CN105688942B - A kind of stratiform MoS2The preparation method of Ni nano composite materials - Google Patents
A kind of stratiform MoS2The preparation method of Ni nano composite materials Download PDFInfo
- Publication number
- CN105688942B CN105688942B CN201610143700.5A CN201610143700A CN105688942B CN 105688942 B CN105688942 B CN 105688942B CN 201610143700 A CN201610143700 A CN 201610143700A CN 105688942 B CN105688942 B CN 105688942B
- Authority
- CN
- China
- Prior art keywords
- mos
- molybdenum disulfide
- mixed
- powder
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 39
- 239000000463 material Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 87
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims abstract description 80
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims abstract description 78
- 239000000843 powder Substances 0.000 claims abstract description 59
- 238000003756 stirring Methods 0.000 claims abstract description 34
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000011812 mixed powder Substances 0.000 claims abstract description 30
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- SHWZFQPXYGHRKT-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;nickel Chemical compound [Ni].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O SHWZFQPXYGHRKT-FDGPNNRMSA-N 0.000 claims abstract description 18
- 239000002360 explosive Substances 0.000 claims abstract description 18
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000009830 intercalation Methods 0.000 claims abstract description 13
- 230000002687 intercalation Effects 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 9
- 239000007800 oxidant agent Substances 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 238000004140 cleaning Methods 0.000 claims abstract description 4
- 230000003647 oxidation Effects 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 239000000047 product Substances 0.000 claims abstract description 4
- 238000001914 filtration Methods 0.000 claims abstract description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 28
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 22
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical group OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 11
- 239000012065 filter cake Substances 0.000 claims description 11
- 150000004984 aromatic diamines Chemical class 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 239000012286 potassium permanganate Substances 0.000 claims description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 5
- -1 aromatic thioether Chemical class 0.000 claims description 5
- 229910052961 molybdenite Inorganic materials 0.000 claims description 5
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 5
- 238000005119 centrifugation Methods 0.000 claims description 4
- 150000003568 thioethers Chemical class 0.000 claims 2
- 239000003205 fragrance Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 claims 1
- 238000007873 sieving Methods 0.000 claims 1
- 239000002131 composite material Substances 0.000 abstract description 20
- 239000011259 mixed solution Substances 0.000 abstract description 20
- 239000000243 solution Substances 0.000 abstract description 20
- 239000002356 single layer Substances 0.000 abstract description 11
- 230000001050 lubricating effect Effects 0.000 abstract description 5
- 239000002086 nanomaterial Substances 0.000 abstract description 4
- 239000002105 nanoparticle Substances 0.000 abstract description 4
- 238000009903 catalytic hydrogenation reaction Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 3
- 239000007795 chemical reaction product Substances 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000376 reactant Substances 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 9
- 238000001237 Raman spectrum Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 101100069231 Caenorhabditis elegans gkow-1 gene Proteins 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011146 organic particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- BRGZXFFFTTVXQO-UHFFFAOYSA-N bis(sulfanylidene)molybdenum sulfanylidenemolybdenum Chemical compound S=[Mo][Mo](=S)=S BRGZXFFFTTVXQO-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
- B01J35/399—Distribution of the active metal ingredient homogeneously throughout the support particle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M125/00—Lubricating compositions characterised by the additive being an inorganic material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M125/00—Lubricating compositions characterised by the additive being an inorganic material
- C10M125/22—Compounds containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/04—Elements
- C10M2201/05—Metals; Alloys
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/065—Sulfides; Selenides; Tellurides
- C10M2201/066—Molybdenum sulfide
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
本发明提供了一种层状MoS2‑Ni纳米复合材料的制备方法,将二硫化钼粉末加入分层溶液中进行分层反应,形成混合液;在混合溶液中加入氧化剂进行氧化插层反应,过滤干燥后得到插层二硫化钼粉末;将乙酰丙酮镍溶于四氢呋喃中,加入插层二硫化钼粉末,搅拌混合进行反应,离心、清洗、干燥后得到MoS2‑Ni混合粉末;将MoS2/Ni混合粉末与爆炸剂混合,进行爆炸反应,冷却至室温后取出爆炸反应产物,即得到层状MoS2‑Ni纳米复合材料。本发明制备的产物为具有高载流子迁移率的层状二硫化钼与Ni纳米颗粒复合的纳米材料,且Ni纳米颗粒均匀附着在单层二硫化钼片层上,提升了其催化加氢和润滑性能,大大扩展了二硫化钼的应用范围。
The invention provides a preparation method of a layered MoS 2 -Ni nanocomposite material, wherein molybdenum disulfide powder is added into a layered solution for a layered reaction to form a mixed solution; an oxidant is added to the mixed solution to carry out an oxidation intercalation reaction, After filtering and drying, the intercalated molybdenum disulfide powder was obtained; dissolving nickel acetylacetonate in tetrahydrofuran, adding the intercalated molybdenum disulfide powder, stirring and mixing for reaction, centrifuging, cleaning, and drying to obtain MoS 2 -Ni mixed powder; MoS 2 The /Ni mixed powder is mixed with the explosive agent for explosive reaction, and the explosive reaction product is taken out after cooling to room temperature, and the layered MoS 2 ‑Ni nanocomposite material is obtained. The product prepared by the present invention is a composite nanomaterial of layered molybdenum disulfide and Ni nanoparticles with high carrier mobility, and the Ni nanoparticles are evenly attached to the single-layer molybdenum disulfide sheet, which improves its catalytic hydrogenation And lubricating properties, greatly expanding the scope of application of molybdenum disulfide.
Description
技术领域technical field
本发明属于金属钼技术领域,涉及二硫化钼复合材料,具体涉及一种层状MoS2-Ni纳米复合材料的制备方法。The invention belongs to the technical field of molybdenum metal, relates to a molybdenum disulfide composite material, in particular to a preparation method of a layered MoS 2 -Ni nanometer composite material.
背景技术Background technique
由单层或少层二硫化钼构成的类石墨烯二硫化钼(Graphene-like MoS2) 是一种具有类似石墨烯结构和性能的新型二维(2D)层状化合物,近年来以其独特的物理、化学性质而成为新兴的研究热点。类石墨烯二硫化钼是由六方晶系的单层或多层二硫化钼组成的具有“三明治夹心”层状结构的二维晶体材料,单层二硫化钼由三层原子层构成,中间一层为钼原子层,上下两层均为硫原子层,钼原子层被两层硫原子层所夹形成类“三明治”结构,钼原子与硫原子以共价键结合形成二维原子晶体;多层二硫化钼由若干单层二硫化钼组成,一般不超过五层,层间存在弱的范德华力,层间距约为0.65nm。Graphene-like molybdenum disulfide (Graphene-like MoS 2 ) composed of single-layer or few-layer molybdenum disulfide (Graphene-like MoS 2 ) is a new type of two-dimensional (2D) layered compound with graphene-like structure and properties. It has become an emerging research hotspot due to its physical and chemical properties. Graphene-like molybdenum disulfide is a two-dimensional crystal material with a "sandwich sandwich" layered structure composed of a hexagonal single-layer or multi-layer molybdenum disulfide. The single-layer molybdenum disulfide is composed of three atomic layers. The layer is a molybdenum atomic layer, and the upper and lower layers are sulfur atomic layers. The molybdenum atomic layer is sandwiched by two sulfur atomic layers to form a "sandwich" structure. Molybdenum atoms and sulfur atoms are covalently bonded to form a two-dimensional atomic crystal; Layer molybdenum disulfide is composed of several single-layer molybdenum disulfide, generally no more than five layers, there is weak van der Waals force between layers, and the layer distance is about 0.65nm.
作为一类重要的二维层状纳米材料,单层或少层二硫化钼以其独特的“三明治夹心”层状结构在润滑剂、催化、能量存储、复合材料等众多领域应用广泛。相比于石墨烯的零能带隙,类石墨烯二硫化钼存在可调控的能带隙,在光电器件领域拥有更光明的前景;相比于硅材料的三维体相结构,类石墨烯二硫化钼具有纳米尺度的二维层状结构,可被用来制造半导体或规格更小、能效更高的电子芯片,将在下一代的纳米电子设备等领域得到广泛应用。As an important class of two-dimensional layered nanomaterials, single-layer or few-layer molybdenum disulfide is widely used in many fields such as lubricants, catalysis, energy storage, and composite materials due to its unique "sandwich sandwich" layered structure. Compared with the zero-energy bandgap of graphene, graphene-like molybdenum disulfide has an adjustable energy bandgap, which has a brighter prospect in the field of optoelectronic devices; compared with the three-dimensional bulk phase structure of silicon materials, graphene-like molybdenum disulfide Molybdenum sulfide has a nanoscale two-dimensional layered structure, which can be used to manufacture semiconductors or electronic chips with smaller specifications and higher energy efficiency, and will be widely used in the next generation of nanoelectronic devices and other fields.
虽然层状二硫化钼具有良好的润滑性能及光电性能,但是其在催化、润滑等方面的性能有待进一步提升,将二硫化钼同其它有机或无机微粒复合使用,利用它们的协同效应,是提升二硫化钼性能的方法之一。Although layered molybdenum disulfide has good lubricating properties and photoelectric properties, its performance in catalysis and lubrication needs to be further improved. Combining molybdenum disulfide with other organic or inorganic particles and utilizing their synergistic effects is a great way to improve One of the methods of molybdenum disulfide properties.
虽然层状二硫化钼具有良好的光电性能,但是其在催化活性、润滑等方面的性能有待进一步提升,将二硫化钼同其它有机或无机微粒复合使用,利用它们的协同效应,是提升二硫化钼性能的方法之一。Although layered molybdenum disulfide has good photoelectric properties, its performance in terms of catalytic activity and lubrication needs to be further improved. Using molybdenum disulfide in combination with other organic or inorganic particles and using their synergistic effects is a great way to improve the performance of disulfide disulfide. One of the methods of molybdenum properties.
Ni具有优异的催化性能,是常用的氢化催化剂之一,此外,Ni还具有一定的润滑性能。研究表明,Ni与二硫化钼存在协同润滑与协同催化作用,通过锂离子插层结合化学合成制备二硫化钼/Ni复合物是提高二硫化钼与Ni的润滑与催化性能的有效途径(Ni-MoS2复合材料应用于抽余油的催化加氢脱硫和脱芳烃,2009,(25)3:339-343)。Ni has excellent catalytic properties and is one of the commonly used hydrogenation catalysts. In addition, Ni also has certain lubricating properties. Studies have shown that Ni and MoS have synergistic lubrication and synergistic catalysis, and the preparation of MoS2/Ni composites by lithium ion intercalation combined with chemical synthesis is an effective way to improve the lubrication and catalytic performance of MoS2 and Ni (Ni- Application of MoS 2 composites in catalytic hydrodesulfurization and dearomatization of raffinate, 2009, (25) 3:339-343).
虽然采用上述方法制得了Ni-MoS2复合材料,但其制备流程复杂,能耗大,不适合工业化生产,且使用的正丁基锂溶液有极强的还原性和活性,易燃烧爆炸,使用过程对条件要求复杂且苛刻。因此,探索一种采用MoS2粉末为原料制备层状MoS2/TiO2纳米复合材料的简易方法十分必要。Although the Ni-MoS 2 composite material has been prepared by the above method, its preparation process is complex and consumes a lot of energy, which is not suitable for industrial production, and the n-butyllithium solution used has strong reducibility and activity, and is easy to burn and explode. The process requires complex and harsh conditions. Therefore, it is necessary to explore a simple method to prepare layered MoS 2 /TiO 2 nanocomposites using MoS 2 powder as raw material.
发明内容Contents of the invention
基于现有技术中存在的问题,本发明提出了一种层状MoS2-Ni纳米复合材料的制备方法,获得具有纳米尺度、性能优越的层状MoS2-Ni纳米复合材料,解决现有的MoS2-Ni复合材料制备工艺复杂,难以工业化生产的问题,同时提高MoS2-Ni复合材料的催化加氢和润滑性能。Based on the problems existing in the prior art, the present invention proposes a method for preparing a layered MoS 2 -Ni nanocomposite material to obtain a layered MoS 2 -Ni nanocomposite material with nanoscale and superior performance, which solves the existing problems The preparation process of MoS 2 -Ni composites is complicated, and it is difficult to industrialize the production, while improving the catalytic hydrogenation and lubricating properties of MoS 2 -Ni composites.
需要说明的是本申请中的层状MoS2-Ni纳米复合材料中的MoS2是单层或少层MoS2纳米材料,所述的少层指的是2层至5层。It should be noted that the MoS 2 in the layered MoS 2 -Ni nanocomposite material in this application is a single-layer or few-layer MoS 2 nanomaterial, and the said few-layer refers to 2-5 layers.
为了解决上述技术问题,本申请采用如下技术方案予以实现:In order to solve the above-mentioned technical problems, the application adopts the following technical solutions to achieve:
一种层状MoS2-Ni纳米复合材料的制备方法,该方法包括以下步骤:A method for preparing a layered MoS 2 -Ni nanocomposite material, the method comprising the following steps:
步骤一,将二硫化钼粉末加入分层溶液中进行分层反应,形成混合液;Step 1, adding molybdenum disulfide powder into the layered solution to carry out a layered reaction to form a mixed solution;
步骤二,在混合溶液中加入氧化剂进行氧化插层反应,过滤干燥后得到插层二硫化钼粉末;Step 2, adding an oxidizing agent to the mixed solution to carry out an oxidation intercalation reaction, and obtaining intercalated molybdenum disulfide powder after filtering and drying;
步骤三,将乙酰丙酮镍溶于四氢呋喃中,加入插层二硫化钼粉末,搅拌混合进行反应,离心、清洗、干燥后得到MoS2-Ni混合粉末;Step 3, dissolving nickel acetylacetonate in tetrahydrofuran, adding intercalated molybdenum disulfide powder, stirring and mixing for reaction, centrifuging, cleaning, and drying to obtain MoS 2 -Ni mixed powder;
步骤四,将MoS2/Ni混合粉末与与爆炸剂混合,进行爆炸反应,冷却至室温后取出爆炸反应产物,即得到层状MoS2-Ni纳米复合材料。Step 4: Mix the MoS 2 /Ni mixed powder with the explosive agent to carry out the explosive reaction, take out the explosive reaction product after cooling to room temperature, and obtain the layered MoS 2 -Ni nanocomposite material.
本发明还具有如下区别技术特征:The present invention also has the following distinguishing technical features:
所述的分层溶液为芳香族硫醚的乙醇溶液;所述的氧化剂为高锰酸钾;所述的爆炸剂为苦味酸。The layered solution is ethanol solution of aromatic sulfide; the oxidant is potassium permanganate; and the explosive is picric acid.
所述的芳香族硫醚为聚苯硫醚或芳香族二胺单体硫醚,芳香族硫醚的乙醇溶液的质量浓度为10%~60%。The aromatic sulfide is polyphenylene sulfide or aromatic diamine monomer sulfide, and the mass concentration of the aromatic sulfide ethanol solution is 10%-60%.
步骤一中,所述的分层反应的具体过程为:将二硫化钼粉末研磨至200 目过筛,将二硫化钼粉末加入芳香族硫醚的乙醇溶液中,加热至30~50℃并搅拌3~12h,形成混合液。In step 1, the specific process of the layering reaction is: grind the molybdenum disulfide powder to 200 mesh and sieve, add the molybdenum disulfide powder into the ethanol solution of aromatic sulfide, heat to 30-50°C and stir 3 ~ 12h, forming a mixed solution.
步骤一中,所述的二硫化钼粉末与芳香族硫醚的质量比为1:(10~40)。In step 1, the mass ratio of the molybdenum disulfide powder to the aromatic sulfide is 1:(10-40).
步骤二中,所述的氧化插层反应的具体过程为:向混合液中加入高锰酸钾,加热至50~90℃并搅拌3~8h,过滤,将滤饼烘干,得到插层二硫化钼粉末。In step 2, the specific process of the oxidative intercalation reaction is: add potassium permanganate to the mixed solution, heat to 50-90°C and stir for 3-8 hours, filter, and dry the filter cake to obtain intercalation 2 Molybdenum sulfide powder.
步骤二中,所述的高锰酸钾与混合液中的二硫化钼的的质量比为(0.5~ 3):1。In step 2, the mass ratio of the potassium permanganate to the molybdenum disulfide in the mixed solution is (0.5-3):1.
所述的步骤三的具体过程为:将乙酰丙酮镍溶于四氢呋喃中,加入插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至190~220℃反应4~9h,离心、清洗、干燥后得到MoS2-Ni混合粉末。The specific process of the third step is: dissolving nickel acetylacetonate in tetrahydrofuran, adding intercalated molybdenum disulfide powder, stirring and mixing evenly, transferring the mixed solution to a polytetrafluoroethylene-lined reaction kettle, heating to 190~ React at 220°C for 4-9 hours, centrifuge, wash and dry to obtain MoS 2 -Ni mixed powder.
步骤三中,所述的:乙酰丙酮镍的四氢呋喃溶液浓度为0.01~0.03mg/L,所述的乙酰丙酮镍与插层二硫化钼粉末的质量比为(0.3~2):1。In step 3, the tetrahydrofuran solution concentration of nickel acetylacetonate is 0.01-0.03 mg/L, and the mass ratio of nickel acetylacetonate to intercalated molybdenum disulfide powder is (0.3-2):1.
步骤四中,所述的爆炸反应的具体过程为:将MoS2-Ni混合粉末与苦味酸混合均匀,装入高压反应釜中,将高压反应釜抽真空并通入氩气,加热至 350~600℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状 MoS2-Ni纳米复合材料。In step 4, the specific process of the explosive reaction is: mix the MoS 2 -Ni mixed powder and picric acid evenly, put it into a high-pressure reactor, vacuumize the high-pressure reactor and feed argon, and heat to 350~ Explosion occurs at 600°C, and the explosive reactants are taken out after cooling to room temperature with the furnace, and the layered MoS 2 -Ni nanocomposite material is obtained.
步骤四中,所述的MoS2-Ni混合粉末与苦味酸的质量比1:(0.5~3)。In step 4, the mass ratio of the MoS 2 -Ni mixed powder to picric acid is 1: (0.5-3).
本发明与现有技术相比,有益的技术效果是:Compared with the prior art, the present invention has beneficial technical effects as follows:
(Ⅰ)本发明利用芳香族硫醚的亲硫特性,降低二硫化钼原料粉末的层间范德华力,结合爆炸冲击对其进行插层剥离。采用此方法制备层状MoS2-Ni 纳米复合材料,操作简单,不需要复杂而繁琐的制备装置,不但制备效率高,产量大。(I) The present invention utilizes the thiophilic properties of aromatic sulfides to reduce the interlayer van der Waals force of molybdenum disulfide raw material powder, and performs intercalation and exfoliation in combination with explosion impact. The preparation of the layered MoS 2 -Ni nanocomposite material by this method is simple in operation, does not require complex and cumbersome preparation devices, and not only has high preparation efficiency and large output.
(Ⅱ)本发明制备的产物为具有高载流子迁移率的层状二硫化钼与Ni纳米颗粒复合的纳米材料,且Ni纳米颗粒均匀附着在单层二硫化钼片层上,提升了其催化加氢和润滑性能,大大扩展了二硫化钼的应用范围。(II) The product prepared by the present invention is a composite nanomaterial of layered molybdenum disulfide and Ni nanoparticles with high carrier mobility, and the Ni nanoparticles are evenly attached to the single-layer molybdenum disulfide sheet, which improves its Catalytic hydrogenation and lubricating properties greatly expand the application range of molybdenum disulfide.
(Ⅲ)本发明制备层状MoS2-Ni纳米复合材料,操作简单,不需要复杂而繁琐的制备装置,适合工业化生产。(Ⅲ) The preparation of the layered MoS 2 -Ni nanocomposite material in the present invention is simple in operation, does not require complex and cumbersome preparation devices, and is suitable for industrial production.
附图说明Description of drawings
图1是实施例1中的层状MoS2-Bi2MoO6纳米复合材料的Raman图谱。FIG. 1 is the Raman spectrum of the layered MoS 2 -Bi 2 MoO 6 nanocomposite material in Example 1.
图2是实施例1中中的层状MoS2-Bi2MoO6纳米复合材料的TEM图。FIG. 2 is a TEM image of the layered MoS 2 —Bi 2 MoO 6 nanocomposite material in Example 1. FIG.
图3是对比例1中的MoS2-Bi2MoO6复合材料的Raman图谱。FIG. 3 is the Raman spectrum of the MoS 2 -Bi 2 MoO 6 composite material in Comparative Example 1.
图4是对比例1中的MoS2-Bi2MoO6复合材料的SEM图。FIG. 4 is an SEM image of the MoS 2 -Bi 2 MoO 6 composite material in Comparative Example 1. FIG.
以下结合附图和实施例对本发明的具体内容作进一步详细地说明。The specific content of the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
具体实施方式detailed description
遵从上述技术方案,以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。下面结合实施例对本发明做进一步详细说明。Comply with above-mentioned technical solution, the specific embodiment of the present invention is given below, it should be noted that the present invention is not limited to following specific embodiment, all equivalent transformations done on the basis of the technical solution of the present application all fall within the scope of protection of the present invention . The present invention will be described in further detail below in conjunction with the examples.
实施例1:Example 1:
本实施例给出一种层状MoS2-Ni纳米复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a layered MoS 2 -Ni nanocomposite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为10%、含有100g聚苯硫醚的乙醇溶液中,水浴加热至30℃并搅拌12h,得到混合液。Step 1: Grind 10 g of molybdenum disulfide powder to 200 mesh and sieve it, add it to a 10% ethanol solution containing 100 g of polyphenylene sulfide, heat in a water bath to 30° C. and stir for 12 hours to obtain a mixed solution.
步骤二,在混合液中加入5g KMnO4粉末,水浴加热至50℃并搅拌8h,过滤并将滤饼烘干,得到3.5g插层二硫化钼粉末。Step 2: Add 5g of KMnO 4 powder to the mixture, heat it in a water bath to 50°C and stir for 8h, filter and dry the filter cake to obtain 3.5g of intercalated molybdenum disulfide powder.
步骤三,取1g乙酰丙酮镍溶于100ml四氢呋喃有机溶剂中,加入3.5g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至190℃反应9h,离心、清洗、干燥后得到4g MoS2-Ni混合粉末。Step 3: Dissolve 1g of nickel acetylacetonate in 100ml of tetrahydrofuran organic solvent, add 3.5g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, and heat to 190°C for reaction After 9 hours, centrifuge, wash and dry to obtain 4g of MoS 2 -Ni mixed powder.
步骤四,取3g MoS2-Ni混合粉末与1.5g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至500℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状MoS2-Ni纳米复合材料。Step 4: Take 3g of MoS 2 -Ni mixed powder and 1.5g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 500°C to explode, and cool down to room temperature with the furnace The explosive reactant is taken out, and the layered MoS 2 -Ni nanocomposite material is obtained.
本实施例所制备的层状MoS2-Ni纳米复合材料Raman图谱如图1所示,高分辨率TEM图如图2所示。图1中Raman图谱中E2g 1与Ag 1值分别为384.85 和406.35,位移差为21.5,属于少层结构MoS2,表明本实施例所制备样品中 MoS2为层状材料;图2中高分辨率TEM图显示出MoS2和Ni的晶格条纹,且Ni颗粒附着在层状MoS2纳米片表面。综合附图可以得出本实施例所制备的样品为层状MoS2-Ni纳米复合材料。The Raman spectrum of the layered MoS 2 -Ni nanocomposite material prepared in this example is shown in FIG. 1 , and the high-resolution TEM picture is shown in FIG. 2 . The values of E 2g 1 and A g 1 in the Raman spectrum in Figure 1 are 384.85 and 406.35 respectively, and the displacement difference is 21.5, which belongs to the few-layer structure MoS 2 , indicating that the MoS 2 in the sample prepared in this example is a layered material; The high - resolution TEM images reveal the lattice fringes of MoS2 and Ni, and the Ni particles are attached to the surface of the layered MoS2 nanosheets . Based on the accompanying drawings, it can be concluded that the sample prepared in this embodiment is a layered MoS 2 -Ni nanocomposite material.
实施例2:Example 2:
本实施例给出一种层状MoS2-Ni纳米复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a layered MoS 2 -Ni nanocomposite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为20%、含有200g聚苯硫醚的乙醇溶液中,水浴加热至40℃并搅拌10h,得到混合液。Step 1: Grind 10 g of molybdenum disulfide powder to 200 mesh and sieve it, add it to a 20% ethanol solution containing 200 g of polyphenylene sulfide, heat in a water bath to 40° C. and stir for 10 h to obtain a mixed solution.
步骤二,在混合液中加入10g KMnO4粉末,水浴加热至60℃并搅拌7h,过滤并将滤饼烘干,得到3.2g插层二硫化钼粉末。Step 2: Add 10 g of KMnO 4 powder to the mixture, heat it in a water bath to 60° C. and stir for 7 h, filter and dry the filter cake to obtain 3.2 g of intercalated molybdenum disulfide powder.
步骤三,取1g乙酰丙酮镍溶于200ml四氢呋喃有机溶剂中,加入2g插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至200℃反应8h,离心、清洗、干燥后得到2.8g MoS2-Ni混合粉末。Step 3: Dissolve 1g of nickel acetylacetonate in 200ml of tetrahydrofuran organic solvent, add 2g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, heat to 200°C for 8 hours , centrifuged, washed and dried to obtain 2.8g of MoS 2 -Ni mixed powder.
步骤四,取2.8gMoS2-Ni混合粉末与2.8g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至480℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状MoS2-Ni纳米复合材料。Step 4: Take 2.8g of MoS 2 -Ni mixed powder and 2.8g of picric acid and mix them evenly and put them into the autoclave, vacuumize and inject argon, heat the autoclave to 480°C to explode, and cool down to room temperature with the furnace The explosive reactant is taken out, and the layered MoS 2 -Ni nanocomposite material is obtained.
本实施例所得产物层状MoS2-Ni纳米复合材料的性状与实施例1基本相同。The properties of the layered MoS 2 -Ni nanocomposite material obtained in this example are basically the same as those in Example 1.
实施例3:Example 3:
本实施例给出一种层状MoS2-Ni纳米复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a layered MoS 2 -Ni nanocomposite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为30%、含有300g聚苯硫醚的乙醇溶液中,水浴加热至50℃并搅拌8h,得到混合液。Step 1: Grind 10 g of molybdenum disulfide powder to 200 mesh and sieve it, add it to a 30% ethanol solution containing 300 g of polyphenylene sulfide, heat in a water bath to 50° C. and stir for 8 hours to obtain a mixed solution.
步骤二,在混合液中加入15g KMnO4粉末,水浴加热至70℃并搅拌6h,过滤并将滤饼烘干,得到3g插层二硫化钼粉末。Step 2: Add 15g of KMnO 4 powder to the mixture, heat it in a water bath to 70°C and stir for 6h, filter and dry the filter cake to obtain 3g of intercalated molybdenum disulfide powder.
步骤三,取0.5g乙酰丙酮镍溶于150ml四氢呋喃有机溶剂中,加入2g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至210℃反应7h,离心、清洗、干燥后得到2.2g MoS2-Ni混合粉末。Step 3: Dissolve 0.5g of nickel acetylacetonate in 150ml of tetrahydrofuran organic solvent, add 2g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, and heat to 210°C for reaction 7h, after centrifugation, washing and drying, 2.2g of MoS 2 -Ni mixed powder was obtained.
步骤四,取2.2gMoS2-Ni混合粉末与3.3g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至450℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状MoS2-Ni纳米复合材料。Step 4: Take 2.2g of MoS 2 -Ni mixed powder and 3.3g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 450°C to explode, and cool down to room temperature with the furnace The explosive reactant is taken out, and the layered MoS 2 -Ni nanocomposite material is obtained.
本实施例所得产物层状MoS2-Ni纳米复合材料的性状与实施例1基本相同。The properties of the layered MoS 2 -Ni nanocomposite material obtained in this example are basically the same as those in Example 1.
实施例4:Example 4:
本实施例给出一种层状MoS2-Ni纳米复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a layered MoS 2 -Ni nanocomposite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为40%、含有400g芳香族二胺单体硫醚的乙醇溶液中,水浴加热至35℃并搅拌7h,得到混合液。Step 1: Take 10g of molybdenum disulfide powder and grind it to 200 mesh and sieve it, add it to an ethanol solution with a concentration of 40% and containing 400g of aromatic diamine monomer sulfide, heat it in a water bath to 35°C and stir for 7h to obtain a mixed liquid.
步骤二,在混合液中加入25g KMnO4粉末,水浴加热至80℃并搅拌5h,过滤并将滤饼烘干,得到2.8g插层二硫化钼粉末。Step 2: Add 25g of KMnO 4 powder to the mixture, heat it in a water bath to 80°C and stir for 5h, filter and dry the filter cake to obtain 2.8g of intercalated molybdenum disulfide powder.
步骤三,取2g乙酰丙酮镍溶于200ml四氢呋喃有机溶剂中,加入1g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至220℃反应6h,离心、清洗、干燥后得到2.7g MoS2-Ni混合粉末。Step 3: Dissolve 2g of nickel acetylacetonate in 200ml of tetrahydrofuran organic solvent, add 1g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, heat to 220°C for 6h , centrifuged, washed and dried to obtain 2.7g of MoS 2 -Ni mixed powder.
步骤四,取2.7gMoS2-Ni混合粉末与5.4g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至550℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状MoS2-Ni纳米复合材料。Step 4: Take 2.7g of MoS 2 -Ni mixed powder and 5.4g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 550°C to explode, and cool down to room temperature with the furnace The explosive reactant is taken out, and the layered MoS 2 -Ni nanocomposite material is obtained.
本实施例所得产物层状MoS2-Ni纳米复合材料的性状与实施例1基本相同。The properties of the layered MoS 2 -Ni nanocomposite material obtained in this example are basically the same as those in Example 1.
实施例5:Example 5:
本实施例给出一种层状MoS2-Ni纳米复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a layered MoS 2 -Ni nanocomposite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为60%、含有300g芳香族二胺单体硫醚的乙醇溶液中,水浴加热至45℃并搅拌5h,得到混合液。Step 1: Take 10g of molybdenum disulfide powder and grind it to 200 mesh and sieve it, add it to an ethanol solution with a concentration of 60% and containing 300g of aromatic diamine monomer sulfide, heat it in a water bath to 45°C and stir for 5h to obtain a mixed liquid.
步骤二,在混合液中加入20g KMnO4粉末,水浴加热至85℃并搅拌4h,过滤并将滤饼烘干,得到2.6g插层二硫化钼粉末。Step 2: Add 20g of KMnO 4 powder into the mixture, heat it in a water bath to 85°C and stir for 4h, filter and dry the filter cake to obtain 2.6g of intercalated molybdenum disulfide powder.
步骤三,取2g乙酰丙酮镍溶于250ml四氢呋喃有机溶剂中,加入2g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至210℃反应8h,离心、清洗、干燥后得到3.5g MoS2-Ni混合粉末。Step 3: Dissolve 2g of nickel acetylacetonate in 250ml of tetrahydrofuran organic solvent, add 2g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, heat to 210°C for 8 hours , centrifuged, washed and dried to obtain 3.5g MoS 2 -Ni mixed powder.
步骤四,取3gMoS2-Ni混合粉末与7.5g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至510℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状MoS2-Ni纳米复合材料。Step 4: Take 3g of MoS 2 -Ni mixed powder and 7.5g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 510°C to explode, and take it out after cooling to room temperature with the furnace Explosive reactants, that is, layered MoS 2 -Ni nanocomposites are obtained.
本实施例所得产物层状MoS2-Ni纳米复合材料的性状与实施例1基本相同。The properties of the layered MoS 2 -Ni nanocomposite material obtained in this example are basically the same as those in Example 1.
实施例6:Embodiment 6:
本实施例给出一种层状MoS2-Ni纳米复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a layered MoS 2 -Ni nanocomposite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为50%、含有200g芳香族二胺单体硫醚的乙醇溶液中,水浴加热至50℃并搅拌3h,得到混合液。Step 1: Take 10g of molybdenum disulfide powder and grind it to 200 mesh and sieve it, add it to an ethanol solution with a concentration of 50% and containing 200g of aromatic diamine monomer sulfide, heat it in a water bath to 50°C and stir for 3h to obtain a mixed liquid.
步骤二,在混合液中加入10g KMnO4粉末,水浴加热至90℃并搅拌3h,过滤并将滤饼烘干,得到3g插层二硫化钼粉末。Step 2: Add 10 g of KMnO 4 powder to the mixture, heat it in a water bath to 90° C. and stir for 3 h, filter and dry the filter cake to obtain 3 g of intercalated molybdenum disulfide powder.
步骤三,取1.5g乙酰丙酮镍溶于150ml四氢呋喃有机溶剂中,加入2g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至190℃反应7h,离心、清洗、干燥后得到3.2g MoS2-Ni混合粉末。Step 3: Dissolve 1.5g of nickel acetylacetonate in 150ml of tetrahydrofuran organic solvent, add 2g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, and heat to 190°C for reaction 7h, after centrifugation, washing and drying, 3.2g of MoS 2 -Ni mixed powder was obtained.
步骤四,取3gMoS2-Ni混合粉末与9g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至500℃发生爆炸,随炉冷却至室温后取出爆炸反应物,即得到层状MoS2-Ni纳米复合材料。Step 4: Take 3g of MoS 2 -Ni mixed powder and 9g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 500°C to explode, and take it out after cooling to room temperature with the furnace. The reactant, that is, the layered MoS 2 -Ni nanocomposite material is obtained.
本实施例所得产物层状MoS2-Ni纳米复合材料的性状与实施例1基本相同。The properties of the layered MoS 2 -Ni nanocomposite material obtained in this example are basically the same as those in Example 1.
对比例1:Comparative example 1:
本实施例给出一种MoS2-Ni复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a MoS 2 -Ni composite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为5%、含有50g芳香族二胺单体硫醚的乙醇溶液中,水浴加热至25℃并搅拌2h,得到混合液。Step 1: Take 10g of molybdenum disulfide powder and grind it to 200 mesh and sieve it, add it to an ethanol solution with a concentration of 5% and containing 50g of aromatic diamine monomer sulfide, heat it in a water bath to 25°C and stir for 2h to obtain a mixed liquid.
步骤二,在混合液中加入5g KMnO4粉末,水浴加热至45℃并搅拌9h,过滤并将滤饼烘干,得到3.2g二硫化钼预处理粉末。Step 2: Add 5g of KMnO 4 powder into the mixture, heat it in a water bath to 45°C and stir for 9h, filter and dry the filter cake to obtain 3.2g of molybdenum disulfide pretreated powder.
步骤三,取2g乙酰丙酮镍溶于100ml四氢呋喃有机溶剂中,加入3g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至230℃反应5h,离心、清洗、干燥后得到4.5g MoS2-Ni混合粉末。Step 3: Dissolve 2g of nickel acetylacetonate in 100ml of tetrahydrofuran organic solvent, add 3g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, heat to 230°C for 5 hours , centrifuged, washed and dried to obtain 4.5g MoS 2 -Ni mixed powder.
步骤四,取3gMoS2-Ni混合粉末与1g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至600℃发生爆炸,随炉冷却至室温后取出爆炸反应物,得到MoS2-Ni复合物。Step 4: Take 3g of MoS 2 -Ni mixed powder and 1g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 600°C to explode, and take it out after cooling to room temperature with the furnace. reactant, to obtain MoS 2 -Ni composite.
对本对比例制得的MoS2-Ni复合物进行Raman光谱分析以及TEM分析。Raman spectrum analysis and TEM analysis were performed on the MoS 2 -Ni composite prepared in this comparative example.
Raman光谱如图3所示,其E2g 1与Ag 1值分别为383.52和408.58,位移差为25.06,属于块状结构MoS2。The Raman spectrum is shown in Figure 3. The values of E 2g 1 and A g 1 are 383.52 and 408.58 respectively, and the displacement difference is 25.06, which belongs to the block structure MoS 2 .
SEM图像如图4所示,说明此产物MoS2块体堆积,呈现多层结构,且在MoS2表面或周围未发现明显的Ni颗粒,不属于单层或少层二硫化钼纳米复合材料。The SEM image is shown in Figure 4, indicating that the product MoS 2 is bulky and multilayered, and no obvious Ni particles are found on or around the MoS 2 surface, which does not belong to single-layer or few-layer molybdenum disulfide nanocomposites.
对比例2:Comparative example 2:
本实施例给出一种MoS2-Ni复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a MoS 2 -Ni composite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为70%、含有500g芳香族二胺单体硫醚的乙醇溶液中,水浴加热至60℃并搅拌4h,得到混合液。Step 1: Take 10g of molybdenum disulfide powder and grind it to 200 mesh and sieve it, add it to an ethanol solution with a concentration of 70% and containing 500g of aromatic diamine monomer sulfide, heat it in a water bath to 60°C and stir for 4h to obtain a mixed liquid.
步骤二,在混合液中加入2g KMnO4粉末,水浴加热至35℃并搅拌2h,过滤并将滤饼烘干,得到2.8g二硫化钼预处理粉末。Step 2: Add 2g of KMnO 4 powder into the mixture, heat it in a water bath to 35°C and stir for 2h, filter and dry the filter cake to obtain 2.8g of molybdenum disulfide pretreated powder.
步骤三,取1g乙酰丙酮镍溶于250ml四氢呋喃有机溶剂中,加入2.5g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至180℃反应6h,离心、清洗、干燥后得到3.2g MoS2-Ni混合粉末。Step 3: Dissolve 1g of nickel acetylacetonate in 250ml of tetrahydrofuran organic solvent, add 2.5g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, and heat to 180°C for reaction After 6 hours, centrifuge, wash and dry to obtain 3.2g of MoS 2 -Ni mixed powder.
步骤四,取3gMoS2-Ni混合粉末与1.5g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至650℃发生爆炸,随炉冷却至室温后取出爆炸反应物,得到MoS2-Ni复合物。Step 4: Take 3g of MoS 2 -Ni mixed powder and 1.5g of picric acid and mix them evenly into the autoclave, vacuumize and inject argon, heat the autoclave to 650°C to explode, and take it out after cooling to room temperature with the furnace Explode the reactant to get MoS 2 -Ni composite.
本对比例制得的MoS2-Ni复合材料与对比例1一样块体堆积,且Ni颗粒出现在MoS2块体表面和周围,不属于单层或少层二硫化钼纳米复合材料。The MoS 2 -Ni composite material prepared in this comparative example is the same as the comparative example 1, and the bulk accumulation, and Ni particles appear on the surface and surrounding of the MoS 2 bulk, which does not belong to single-layer or few-layer molybdenum disulfide nanocomposites.
对比例3:Comparative example 3:
本实施例给出一种MoS2-Ni复合材料的制备方法,具体包括以下步骤:This example provides a method for preparing a MoS 2 -Ni composite material, which specifically includes the following steps:
步骤一,取10g二硫化钼粉末研磨至200目过筛,将其加入浓度为8%、含有60g芳香族二胺单体硫醚的乙醇溶液中,水浴加热至70℃并搅拌6h,得到混合液。Step 1: Take 10g of molybdenum disulfide powder and grind it to 200 mesh and sieve it, add it to an ethanol solution with a concentration of 8% and containing 60g of aromatic diamine monomer sulfide, heat it in a water bath to 70°C and stir for 6h to obtain a mixed liquid.
步骤二,在混合液中加入25g KMnO4粉末,水浴加热至20℃并搅拌10h,过滤并将滤饼烘干,得到3.5g二硫化钼预处理粉末。Step 2: Add 25g of KMnO 4 powder into the mixture, heat it in a water bath to 20°C and stir for 10h, filter and dry the filter cake to obtain 3.5g of molybdenum disulfide pretreated powder.
步骤三,取3.5g乙酰丙酮镍溶于100ml四氢呋喃有机溶剂中,加入1g 插层二硫化钼粉末,搅拌混合均匀后将混合溶液转移至聚四氟乙烯内衬反应釜中,加热至240℃反应7h,离心、清洗、干燥后得到4.3g MoS2-Ni混合粉末。Step 3: Dissolve 3.5g of nickel acetylacetonate in 100ml of tetrahydrofuran organic solvent, add 1g of intercalated molybdenum disulfide powder, stir and mix evenly, transfer the mixed solution to a polytetrafluoroethylene-lined reactor, and heat to 240°C for reaction After 7 hours, centrifuge, wash and dry to obtain 4.3g of MoS 2 -Ni mixed powder.
步骤四,取3gMoS2-Ni混合粉末与10g苦味酸按混合均匀装入高压反应釜中,抽真空并通入氩气,将反应釜加热至620℃发生爆炸,随炉冷却至室温后取出爆炸反应物,得到MoS2-Ni复合物。Step 4: Take 3g of MoS 2 -Ni mixed powder and 10g of picric acid and mix them evenly into a high-pressure reactor, vacuumize and inject argon, heat the reactor to 620°C to explode, and take it out after cooling to room temperature with the furnace. reactant, to obtain MoS 2 -Ni composite.
本对比例制得的MoS2-Ni复合材料与对比例1一样块体堆积,且Ni颗粒出现在MoS2块体表面和周围,不属于单层或少层二硫化钼纳米复合材料。The MoS 2 -Ni composite material prepared in this comparative example is the same as the comparative example 1, and the bulk accumulation, and Ni particles appear on the surface and surrounding of the MoS 2 bulk, which does not belong to single-layer or few-layer molybdenum disulfide nanocomposites.
Claims (5)
- A kind of 1. stratiform MoS2The preparation method of-Ni nano composite materials, it is characterised in that:This method comprises the following steps:Step 1, molybdenum disulfide powder is added in layering solution and carries out layering reaction, forms mixed liquor;Described layering solution is the ethanol solution of aromatic thioether;Described aromatic thioether is polyphenylene sulfide or aromatic diamine monomer thioether, the quality of the ethanol solution of aromatic thioether Concentration is 10%~60%;The detailed process of described layering reaction is:Molybdenum disulfide powder is ground to the sieving of 200 mesh, by molybdenum disulfide powder plus In the ethanol solution for entering aromatic thioether, it is heated to 30~50 DEG C and stirs 3~12h, form mixed liquor;Step 2, addition oxidant carries out oxidation intercalation in mixed liquor, and intercalation molybdenum disulphide powder is obtained after filtration drying End;Described oxidant is potassium permanganate;The detailed process of described oxidation intercalation is:Potassium permanganate is added into mixed liquor, 50~90 DEG C is heated to and stirs 3~8h is mixed, filters, filter cake is dried, obtains intercalation molybdenum disulfide powder;Step 3, nickel acetylacetonate is dissolved in tetrahydrofuran, adds intercalation molybdenum disulfide powder, be stirred and reacted, Centrifugation, cleaning, obtain MoS after drying2- Ni mixed-powders;The detailed process of described step three is:Nickel acetylacetonate is dissolved in tetrahydrofuran, adds intercalation molybdenum disulfide powder, Mixed liquor is transferred in polytetrafluoroethyllining lining reactor after being uniformly mixed, is heated to 190~220 DEG C of 4~9h of reaction, Centrifugation, cleaning, obtain MoS after drying2- Ni mixed-powders;Step 4, by MoS2/ Ni mixed-powders mix with burster, carry out explosive reaction, explosive reaction is taken out after being cooled to room temperature Product, that is, obtain stratiform MoS2- Ni nano composite materials;Described burster is picric acid;The detailed process of described explosive reaction is:By MoS2- Ni mixed-powders are well mixed with picric acid, load reaction under high pressure In kettle, autoclave is vacuumized and is passed through argon gas, be heated to 350~600 DEG C and explode, taken after cooling to room temperature with the furnace Go out explosive reaction thing, that is, obtain stratiform MoS2- Ni nano composite materials.
- 2. preparation method as claimed in claim 1, it is characterised in that:In step 1, described molybdenum disulfide powder and fragrance The mass ratio of race's thioether is 1:(10~40).
- 3. preparation method as claimed in claim 1, it is characterised in that:In step 2, in described potassium permanganate and mixed liquor The mass ratio of molybdenum disulfide be (0.5~3):1.
- 4. preparation method as claimed in claim 1, it is characterised in that:It is described in step 3:The tetrahydrochysene furan of nickel acetylacetonate Solution concentration of muttering is 0.01~0.03mg/L, the mass ratio of described nickel acetylacetonate and intercalation molybdenum disulfide powder for (0.3~ 2):1。
- 5. preparation method as claimed in claim 1, it is characterised in that:In step 4, described MoS2- Ni mixed-powders and hardship Sour mass ratio 1:(0.5~3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610143700.5A CN105688942B (en) | 2016-03-14 | 2016-03-14 | A kind of stratiform MoS2The preparation method of Ni nano composite materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610143700.5A CN105688942B (en) | 2016-03-14 | 2016-03-14 | A kind of stratiform MoS2The preparation method of Ni nano composite materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105688942A CN105688942A (en) | 2016-06-22 |
CN105688942B true CN105688942B (en) | 2017-11-10 |
Family
ID=56221696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610143700.5A Active CN105688942B (en) | 2016-03-14 | 2016-03-14 | A kind of stratiform MoS2The preparation method of Ni nano composite materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105688942B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107722687B (en) * | 2017-09-19 | 2020-02-07 | 河北晨阳工贸集团有限公司 | Water-based peelable resin and preparation method thereof |
CN110208337B (en) * | 2019-06-28 | 2022-02-08 | 西南交通大学 | Molybdenum disulfide/nano diamond composite humidity sensor and preparation method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101708837B (en) * | 2009-12-07 | 2011-12-14 | 中国科学院山西煤炭化学研究所 | Method for preparing nitrogen-doped graphene |
CN103387222A (en) * | 2012-05-07 | 2013-11-13 | 海洋王照明科技股份有限公司 | Preparation method of graphite |
CN103420361A (en) * | 2012-05-22 | 2013-12-04 | 海洋王照明科技股份有限公司 | A method of preparing graphene by explosion |
ITMI20122253A1 (en) * | 2012-12-28 | 2014-06-29 | Eni Spa | INTEGRATED PROCEDURE FOR THE PRODUCTION OF BIOFUELS FROM URBAN SOLID WASTE |
CN103920506A (en) * | 2014-05-08 | 2014-07-16 | 湘潭大学 | Double-metal-sulfide catalyst with high hydrodeoxygenation activity and preparation method thereof |
-
2016
- 2016-03-14 CN CN201610143700.5A patent/CN105688942B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105688942A (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Luo et al. | Rational and green synthesis of novel two-dimensional WS2/MoS2 heterojunction via direct exfoliation in ethanol-water targeting advanced visible-light-responsive photocatalytic performance | |
CN105819507B (en) | A kind of flower-shaped VS of nanometer sheet self assembly micron2Preparation method and application | |
CN105688943B (en) | A kind of stratiform MoS2‑TiO2The preparation method of nano composite material | |
Zheng et al. | In-situ synthesis of MnCo2O4. 5 nanosheets on reduced graphene oxide for a great promotion in the thermal decomposition of ammonium perchlorate | |
Dong et al. | Spontaneous exfoliation and tailoring of MoS 2 in mixed solvents | |
CN105688944B (en) | A kind of stratiform MoS2‑SnO2The preparation method of nano composite material | |
CN104495937B (en) | Preparation method of carbon-doped molybdenum disulfide nano material | |
CN105668631B (en) | A kind of preparation method of monolayer or few layer molybdenum disulfide nano material | |
CN103801298A (en) | Hydrothermal rapid synthesis method of graphene load nickel nanoparticle composite material | |
CN107235511A (en) | A kind of MoS2/WS2The preparation method of nano lamellar composite | |
CN102942165A (en) | Graphene and ferrum diselenide composite material and method for preparing same | |
CN102616854B (en) | A kind of preparation method of monodisperse spherical MoS2 ultrafine powder | |
CN105688942B (en) | A kind of stratiform MoS2The preparation method of Ni nano composite materials | |
CN105800697B (en) | A kind of layered MoS2-Fe3O4 nanocomposite material and preparation method thereof | |
CN105664975A (en) | Preparation method of layered MoS2-Bi2MoO6 nanocomposite | |
CN105819519B (en) | Preparation method of layered MoS2-Fe3O4 nano composite material | |
CN107140624A (en) | A kind of surfactant regulates and controls MoS2The method of/RGO nano composite material patterns | |
CN106564952B (en) | A kind of method that carbohydrate organic carbon reduction prepares class graphene molybdenum disulfide-graphene composite material | |
CN106564962B (en) | A kind of method that protein matter reduction prepares class graphene molybdenum disulfide-ferriferrous oxide composite material | |
CN105140478A (en) | A kind of preparation method of MoO3-H0.4MoO3 core-shell structure nanoribbon | |
CN108557889A (en) | The preparation method of molybdenum disulfide-halloysite nanotubes composite material | |
CN106564963B (en) | A kind of method that carbohydrate organic carbon reduction prepares class graphene molybdenum disulfide ferriferrous oxide composite material | |
CN105817237B (en) | A kind of stratiform MoS2‑TiO2The preparation method of nano composite material | |
CN110327913B (en) | A kind of nano-flaky tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof | |
CN106564953A (en) | Method for reducing preparation of graphene-like molybdenum disulfide through carbohydrate organic carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |