[go: up one dir, main page]

CN105675784A - Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度 - Google Patents

Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度 Download PDF

Info

Publication number
CN105675784A
CN105675784A CN201610051501.1A CN201610051501A CN105675784A CN 105675784 A CN105675784 A CN 105675784A CN 201610051501 A CN201610051501 A CN 201610051501A CN 105675784 A CN105675784 A CN 105675784A
Authority
CN
China
Prior art keywords
formic acid
chlorogenic acid
water
urine
acid water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610051501.1A
Other languages
English (en)
Other versions
CN105675784B (zh
Inventor
石远凯
韩晓红
李宁
宋媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cancer Hospital and Institute of CAMS and PUMC
Original Assignee
Cancer Hospital and Institute of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cancer Hospital and Institute of CAMS and PUMC filed Critical Cancer Hospital and Institute of CAMS and PUMC
Priority to CN201610051501.1A priority Critical patent/CN105675784B/zh
Publication of CN105675784A publication Critical patent/CN105675784A/zh
Application granted granted Critical
Publication of CN105675784B publication Critical patent/CN105675784B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8822Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving blood

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本文涉及UPLC-MS/MS法测定人血浆和尿液中绿原酸的浓度。本发明提供了通过超高效液相色谱串联质谱法测定人体液中绿原酸的浓度的方法,其中所述方法采用流动相0.5%甲酸水∶乙腈进行。本发明方法的单个样品的分析时间为2min,绿原酸在血浆5~2,000ng/mL以及尿液50~20,000ng/mL范围内线性关系良好,日内、日间精密度(RSD)均小于15%。本研究方法的特异性、基质效应、提取回收率以及稳定性均进行了验证。本发明的方法已经成功应用于给予绿原酸注射液治疗患者的血浆及尿液中绿原酸的浓度检测。

Description

UPLC-MS/MS法测定人血浆和尿液中绿原酸的浓度
技术领域
本发明涉及检测人体液中绿原酸的浓度的方法。具体而言,本发明涉及通过超高效液相色谱串联质谱法(UPLC-MS/MS)测定人体液中绿原酸的浓度的方法。
背景技术
引言
绿原酸是由咖啡酸与奎尼酸形成的缩酚酸,在食用和药用植物如金银花、杜仲、向日葵中有较广泛的研究。大量的研究已经证明绿原酸具有抗炎、抗菌和抗病毒活动等广泛的生物功能[1-4]。最近的研究显示绿原酸能够诱导人类肝癌细胞、神经胶质瘤细胞以及白血病细胞的凋亡[5-8]。众所周知,癌症是世界范围的一个主要公共卫生问题,随着近年来癌症患者的数量继续增加,绿原酸因具有抗癌活性和低毒性不断成为人们关注的焦点。绿原酸作为生物反应调节剂免疫原性低(即不良反应少),通过激活机体自身的免疫系统,使机体自身有针对性的产生特异性免疫效应,实现机体免疫平衡,可根据病变部位的免疫缺失,稳定而适度地补充和表达内源性免疫效应分子,修正肿瘤微环境的免疫失衡,从而更好地发挥对肿瘤治疗的作用,具有重要的临床价值。作为具有临床应用前景的化合物,其治疗晚期恶性肿瘤的I期临床药代动力学研究正在进行中。
一些采用液相色谱串联质谱(liquidchromatography-tandemmassspectrometry,LC-MS/MS)技术测定生物样品中绿原酸的方法均有报道[9-11]。到目前为止,只有一篇测定了人血浆中绿原酸的浓度,且单个样品的检测时间为5min[11],并且没有测定在人尿液中绿原酸浓度的方法学报道。
超高效液相色谱(UltraPerformanceLiquidChromatography,UPLC)色谱运用小颗粒(小于2μm)增加效能,从而增加仪器的解析度。UPLC具有高分离度、高速度、高灵敏度的优点,提高了分析通量,节省了样品和溶剂分析时间。然而,UPLC对流动相,色谱柱,样品前处理,质谱接口,数据采集系统都提出了更严格的要求。
尽管对转换方法进行了一些研究,传统的高效液相色谱HPLC的条件不能直接应用于UPLC,需要对包括样品前处理、内标、流动相、色谱柱选择等各项条件进行大量试验,才能与这种小颗粒填料相匹配,实现UPLC快速检测分析。例如,周新等人的研究(HPLC与UPLC色谱条件转换方法研究,分析试验室,第27卷第4期,2008年4月)表明直接将HPLC条件应用于UPLC,不能达到对待测物质分离分析的目的;需要对实验条件包括例如流动相选择和配比等进行充分试验才能获得分离状况良好的UPLC方法。
发明内容
发明人已经建立了快速、灵敏的超高效液相色谱串联质谱(ultrahighperformanceliquidchromatography-tandemmassspectrometry,UPLC-MS/MS)技术检测人血浆和尿液中绿原酸的浓度。单个样品的检测时间可达到2min。
在一些实施方案中,本发明的方法可以采用葛根素为内标进行。在采用内标法时,内标物的选择是一项十分重要的工作。理想的内标物应当能以准确、已知的量加到样品中去,和被分析的样品有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征;在色谱分析条件下,内标物必须能与样品中各组分充分分离。在一些实施方案中,发明人已经显示葛根素的基质效应与绿原酸一致,能够提供线性关系良好、精密度、基质效应、提取回收率以及稳定性符合要求的检测方法。
在一些实施方案中,本发明的方法可以采用ACQUITYUPLCShieldRP18column(100mm×2.1mm,1.7μm)作为分析柱进行。在色谱法中,色谱柱的选择十分重要,对色谱柱的要求是柱效高、选择性好,分析速度快等。在本发明中,发明人发现嵌有亲水性氨基甲酸基团的AcquityBEHShieldRP18colum(100mm×2.1mm,1.7μm,Waters)能够实现绿原酸良好分离和峰型,而其它色谱柱如AcquityUPLCC18柱(50mm×2.1mm,1.7μm,Waters)进行实验时绿原酸呈现双峰,因此不适合使用。
在一些实施方案中,本发明的方法可以采用流动相甲酸水∶乙腈进行。在一些实施方案中,流动相的体积比为0.5%甲酸水∶乙腈(85/15,v/v)-0.5%甲酸水∶乙腈(50/50,v/v),包括0.5%甲酸水∶乙腈(80/20,v/v)-0.5%甲酸水∶乙腈(60/40,v/v),优选的例如采用0.5%甲酸水∶乙腈(77/23,v/v)进行。为了改善色谱分离选择性,可以考虑调节流动相的极性,向流动相中加入改性剂等。
在一些实施方案中,本发明的方法用于检测人血浆中绿原酸的浓度。在本发明的用于检测人血浆中绿原酸浓度的方法中,已经发现通过蛋白沉淀法如甲醇和乙腈蛋白沉淀处理血浆样品,存在明显的基质抑制效应,尽管这可以通过添加甲酸而降低,基质效应仍然导致同一样品信号极不稳定。基质指的是样品中被分析物以外的组分,其常常对分析物的分析过程有显著的干扰,并影响分析结果的准确性,例如,溶液的离子强度会对分析物活度系数有影响,这些影响和干扰被称为基质效应。在一些实施方案中,本发明的方法采用液液萃取进行样品处理。在一些实施方案中,本发明的方法采用乙酸乙酯的液液萃取,优选的进一步加入盐酸进行分析。已经发现,在本发明的萃取方法中加入盐酸可以提高回收率。在一些实施方案中,本发明的方法进一步采用甲酸甲醇水进行复溶,优选的采用0.5%甲酸水∶甲醇(30/70,v/v)-0.5%甲酸水∶甲醇(70/30,v/v),包括0.5%甲酸水∶甲醇(40/60,v/v)-0.5%甲酸水∶甲醇(60/40,v/v),优选的例如采用0.5%甲酸水∶甲醇(50/50,v/v)进行。已经发现仅采用甲醇水稀释时,基质抑制效应较大,而改用甲酸甲醇水稀释时可以显著改善基质效应。
在一些实施方案中,本发明用于检测人尿液中绿原酸的浓度。在一些实施方案中,本发明的方法直接稀释法处理尿液样品,而不必进行其它预处理。当采用甲醇水稀释时,可观察到40-50%的基质抑制效应,改用甲酸甲醇水稀释时,基质效应明显改善。在一些实施方案中,本发明的方法采用甲酸甲醇水进行稀释,优选的采用0.5%甲酸水∶甲醇(30/70,v/v)-0.5%甲酸水∶甲醇(70/30,v/v),包括0.5%甲酸水∶甲醇(40/60,v/v)-0.5%甲酸∶水甲醇(60/40,v/v),优选的例如采用0.5%甲酸水∶甲醇(50/50,v/v)进行。已经发现仅采用甲醇水稀释时,基质抑制效应较大,而改用甲酸甲醇水稀释时可以显著改善基质效应。
通过本发明的方法,可以实现单个样品的分析时间为2min的快速检测,绿原酸在血浆5~2,000ng/mL以及尿液50~20,000ng/mL范围内线性关系良好,日内、日间精密度(RSD)均小于15%。
本发明的方法的特异性、基质效应、提取回收率以及稳定性均进行了验证,所述方法已经成功应用于给予绿原酸注射液治疗肿瘤患者的血浆及尿液中绿原酸的浓度检测。
附图说明
图1:绿原酸(左)和内标(右)的分子结构和二级质谱图。
图2:绿原酸(左)和内标葛根素(右)特征性色谱图:双空白(Double-blank),空白(Blanksample),低定量下限(LLOQ)和受试者第一天给药后1h血浆样品(浓度为568ng/mL)。
图3:绿原酸(左)和内标葛根素(右)特征性色谱图:双空白(Double-blank),空白(Blanksample),低定量下限(LLOQ)和受试者第一天给药后6-9h尿液样品(浓度为1310ng/mL)。
图4:绿原酸(血浆)标准曲线。
图5:绿原酸(尿液)标准曲线。
图6:受试者绿原酸第一天单次给药(0.5mg/kg.d-1)的血药浓度-时间曲线。
图7:受试者累计排泄率时间-曲线(0.5mg/kg.d-1)。
具体实施方式
1.方法与结果
1.1.药品与试剂
绿原酸和葛根素标准品均购自中国食品药品检定研究院(纯度分别为96.6%和95.5%)。色谱纯甲醇、乙酸乙酯、乙腈购自Fisher公司,甲酸购自Sigma公司,1M盐酸购自国家化学试剂质量检验中心,实验用水为超纯水。
1.2.设备和分析条件
2.2.1色谱条件:
流动相:0.5%甲酸水∶乙腈(77/23,v/v)
流速:0.3mL/min
进样量:2μL
柱温:40℃
进样器内温度:4℃
2.2.2质谱条件:
电喷雾离子化源(ESI),MRM多离子反应检测,正离子模式,喷雾电压5500v,温度500℃,GAS1流速为50mL/min,GAS2流速为45mL/min,CUR为15mL/min,EP及CXP值分别为110V和13V。绿原酸及内标的DP分别为110V和130V。在ESI离子化方式下,绿原酸主要生成[M+H]+准分子离子峰,为m/z355.1,主要碎片离子为m/z163.1,CE为20(图1)。内标葛根素主要生成的[M+H]+准分子离子峰,为m/z417.4,主要碎片离子为m/z297.1,CE为35(图1)。
1.3.标准溶液和内标工作液制备
绿原酸标准溶液的配制:取绿原酸对照品适量,精密称定,以甲醇为溶剂溶解,定量配制成绿原酸浓度为1mg/mL的标准溶液储备液,再以甲醇定量稀释至50,100,200,500,1000,2000,5000,10000,20000ng/mL(血浆用)以及500,1000,2000,5000,20000,50000,100000,200000ng/mL(尿液用)的标准曲线工作溶液,及150,1500,15000ng/mL(血浆)和1500,15000,150000ng/mL(尿液)的质控溶液。
葛根素(内标)溶液的配制:取葛根素对照品适量,精密称定,以甲醇为溶剂溶解,定量配制成葛根素浓度为1mg/mL的标准溶液储备液,再以甲醇分别定量稀释至250ng/mL(血浆)和500ng/mL(尿液)的标准工作溶液。
以上溶液均置于-20℃保存备用。
1.4.血浆样品处理
精密量取血浆样品100μL,置1.5mL的Ep管中,精密加入内标标准工作溶液20μL(250ng/mL)和30μL1M盐酸,涡旋混匀10s,再次加入1mL乙酸乙酯,涡旋混匀,于12000rpm离心5min,吸取全部上清液于新的Ep管内,氮气吹干后,以0.5%甲酸水∶甲醇(50/50,v/v)复溶,12000rpm离心5min,取2μL上清进行UPLC-MS/MS分析用于测定血浆中绿原酸的浓度。
1.5.尿液样品处理
精密量取尿液样品100μL,置1.5mL的Ep管中,精密加入内标标准工作溶液50μL(500ng/mL)和900μL0.5%甲酸水∶甲醇(50/50,v/v),涡旋混匀10s,12000rpm离心5min,取2μL上清进行UPLC-MS/MS分析用于测定尿液中绿原酸的浓度。
1.6.方法验证
参照FDA生物样品检测指导原则,方法学验证包括方法的灵敏度、特异性、标准曲线与线性范围、精密度与准确度、样品稳定性、提取回收率、基质效应、方法学质控等方面。
2.6.1.特异性和灵敏度
分别取6个不同受试者的空白血浆100μL,除不加内标外,按“2.4血浆样品处理”项下依法操作,进行UPLC-MS/MS分析,获得空白血浆样品色谱图(图2)。
分别取6个不同受试者的空白血浆90μL,加入50ng/mL的绿原酸标准溶液10μL,按“2.4血浆样品处理”项下依法操作,进行UPLC-MS/MS分析,获得空白血浆样品+绿原酸+内标对照品色谱图(图2)。
分别取6个不同受试者的空白尿液100μL,除不加内标外,按“2.5尿液样品处理”项下依法操作,进行UPLC-MS/MS分析,获得空白尿液样品色谱图(图3)。
分别取6个不同受试者的空白血浆90μL,加入500ng/mL的绿原酸标准溶液10μL,按“尿液样品的处理”依法操作,进行UPLC-MS/MS分析,获得空白尿液样品+绿原酸+内标对照品色谱图(图3)。
2.6.2.精密度和准确度
配制绿原酸血浆浓度为15,150,1500ng/mL以及尿液浓度为150,1500,15000ng/mL的低、中、高3个浓度的样品,每个浓度制备6份,作为一批精密度和准确度样品,分别按“2.4血浆样品的处理”和“2.5尿液样品的处理”项下操作,一天配制一批精密度和准确度样品,不同3天,测定三批精密度和准确度样品,记录色谱图,计算药物峰面积As和内标峰面积Ai的比值f,代入当天的标准曲线求得实测浓度,计算批内和批间精密度和准确度。精密度和准确度分别用RSD%和RE%表示,其绝对值小于15%为合格,低质控点小于20%为合格。结果见表1.
表1.绿原酸血浆和尿液测定的精密度和准确度
2.6.3.标准曲线和低定量下限
取空白血浆90μL,分别加入绿原酸标准溶液10μL,配制成相当于血浆中绿原酸浓度为5,10,20,50,100,200,500,1000,2000ng/mL的血浆样品,按“2.4血浆样品的处理”项下自“精密加入内标溶液20μL”起同样操作,记录色谱图;以绿原酸浓度与内标浓度比值(X)为横坐标,绿原酸与内标物的峰面积比值f为纵坐标,用加权(W=1/X2)最小二乘法进行回归运算,求得的直线回归方程即为标准曲线。结果(图4)表明绿原酸在5~2000ng/mL浓度范围内线性关系良好。同法制备六组定量下限样品,根据当天标准曲线求得实测浓度,每天制备一批次,连续3天检测。
取空白尿液90μL,分别加入绿原酸标准溶液10μL,配制成相当于尿液中绿原酸浓度为50,100,200,500,1000,2000,5000,10000,20000ng/mL的尿液样品,按“2.5尿液样品的处理”项下自“精密加入内标溶液20μL”起同样操作,记录色谱图;以绿原酸浓度与内标浓度比值(X)为横坐标,绿原酸与内标物的峰面积比值f为纵坐标,用加权(W=1/X2)最小二乘法进行回归运算,求得的直线回归方程即为标准曲线。结果(图5)表明绿原酸在50~20000ng/mL浓度范围内线性关系良好。同法制备六组定量下限样品,根据当天标准曲线求得实测浓度,每天制备一批次,连续3天检测。
2.6.4.提取回收率和基质效应
血浆
组1:精密吸取空白血浆90μL,置1.5ml的Ep管中,加30μL1M盐酸和1mL乙酸乙酯,涡旋1min,于12000rpm离心10min,吸取全部上清液于另一Ep管中,精密加入浓度分别为150,1500,15000ng/mL的绿原酸标准工作液10μL,精密加入内标溶液20μL,涡旋混匀后,于12000rpm离心5min,吸取全部上清液于新的Ep管内,氮气吹干后,以100μL0.5%甲酸水∶甲醇(50/50,v/v)复溶,12000rpm离心5min,取2μL上清进行LC-MS/MS分析。每个浓度各制备6份,记录色谱图,记录各浓度绿原酸和内标的峰面积。
组2:在Ep管中精密加入浓度为150,1500,15000ng/mL的绿原酸标准工作液10μL,精密加入内标标准工作溶液20μL(250ng/mL)和30μL1M盐酸,涡旋混匀10s,再次加入1mL乙酸乙酯,涡旋混匀,于12000rpm离心5min,吸取全部上清液于新的Ep管内,氮气吹干后,以0.5%甲酸水∶甲醇(50/50,v/v)复溶,12000rpm离心5min,取2μL上清进行LC-MS/MS分析。记录色谱图,记录各浓度绿原酸和内标的峰面积。
组3:按“血浆样品标准曲线”测定方法配制成血浆绿原酸浓度为15,150.1500ng/mL的低、中、高三种不同浓度的血浆样品各6份,按上述“2.4血浆样品处理方法”同样操作,进行UPLC-MS/MS分析,记录色谱图,记录各浓度绿原酸和内标的峰面积。
结果见表2,表明血浆中绿原酸的提取回收率在不同浓度均大于65%,有一定的基质效应,内标提取回收率为38.8%,基质效应与绿原酸一致。
尿液
组1:精密量取6个不同个体的尿液样品100μL,置1.5mL的Ep管中,精密加入内标标准工作溶液50μL(500ng/mL)和900μL0.5%甲酸水∶甲醇(50/50,v/v),涡旋混匀10s,12000rpm离心5min,取2μL上清进行LC-MS/MS分析。每个浓度各制备6份,记录色谱图,记录各浓度绿原酸和内标的峰面积。
组2:精密量取蒸馏水100μL,置1.5mL的Ep管中,精密加入内标标准工作溶液50μL(500ng/mL)和900μL0.5%甲酸水∶甲醇(50/50,v/v),涡旋混匀10s,12000rpm离心5min,取2μL上清进行UPLC-MS/MS分析。每个浓度各制备6份,记录色谱图,记录各浓度绿原酸和内标的峰面积。
结果见表2,表明尿液中绿原酸的基质效在不同浓度间一致,RSD小于均小于15%不影响测定,内标的基质效应与绿原酸一致。
表2.绿原酸和内标的提取回收率和基质效应(n=6).
2.6.5稳定性
稳定性考核覆盖整个样品的检测过程,设置低、中、高三个浓度,每一个浓度重复五个样品,结果见表3。
表3.绿原酸血浆和尿液稳定性(n=5,均值(%偏差)).
2.药代动力学应用
筛选既往接受过一个或以上含铂标准化疗方案后无效或复发,或无标准治疗方案的局部晚期和/或转移性恶性肿瘤患者,给予绿原酸注射液,肌注,每日一次,连续28天,给药剂量为0.5mg/kg.d-1。受试者于d1给药前(0.05h)及给药后10min,20min,30min,45min,1h,1.5h,2h,2.5h,3h,4h,5hand6h各采集肘静脉血3ml。血样采集后置于事先已经贴好标签的试管内,在10分钟内离心(3000rpm,10min)分离血浆,血浆转移至EP管中置-80℃冰箱保存。同时在给药前及给药后1-3h,3-6h,6-9h,9-12hand12-24h分别收集受试者的尿液,记录尿量,混匀后取1mL置-80℃冰箱保存。单次给药的药代动力学参数由软件WinNolin6.3以非房室模型计算获得,图6显示了该受试者口服绿原酸片后的药时曲线,图7是尿液累计排泄曲线。
4.讨论
在样品前处理的选择上,我们首先尝试采用甲醇和乙腈蛋白沉淀处理血浆样品,发现存在明显的基质抑制效应,抑制率达80-85%。通过添加0.1%甲酸,可以降低35-40%的基质抑制效应,然而,我们观察到由于基质效应导致同一样品信号极不稳定。因此,我们尝试采用乙酸乙酯的液液萃取法,结果显示基质效应明显降低,但提取回收率极低,不到1/100。为此,我们在100μL血浆中加入30μL1M盐酸进行分析,提取回收率大大增加(至少60%)。对于尿液样品,我们发现可以采用直接稀释法处理尿液样品。当采用50%甲醇水稀释时,可观察到40-50%的基质抑制效应,改用0.5%甲酸水∶甲醇(50/50,v/v)时,基质效应明显改善。
在色谱条件的优化上,考虑AcquityUPLCBEH色谱柱可以用于流动相的pH值范围较宽(1-12),并能够提供一个良好的分离和峰形,我们首次采用AcquityUPLCC18柱(50mm×2.1mm,1.7μm,Waters),结果绿原酸呈现双峰。我们发现嵌有亲水性氨基甲酸基团的色谱柱AcquityBEHShieldRP18colum(100mm×2.1mm,1.7μm,Waters),在等梯度洗脱下实现了绿原酸良好分离和峰型。为了进一步优化分离和峰型,我们通过调整甲酸甲醇的比例,最终选用流动相0.5%甲酸水∶乙腈(77/23,v/v),绿原酸和内标的保留时间分别为1.16和1.09min。
至今,采用LC-MS/MS法测定人血浆中绿原酸的浓度的报道较少,且单个样品的检测时间为5min[11],并且没有测定在人尿液中绿原酸浓度的方法学报道。在我们的研究,我们开发了一种快速、灵敏的方法测定人血浆和尿液中绿原酸的浓度,单个样品的检测时间为2min。该方法已成功应用接受单剂量为0.5mg/Kg.d-1绿原酸的恶性肿瘤患者血浆及尿液中的药物浓度测定,具有重要的临床应用价值。
参考文献:
[1]ShiH,DongL,DangX,etal.EffectofchlorogenicacidonLPS-inducedproinflammatorysignalinginhepaticstellatecells.INFLAMMRES2013;62:581-587.
[2]KarunanidhiA,ThomasR,vanBelkumA,NeelaV.InvitroantibacterialandantibiofilmactivitiesofchlorogenicacidagainstclinicalisolatesofStenotrophomonasmaltophiliaincludingthetrimethoprim/sulfamethoxazoleresistantstrain.BIOMEDRESINT2013;2013:392058.
[3]DuWY,ChangC,ZhangY,etal.High-dosechlorogenicacidinducesinflammationreactionsandoxidativestressinjuryinratswithoutimplicationofmastcelldegranulation.JETHNOPHARMACOL2013;147:74-83.
[4]LouZ,WangH,ZhuS,MaC,WangZ.Antibacterialactivityandmechanismofactionofchlorogenicacid.JFOODSCI2011;76:M398-M403.
[5]YanY,LiJ,HanJ,HouN,SongY,DongL.Chlorogenicacidenhancestheeffectsof5-fluorouracilinhumanhepatocellularcarcinomacellsthroughtheinhibitionofextracellularsignal-regulatedkinases.AnticancerDrugs2015;26:540-546.
[6]BelkaidA,CurrieJC,DesgagnesJ,AnnabiB.Thechemopreventivepropertiesofchlorogenicacidrevealapotentialnewroleforthemicrosomalglucose-6-phosphatetranslocaseinbraintumorprogression.CANCERCELLINT2006;6:7.
[7]BandyopadhyayG,BiswasT,RoyKC,etal.ChlorogenicacidinhibitsBcr-Abltyrosinekinaseandtriggersp38mitogen-activatedproteinkinase-dependentapoptosisinchronicmyelogenousleukemiccells.BLOOD2004;104:2514-2522.
[8]LiuYJ,ZhouCY,QiuCH,LuXM,WangYT.ChlorogenicacidinducedapoptosisandinhibitionofproliferationinhumanacutepromyelocyticleukemiaHL60cells.MOLMEDREP2013;8:1106-1110.
[9]YangJ,LvF,ChenXQ,etal.PharmacokineticstudyofmajorbioactivecomponentsinratsafteroraladministrationofextractofIlexhainanensisbyhigh-performanceliquidchromatography/electrosprayionizationmassspectrometry.JPharmBiomedAnal2013;77:21-28.
[10]WangXY,MaXH,LiW,etal.Simultaneousdeterminationoffivephenoliccomponentsandpaeoniflorininratplasmabyliquidchromatography-tandemmassspectrometryandpharmacokineticstudyafteroraladministrationofCerebralcaregranule((R)).JPharmBiomedAnal2013;86:82-91.
[11]ZhangJ,ChenM,JuW,etal.Liquidchromatograph/tandemmassspectrometryassayforthesimultaneousdeterminationofchlorogenicacidandcinnamicacidinplasmaanditsapplicationtoapharmacokineticstudy.JPharmBiomedAnal2010;51:685-690.
[12]USDepartmentofHealthandHumanServicesFoodandDrugAdministration,2001.Website:http://www.fda.gov/cder/guidance/index.htm.
[13]ChinsesFoodandDrugAdministration,2005.Website:http://www.sda.gov.cn/gsz05106/08.pdf.
[14]ZhouW,LiuS,JuW,etal.SimultaneousdeterminationofphenolicacidsbyUPLC-MS/MSinratplasmaanditsapplicationinpharmacokineticstudyafteroraladministrationofFlosLoniceraepreparations.JPharmBiomedAnal2013;86:189-197.
[15]YangH,LeeDY,JeonM,SuhY,SungSH.DeterminationoffiveactivecompoundsinArtemisiaprincepsandA.capillarisbasedonUPLC-DADanddiscriminationoftwospecieswithmultivariateanalysis.ARCHPHARMRES2014;37:617-625。

Claims (10)

1.通过超高效液相色谱串联质谱法(UPLC-MS/MS)测定人体液中绿原酸的浓度的方法,其中所述方法采用流动相甲酸∶甲醇进行。
2.权利要求1所述的方法,其中所述方法采用的0.5%甲酸水∶乙腈流动相的体积比为0.5%甲酸水∶乙腈(85/15,v/v)-0.5%甲酸水∶乙腈(50/50,v/v),优选0.5%甲酸水∶乙腈(77/23,v/v)。
3.权利要求1或2所述的方法,其中所述方法采用ACQUITYUPLCShieldRP18column(100mm×2.1mm,1.7μm)作为分析柱进行。
4.权利要求1-3中任一项所述的方法,其中所述方法采用葛根素为内标进行。
5.权利要求1-4中任一项的方法,其中所述体液为人血浆或尿液。
6.权利要求1-5中任一项所述的方法,其中所述方法通过等梯度洗脱进行。
7.权利要求1-6中任一项所述的方法,其中所述体液为人血浆,所述人血浆通过液液萃取法进行处理,优选所述液液萃取法通过乙酸乙酯并加入盐酸进行。
8.权利要求7中所述的方法,其中所述人血浆样品通过液液萃取法处理后,通过甲酸甲醇水进行复溶,优选采用的甲酸甲醇水的体积比为0.5%甲酸水∶甲醇(30/70,v/v)-0.5%甲酸水∶甲醇(70/30,v/v),更优选采用的甲酸甲醇水的体积比为0.5%甲酸水∶甲醇(50/50,v/v)。
9.权利要求1-6中任一项所述的方法,其中所述体液为人尿液,所述人尿液通过直接稀释进行处理,而不进行其它预处理。
10.权利要求9所述的方法,其中所述稀释通过甲酸甲醇水进行,优选采用的甲酸水∶甲醇的体积比为0.5%甲酸水∶甲醇(30/70,v/v)-0.5%甲酸水∶甲醇(70/30,v/v),更优选采用的甲酸水甲醇的体积比为0.5%甲酸水∶甲醇(50/50,v/v)。
CN201610051501.1A 2016-01-26 2016-01-26 Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度 Active CN105675784B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610051501.1A CN105675784B (zh) 2016-01-26 2016-01-26 Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610051501.1A CN105675784B (zh) 2016-01-26 2016-01-26 Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度

Publications (2)

Publication Number Publication Date
CN105675784A true CN105675784A (zh) 2016-06-15
CN105675784B CN105675784B (zh) 2018-08-14

Family

ID=56302630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610051501.1A Active CN105675784B (zh) 2016-01-26 2016-01-26 Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度

Country Status (1)

Country Link
CN (1) CN105675784B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295753A (zh) * 2021-12-30 2022-04-08 贵州医科大学 云实皮药物药代动力学和组织分布的动物模型构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083921A (en) * 1998-01-12 2000-07-04 Xu; Kai Jian Pharmaceutical compositions and method of using same
WO2002060379A2 (en) * 2000-10-25 2002-08-08 National Engineering Research Center For Traditional Chinese Medicine Composition comprising extracts of flos lonicerae, fructus forsythiae and radix scutellariae, uses and preparation thereof
CN104914186A (zh) * 2015-03-29 2015-09-16 西南民族大学 坚杆火绒草或其炮制品中绿原酸等三种成分的检测方法
CN105085265A (zh) * 2014-05-09 2015-11-25 四川九章生物化工科技发展有限公司 一种绿原酸原料或原料药及其制备方法和质量检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083921A (en) * 1998-01-12 2000-07-04 Xu; Kai Jian Pharmaceutical compositions and method of using same
WO2002060379A2 (en) * 2000-10-25 2002-08-08 National Engineering Research Center For Traditional Chinese Medicine Composition comprising extracts of flos lonicerae, fructus forsythiae and radix scutellariae, uses and preparation thereof
CN105085265A (zh) * 2014-05-09 2015-11-25 四川九章生物化工科技发展有限公司 一种绿原酸原料或原料药及其制备方法和质量检测方法
CN104914186A (zh) * 2015-03-29 2015-09-16 西南民族大学 坚杆火绒草或其炮制品中绿原酸等三种成分的检测方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KARINE REDEUIL ET AL.: "Identification of novel circulating coffee metabolites in human plasma by liquid chromatography–mass spectrometry", 《JOURNAL OF CHROMATOGRAPHY A》 *
PEADAR CREMIN ET AL.: "LC/ES-MS Detection of Hydroxycinnamates in Human Plasma and Urine", 《J. AGRIC. FOOD CHEM.》 *
任霞: "绿原酸静脉注射的动物体内分析方法及其药代动力学研究", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑》 *
居文政 等: "UPLC-MS/MS法同时测定人血浆中黄芩苷和绿原酸", 《药学学报》 *
张军 等: "脉络宁注射液中绿原酸在健康人体内的药动学", 《中国临床药理学与治疗学》 *
张晨宁 等: "UPLC-MS/MS测定金茵清热口服液中绿原酸和大黄素血药浓度及大鼠体内药代动力学研究", 《中药新药与临床药理》 *
韩雪冰 等: "双黄连口服液黄芩苷、绿原酸、连翘酯苷A体内药代动力学研究", 《南京中医药大学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295753A (zh) * 2021-12-30 2022-04-08 贵州医科大学 云实皮药物药代动力学和组织分布的动物模型构建方法

Also Published As

Publication number Publication date
CN105675784B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
Zhang et al. Simultaneous quantification of 17 constituents from Yuanhu Zhitong tablet using rapid resolution liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry
CN110082440A (zh) 超高效液相色谱串联质谱测定血浆分子靶向药浓度的方法
Liu et al. Validated rapid resolution LC-ESI–MS/MS method for simultaneous determination of five pulchinenosides from Pulsatilla chinensis (Bunge) Regel in rat plasma: application to pharmacokinetics and bioavailability studies
Chang et al. Simultaneous determination of four phenolic acids and seven alkaloids in rat plasma after oral administration of traditional Chinese medicinal preparation Jinqi Jiangtang Tablet by LC-ESI–MS/MS
CN106990185A (zh) 一种同时测定血浆中六种酪氨酸激酶抑制剂浓度的方法
Liu et al. More accurate matrix-matched quantification using standard superposition method for herbal medicines
CN103235050A (zh) 三七总皂苷注射剂的质量控制方法
RU2702998C1 (ru) Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови
Li et al. Simultaneous determination of five triterpene acids in rat plasma by liquid chromatography–mass spectrometry and its application in pharmacokinetic study after oral administration of Folium Eriobotryae effective fraction
Wang et al. Comparative pharmacokinetic study of the main components of cortex fraxini after oral administration in normal and hyperuricemic rats
Jeong et al. A sensitive UPLC–ESI–MS/MS method for the quantification of cinnamic acid in vivo and in vitro: Application to pharmacokinetic and protein binding study in human plasma
Liu et al. Simultaneous determination of pimpinellin, isopimpinellin and phellopterin in rat plasma by a validated UPLC–MS/MS and its application to a pharmacokinetic study after administration of Toddalia asiatica extract
CN110031568B (zh) 一种测定人血浆中沙库巴曲、去乙基沙库巴曲和缬沙坦浓度的方法
CN112782322A (zh) 基于lc-ms同时测定人血浆中8种抗结核药物的方法
Cai et al. Determination of four pyridine alkaloids from Tripterygium wilfordii Hook. f. in human plasma by high-performance liquid chromatography coupled with mass spectrometry
Wan et al. Simultaneous determination of oxiracetam and its degraded substance in rat plasma by HPLC-MS/MS and its application to pharmacokinetic study after a single high-dose intravenous administration
Yuan et al. Simultaneous determination of ramipril and its active metabolite ramiprilat in human plasma by LC–MS–MS
Luo et al. Simultaneous determination of four main isosteroidal alkaloids of bulbus Fritillariae cirrhosae in rat plasma by LC–MS–MS
Song et al. Pharmacokinetic study of deltaline in mouse blood based on UPLC-MS/MS
Yang et al. Determination of palonosetron in human plasma by ultra performance liquid chromatography–tandem mass spectrometry and its application to a pharmacokinetic study
CN105675784A (zh) Uplc-ms/ms法测定人血浆和尿液中绿原酸的浓度
Gao et al. Simultaneous determination and pharmacokinetics study of four quinones in rat plasma by ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry after the oral administration of Qianzhi capsules
Zheng et al. Development and validation of an UPLC-MS/MS method for determination of jujuboside B in rat plasma and its application in pharmacokinetic and bioavailability studies
Wang et al. Determination and validation of chikusetsusaponin IVa in rat plasma by UPLC‐MS/MS and its application to pharmacokinetic study
Cai et al. An UPLC-MS/MS method for quantification of spiraeoside in mouse blood and its application to a pharmacokinetic and bioavailability study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant