, and the impact toughness is 26kJ; after post-weld heat treatment, the hardness is reduced to 210HV, and the impact toughness is 46kJ.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610230578.5A CN105689919B (en) | 2016-04-14 | 2016-04-14 | Nickel-based alloy welding wire with weld deposit metal capable of being recrystallized |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610230578.5A CN105689919B (en) | 2016-04-14 | 2016-04-14 | Nickel-based alloy welding wire with weld deposit metal capable of being recrystallized |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105689919A true CN105689919A (en) | 2016-06-22 |
CN105689919B CN105689919B (en) | 2018-10-30 |
Family
ID=56216272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610230578.5A Active CN105689919B (en) | 2016-04-14 | 2016-04-14 | Nickel-based alloy welding wire with weld deposit metal capable of being recrystallized |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105689919B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108723637A (en) * | 2018-06-20 | 2018-11-02 | 华能国际电力股份有限公司 | Nickel-iron-based welding wire for 700 ℃ ultra-supercritical power station boiler |
CN110666393A (en) * | 2019-11-15 | 2020-01-10 | 攀钢集团江油长城特殊钢有限公司 | Core wire material and preparation method thereof |
CN111194250A (en) * | 2017-12-08 | 2020-05-22 | Vdm金属国际有限公司 | Welding additive |
CN112025137A (en) * | 2020-07-21 | 2020-12-04 | 江苏金桥焊材科技股份有限公司 | High-temperature corrosion-resistant nickel-based welding wire and smelting and preparation method thereof |
CN112518172A (en) * | 2020-11-24 | 2021-03-19 | 中国华能集团有限公司 | Nickel-cobalt-based high-temperature alloy welding wire |
CN113084313A (en) * | 2021-03-03 | 2021-07-09 | 广州特种承压设备检测研究院 | Argon tungsten-arc welding process for steel for ultra-supercritical boiler |
CN113510340A (en) * | 2021-08-10 | 2021-10-19 | 哈尔滨电气动力装备有限公司 | Welding and postweld heat treatment process method for martensite precipitation hardening stainless steel material |
CN114799425A (en) * | 2022-06-30 | 2022-07-29 | 中国空气动力研究与发展中心高速空气动力研究所 | Welding process for invar steel medium plate |
CN116329809A (en) * | 2023-05-29 | 2023-06-27 | 西安热工研究院有限公司 | Nickel-based amorphous flux-cored welding wire and preparation method thereof |
CN118357632A (en) * | 2024-06-20 | 2024-07-19 | 西安热工研究院有限公司 | Welding wire for nickel-based gradient cladding layer on water-cooled wall surface and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE747999A (en) * | 1969-03-28 | 1970-09-28 | Inst Elektroswarki Patona | PRODUCT FOR ELECTRODES, AND SUPPORT FOR RECHARGING |
JPS61262487A (en) * | 1985-05-15 | 1986-11-20 | Ishikawajima Harima Heavy Ind Co Ltd | Nickel-based welding material |
US5855699A (en) * | 1994-10-03 | 1999-01-05 | Daido Tokushuko Kabushiki Kaisha | Method for manufacturing welded clad steel tube |
NL1016527A1 (en) * | 1999-11-04 | 2001-05-07 | Alstom Power Schweiz Ag | Method for welding components together. |
CN102581513A (en) * | 2012-03-06 | 2012-07-18 | 中国科学院金属研究所 | Nickel-based welding wire for main equipment of nuclear island of nuclear power station |
CN105014258A (en) * | 2015-06-26 | 2015-11-04 | 北京北冶功能材料有限公司 | Nickel-base superalloy welding wire for 700 DEG C-above ultra-supercritical coal power generation equipment |
CN105420638A (en) * | 2015-11-20 | 2016-03-23 | 钢铁研究总院 | Heat-resisting alloy for 700-DEG C ultra-supercritical boiler water-cooling wall and tubing manufacturing method |
-
2016
- 2016-04-14 CN CN201610230578.5A patent/CN105689919B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE747999A (en) * | 1969-03-28 | 1970-09-28 | Inst Elektroswarki Patona | PRODUCT FOR ELECTRODES, AND SUPPORT FOR RECHARGING |
JPS61262487A (en) * | 1985-05-15 | 1986-11-20 | Ishikawajima Harima Heavy Ind Co Ltd | Nickel-based welding material |
US5855699A (en) * | 1994-10-03 | 1999-01-05 | Daido Tokushuko Kabushiki Kaisha | Method for manufacturing welded clad steel tube |
NL1016527A1 (en) * | 1999-11-04 | 2001-05-07 | Alstom Power Schweiz Ag | Method for welding components together. |
CN102581513A (en) * | 2012-03-06 | 2012-07-18 | 中国科学院金属研究所 | Nickel-based welding wire for main equipment of nuclear island of nuclear power station |
CN105014258A (en) * | 2015-06-26 | 2015-11-04 | 北京北冶功能材料有限公司 | Nickel-base superalloy welding wire for 700 DEG C-above ultra-supercritical coal power generation equipment |
CN105420638A (en) * | 2015-11-20 | 2016-03-23 | 钢铁研究总院 | Heat-resisting alloy for 700-DEG C ultra-supercritical boiler water-cooling wall and tubing manufacturing method |
Non-Patent Citations (1)
Title |
---|
MR.SAM KISER: "在核电工业中镍基合金焊材的应用", 《2015能源工程焊接国际论坛论文集》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111194250B (en) * | 2017-12-08 | 2022-04-26 | Vdm金属国际有限公司 | Welding additive |
CN111194250A (en) * | 2017-12-08 | 2020-05-22 | Vdm金属国际有限公司 | Welding additive |
CN108723637B (en) * | 2018-06-20 | 2020-12-08 | 华能国际电力股份有限公司 | A 700 ℃ ultra-supercritical power plant boiler with nickel-iron-based welding wire |
CN108723637A (en) * | 2018-06-20 | 2018-11-02 | 华能国际电力股份有限公司 | Nickel-iron-based welding wire for 700 ℃ ultra-supercritical power station boiler |
CN110666393A (en) * | 2019-11-15 | 2020-01-10 | 攀钢集团江油长城特殊钢有限公司 | Core wire material and preparation method thereof |
CN110666393B (en) * | 2019-11-15 | 2021-09-28 | 攀钢集团江油长城特殊钢有限公司 | Core wire material and preparation method thereof |
CN112025137A (en) * | 2020-07-21 | 2020-12-04 | 江苏金桥焊材科技股份有限公司 | High-temperature corrosion-resistant nickel-based welding wire and smelting and preparation method thereof |
CN112518172A (en) * | 2020-11-24 | 2021-03-19 | 中国华能集团有限公司 | Nickel-cobalt-based high-temperature alloy welding wire |
CN113084313A (en) * | 2021-03-03 | 2021-07-09 | 广州特种承压设备检测研究院 | Argon tungsten-arc welding process for steel for ultra-supercritical boiler |
CN113510340A (en) * | 2021-08-10 | 2021-10-19 | 哈尔滨电气动力装备有限公司 | Welding and postweld heat treatment process method for martensite precipitation hardening stainless steel material |
CN114799425A (en) * | 2022-06-30 | 2022-07-29 | 中国空气动力研究与发展中心高速空气动力研究所 | Welding process for invar steel medium plate |
CN114799425B (en) * | 2022-06-30 | 2022-11-11 | 中国空气动力研究与发展中心高速空气动力研究所 | Invar steel medium plate welding process |
CN116329809A (en) * | 2023-05-29 | 2023-06-27 | 西安热工研究院有限公司 | Nickel-based amorphous flux-cored welding wire and preparation method thereof |
CN116329809B (en) * | 2023-05-29 | 2023-09-08 | 西安热工研究院有限公司 | Nickel-based amorphous flux-cored welding wire and preparation method thereof |
CN118357632A (en) * | 2024-06-20 | 2024-07-19 | 西安热工研究院有限公司 | Welding wire for nickel-based gradient cladding layer on water-cooled wall surface and preparation method thereof |
CN118357632B (en) * | 2024-06-20 | 2024-09-10 | 西安热工研究院有限公司 | Welding wire for nickel-based gradient cladding layer on surface of water-cooled wall and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105689919B (en) | 2018-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105689919B (en) | Nickel-based alloy welding wire with weld deposit metal capable of being recrystallized | |
CN108723637B (en) | A 700 ℃ ultra-supercritical power plant boiler with nickel-iron-based welding wire | |
CN102581513B (en) | Nickel-based welding wire for main equipment of nuclear island of nuclear power station | |
JP7342149B2 (en) | Precipitation strengthened nickel-based high chromium superalloy and its manufacturing method | |
CN106541222B (en) | High-temperature high-strength nuclear power nickel-based welding wire without crack defects and preparation and application thereof | |
CN110106398B (en) | A kind of low-chromium corrosion-resistant high-strength polycrystalline superalloy and preparation method thereof | |
CN102229018A (en) | Argon arc welding method suitable for self connection of TiAl-based alloy material | |
CN110157954A (en) | A kind of complex intensifying type Al-Cu corrosion-resistant high temperature alloy and its preparation process | |
CN105420638B (en) | 700 DEG C of ultra-supercritical boiler water-cooling wall heat-resisting alloys and tubing manufacture method | |
CN110157993A (en) | A kind of high strength anti-corrosion Fe Ni matrix high temperature alloy and preparation method thereof | |
CN103252593B (en) | Oxidation-resistant low-expansion high-temperature alloy welding wire for gas shielded welding | |
CN110405380A (en) | Iron-based high-temperature alloy welding wire | |
CN105215572A (en) | A kind of nuclear island primary device anti-crack defect nickel-based welding wire and preparation method | |
WO2021223758A1 (en) | Wrought superalloy capable of forming composite corrosion-resistant layer and preparation process therefor | |
CN111471897A (en) | A kind of high-strength nickel-based superalloy preparation and forming process | |
CN111394620A (en) | Machining and forming process of high-strength nickel-based high-temperature alloy bar | |
CN106636762A (en) | High-performance cobalt-based high-temperature alloy brush wire material | |
CN111378874A (en) | A kind of precipitation-strengthening deformed superalloy and its preparation process | |
CN106001988A (en) | Martensite heat-resisting steel welding wire having high impact property and used for fourth-generation nuclear power and welding technology of martensite heat-resisting steel welding wire | |
CN111411266A (en) | Preparation process of nickel-based high-tungsten polycrystalline superalloy | |
CN111534717A (en) | Preparation and forming process of high-strength nickel-cobalt-based alloy pipe | |
CN113699465B (en) | Ferrite-based high-strength corrosion-resistant dual-phase alloy and preparation method thereof | |
CN112846566B (en) | Solid solution strengthening type heat-resistant alloy C-HRA-2 argon arc welding wire | |
CN115044818B (en) | Rotor for steam turbine at 650 ℃ and above and preparation method thereof | |
CN115198161B (en) | Header for boiler unit with temperature of 650 ℃ and above and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |