CN105655491B - The organic solar batteries and preparation method thereof of integral type hole transmission layer with exciton blocking and sunlight enhanced sensitivity - Google Patents
The organic solar batteries and preparation method thereof of integral type hole transmission layer with exciton blocking and sunlight enhanced sensitivity Download PDFInfo
- Publication number
- CN105655491B CN105655491B CN201610183854.7A CN201610183854A CN105655491B CN 105655491 B CN105655491 B CN 105655491B CN 201610183854 A CN201610183854 A CN 201610183854A CN 105655491 B CN105655491 B CN 105655491B
- Authority
- CN
- China
- Prior art keywords
- layer
- exciton blocking
- organic solar
- sunlight
- bis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明公开了一种具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池及其制备方法,本器件包括衬底、透明电极、空穴注入层、激子阻挡层、给体层、受体层、电子传输层和电极阴极。该器件的特征之处在于激子阻挡层,通过材料匹配,此激子阻挡层既能实现电子在阳极端的有效阻挡,降低光伏电池的暗电流成分和电子泄漏电流;又能吸收太阳光中紫外线发射纯蓝或天蓝光,增强了后续有机太阳能电池活性层的入射光子数量。提高光生电流以改进光伏电池的功率转换效率。本发明公开的器件在无其他额外光学设计及复杂工艺的情况下,用一种简单的方法同时实现了激子阻挡和太阳光增强的双重功效。制备工艺简单、设备要求低、适合量产。
The invention discloses an organic solar cell with an integrated hole transport layer for exciton blocking and sunlight sensitization and a preparation method thereof. The device includes a substrate, a transparent electrode, a hole injection layer, an exciton blocking layer, Donor layer, acceptor layer, electron transport layer and electrode cathode. The device is characterized by an exciton blocking layer. Through material matching, this exciton blocking layer can not only effectively block electrons at the anode end, reduce the dark current component and electron leakage current of photovoltaic cells; The ultraviolet light emits pure blue or sky blue light, enhancing the number of incident photons to the active layer of the subsequent organic solar cell. The photogenerated current is increased to improve the power conversion efficiency of photovoltaic cells. The device disclosed by the invention simultaneously realizes the dual effects of exciton blocking and solar light enhancement in a simple method without additional optical design and complicated process. The preparation process is simple, the equipment requirement is low, and it is suitable for mass production.
Description
技术领域technical field
本发明涉及一种有机光电子器件及其制备方法,特别是涉及一种有机太阳能电池(OPV)及其制备方法,应用于绿色太阳能源技术领域。The invention relates to an organic optoelectronic device and a preparation method thereof, in particular to an organic solar cell (OPV) and a preparation method thereof, which are applied in the technical field of green solar energy.
背景技术Background technique
有机光电子技术是近10年来世界学术界发展迅猛的高科技之一。随着成膜技术的快速发展及有机材料或有机/无机杂化材料设计的多样性,有机电致发光器件、有机太阳能电池(organic photovoltaic cell,OPV)、有机场效应晶体管等有机光电子产品逐渐发展成熟,且具有易于大面积制备、柔性、抗震压等优点。其中,利用清洁能源的有机太阳能电池凭借其绿色环保、低成本等优点,在能源技术领域倍受瞩目;采用有机小分子/聚合物材料及简易的成膜工艺已经取得了光电转换效率超过12%的突破性进展,为缓解化石能源的枯竭和保证人类社会的可持续发展提供了良好的解决方案。尤其是OPV中的平面异质结由于其结构简单,对材料纯度要求不高,因此是科研工作者初步探索材料特性及器件结构性能的首选。Organic optoelectronic technology is one of the high-tech technologies that have developed rapidly in the world's academic circles in the past 10 years. With the rapid development of film-forming technology and the diversity of design of organic materials or organic/inorganic hybrid materials, organic optoelectronic products such as organic electroluminescence devices, organic solar cells (organic photovoltaic cells, OPV), organic field effect transistors, etc. are gradually developing. Mature, and has the advantages of easy large-area preparation, flexibility, and shock resistance. Among them, organic solar cells using clean energy have attracted much attention in the field of energy technology due to their advantages of environmental protection and low cost; the use of small organic molecules/polymer materials and simple film formation processes have achieved photoelectric conversion efficiency exceeding 12%. The breakthrough progress of this technology provides a good solution for alleviating the depletion of fossil energy and ensuring the sustainable development of human society. In particular, the planar heterojunction in OPV has a simple structure and does not require high material purity, so it is the first choice for researchers to initially explore material properties and device structural performance.
然而,传统的OPV器件具有一些缺点:However, traditional OPV devices have some disadvantages:
1. 太阳光谱中紫外光、可见光、红外光的比例固定,如需增强某一部分的光强,需通过物理光学设计或制备特殊复杂的微纳结构以达到聚光或增强反射和折射的目的、或者通过设计复杂结构的级联式OPV(cascade OPV)拓宽对太阳光的吸收;1. The ratio of ultraviolet light, visible light, and infrared light in the solar spectrum is fixed. If it is necessary to enhance the light intensity of a certain part, it is necessary to design or prepare special and complex micro-nano structures through physical optics to achieve the purpose of concentrating light or enhancing reflection and refraction. Or broaden the absorption of sunlight by designing a cascade OPV (cascade OPV) with a complex structure;
2. 传统的平面异质结电池中的给/受体的激子分离不够充分,导致短路电流偏低;2. The donor/acceptor exciton separation in traditional planar heterojunction cells is not sufficient, resulting in low short-circuit current;
3. 体异质结中形貌结构复杂,较难准确控制,机理不明之处较多;3. The morphology and structure of the bulk heterojunction are complex, it is difficult to control accurately, and there are many unknown mechanisms;
4. 空穴和电子的注入和传输速率不匹配导致最终产生的光生电流受限。4. The mismatch between the injection and transport rates of holes and electrons leads to the limitation of the final photogenerated current.
OPV中传统的空穴注入或传输材料为poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS),具有优良的平滑导电基板,抑制漏电流得到较高开路电压的作用,然而同时也是强激子淬灭剂,这影响了OPV在现实应用领域的推广。The traditional hole injection or transport material in OPV is poly(3,4-ethylenedioxythiophene):poly(tyrenesulfonate) (PEDOT:PSS), which has an excellent smooth conductive substrate, suppresses leakage current and obtains a higher open circuit voltage, but at the same time It is also a strong exciton quencher, which affects the promotion of OPV in practical applications.
发明内容Contents of the invention
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池及其制备方法,采用增加阳极端激子阻挡层,在OPV内形成透明阳极-空穴注入层-激子阻挡层-给体层的新型复合功能层结构,使一体式空穴传输层能够同时实现激子阻挡和太阳光增敏的作用,本发明工艺简单,同时节约材料,降低成本,具有重大的产业价值。In order to solve the problems of the prior art, the object of the present invention is to overcome the deficiencies of the prior art, and provide an organic solar cell with an integrated hole transport layer for exciton blocking and sunlight sensitization and a preparation method thereof. Exciton blocking layer at the anode end, forming a new composite functional layer structure of transparent anode-hole injection layer-exciton blocking layer-donor layer in OPV, so that the integrated hole transport layer can simultaneously realize exciton blocking and sunlight Sensitization effect, the invention has a simple process, saves materials and reduces costs at the same time, and has great industrial value.
为达到上述发明创造目的,本发明的构思是:In order to achieve the above-mentioned invention creation purpose, design of the present invention is:
创造基于具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池器件,器件主要特点是不需要额外的复杂的光学设计或制备微纳结构以增强太阳光强度或提供有利的反射和折射,此空穴传输层即可吸收紫外光发射蓝光或绿光从而额外增加入射光光子数量,且同时具有电子阻挡作用。器件结构简单,单一空穴传输层同时具备两种功能,且其能级与给体层匹配对器件开路电压无不良影响,较高的空穴迁移率不会制约器件填充因子。通过合理的选择材料,巧妙地同时实现激子阻挡及太阳光增敏作用。Create an organic solar cell device based on an integrated hole transport layer with exciton blocking and solar light sensitization. The main feature of the device is that it does not require additional complex optical design or preparation of micro-nano structures to enhance the intensity of sunlight or provide favorable Reflection and refraction, this hole transport layer can absorb ultraviolet light and emit blue or green light to additionally increase the number of incident light photons, and at the same time have an electron blocking effect. The structure of the device is simple, the single hole transport layer has two functions at the same time, and the matching of its energy level and the donor layer has no adverse effect on the open circuit voltage of the device, and the higher hole mobility will not restrict the device fill factor. Through reasonable selection of materials, exciton blocking and solar light sensitization can be cleverly realized at the same time.
根据上述发明构思,采用下述技术方案:According to above-mentioned inventive concept, adopt following technical scheme:
一种具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池,从下到上依次由衬底层、透明导电阳极层、空穴注入层、激子阻挡层、给体层、受体层、电子传输层和电极阴极层结合组成,给体层采用窄带系具强吸收的有机太阳能电池材料中的任意一种材料或任意几种材料制成,受体层采用富勒烯或富勒烯衍生物材料中的任意一种材料或任意几种材料制成,激子阻挡层的厚度为5-20nm,激子阻挡层的材料是宽带隙的具紫外吸收而几乎不吸收可见光的空穴传输材料,且激子阻挡层的能级与给体层的能级匹配。An organic solar cell with an integrated hole transport layer for exciton blocking and sunlight sensitization, which consists of a substrate layer, a transparent conductive anode layer, a hole injection layer, an exciton blocking layer, and a donor layer from bottom to top , acceptor layer, electron transport layer and electrode cathode layer, the donor layer is made of any material or any several materials in organic solar cell materials with narrow band and strong absorption, and the acceptor layer is made of fullerene or any one of the fullerene derivative materials or any several materials, the thickness of the exciton blocking layer is 5-20nm, and the material of the exciton blocking layer is a wide band gap with ultraviolet absorption and almost no absorption of visible light The hole transport material, and the energy level of the exciton blocking layer matches the energy level of the donor layer.
上述透明衬底及透明导电阳极所组成的基板的厚度为100-150nm,上述空穴注入层的厚度优选为5-10nm,上述给体层的厚度优选为10-25nm,上述受体层的厚度优选为30-50nm,上述电子传输层的厚度优选为5-10nm,上述电极阴极层的厚度优选为80-100nm。The thickness of the substrate composed of the above-mentioned transparent substrate and transparent conductive anode is 100-150 nm, the thickness of the above-mentioned hole injection layer is preferably 5-10 nm, the thickness of the above-mentioned donor layer is preferably 10-25 nm, and the thickness of the above-mentioned acceptor layer It is preferably 30-50 nm, the thickness of the above-mentioned electron transport layer is preferably 5-10 nm, and the thickness of the above-mentioned electrode cathode layer is preferably 80-100 nm.
上述激子阻挡层材料优选采用蓝色荧光材料、绿色荧光材料、蓝色磷光材料和绿色磷光材料中的任意一种材料或任意几种材料,蓝色荧光材料采用深蓝染料 5-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (DTPDDA)、4,4’-Bis(2,2-diphenylvinyl)-1,1’-biphenyl(DPVBi)、diphenyl-(4-{2-[4-(2-pyridin-4-yl-vinyl)-phenyl]-vinyl}-phenyl)-amine(DPVPA)、2,7-bis[2-(4-tert-butylphenyl) pyrimidine-5-yl]-9,9’-spirobifluorene(TBPSF)、5,10,15-tribenzyl-5H-diindolo [3,2-a:3’,2’-c]-carbazole(TBDI)、N,N’-diphenyl-N, N’-bis(1-naphthyl phenyl)-1,1’-biphenyl-4,4’-diamine (α-NPD)、N,N’-diphenyl-N,N’-bis(1-naphthyl)-1,1’-bipheny l-4,4’-diamine(NPB)、 4,4’-bis-9-carbozylbiphenyl (CBP)、4,4’-bis[(N-carbazole) styryl]biphenyl (BSB-Cz)、2,4-bis{3-(9H-carbazol-9-yl)-9H-carbazol-9-yl}-6-phen yl-1,3,5-triazine (CC2TA) 中的任意一种材料或任意几种材料;绿色荧光材料采用rhodamine 6G (R6G)、2,3,6,7-tetra hydro-1,1,7,7- tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinoli zino-[9,9a,1gh]coumarin (C545 T)、(4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophth alonitrile(4CzIPN)中的任意一种材料或任意几种材料;蓝色磷光材料采用iridium bis(4,6-difloroPhenyl-pyridi nato-N,C’)picolinate (Firpic)、iridium (Ⅲ)bis(4,6-difluorophenylpyridinato)tetra kis(1-pyraZolyl)borate (Fir6)、Iridium(Ⅲ)bis(4,6-difluorophenyl-pyridinato)-5- (pyridine-2-yl)-1H-tetrazolate) (FirN4) 中的任意一种材料或任意几种材料;绿色磷光材料采用fac-tris(2-phenylpyridine)iridium (Ir(ppy)3)、bis(2-phenyl pyridine) iridium(acetyl-acetonate) ((ppy)2Ir(acac))和tris[3,6-bis(phenyl)-pyridazinato-N1, C2’]iridium (Ir(BPP ya)3) 中的任意一种材料或任意几种材料。The above-mentioned exciton blocking layer material preferably adopts any one material or any several materials in blue fluorescent material, green fluorescent material, blue phosphorescent material and green phosphorescent material, and blue fluorescent material adopts dark blue dye 5-(4-( 4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10,10-diphenyl-5,10-dihydrodibenzo[ b , e ][1,4]azasiline (DTPDDA), 4,4 '-Bis(2,2-diphenylvinyl)-1,1'-biphenyl(DPVBi), diphenyl-(4-{2-[4-(2-pyridin-4-yl-vinyl)-phenyl]-vinyl}- phenyl)-amine(DPVPA), 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl]-9,9'-spirobifluorene(TBPSF), 5,10,15-tribenzyl-5H- diindolo [3,2-a:3',2'-c]-carbazole(TBDI), N,N'-diphenyl-N, N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4 ,4'-diamine (α-NPD), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine(NPB), 4, 4'-bis-9-carbozylbiphenyl (CBP), 4,4'-bis[(N-carbazole) styryl]biphenyl (BSB-Cz), 2,4-bis{3-(9H-carbazol-9-yl) -9H-carbazol-9-yl}-6-phenyl-1,3,5-triazine (CC2TA) any one material or any several materials; green fluorescent material adopts rhodamine 6G (R6G), 2,3 ,6,7-tetra hydro-1,1,7,7-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinoli zino-[9,9a,1gh]coumarin (C545 T), (4s, 6s)-2,4,5,6-tetra(9H-carbazol-9-yl) isophth alonitrile(4CzIPN) any one or several materials; blue phosphorescent material adopts With iridium bis(4,6-difloroPhenyl-pyridi nato-N,C')picolinate (Firpic), iridium (Ⅲ)bis(4,6-difluorophenylpyridinato)tetra kis(1-pyraZolyl)borate (Fir6), Iridium(Ⅲ )bis(4,6-difluorophenyl-pyridinato)-5-(pyridine-2-yl)-1H-tetrazolate) (FirN4) any one material or any several materials; the green phosphorescent material adopts fac-tris(2 -phenylpyridine) iridium (Ir(ppy) 3 ), bis(2-phenylpyridine) iridium(acetyl-acetonate) ((ppy) 2 Ir(acac)) and tris[3,6-bis(phenyl)-pyridazinato-N 1 , C 2 ']iridium (Ir(BPP ya) 3 ) any one material or any several materials.
上述衬底层的材料优选为刚性玻璃材料、透明聚合物柔性材料或生物可降解的柔性材料中的任意一种材料或任意几种的复合材料,其中透明聚合物柔性材料为聚乙烯、聚甲基丙烯酸甲酯、聚碳酸酯、聚氨基甲酸酯、聚酰亚胺、聚酰树脂和聚丙烯酸中的任意一种材料或任意几种材料。The material of the above-mentioned substrate layer is preferably any one of rigid glass material, transparent polymer flexible material or biodegradable flexible material or any composite material, wherein the transparent polymer flexible material is polyethylene, polymethyl Any one material or any several materials among methyl acrylate, polycarbonate, polyurethane, polyimide, polyamide resin and polyacrylic acid.
上述透明导电阳极的材料优选为氧化铟锡(ITO)、导电聚合物poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS)、石墨烯(graphene)、碳纳米管(carbon nanotube)、金属单质、金属单质纳米线、金属合金纳米线、金属异质结纳米线中的任意一种材料或任意几种材料。The material of the above-mentioned transparent conductive anode is preferably indium tin oxide (ITO), conductive polymer poly(3,4-ethylenedioxy thiophene): poly(styrenesulfonate) (PEDOT:PSS), graphene (graphene), carbon nanotube (carbon nanotube) ), metal element, metal element nanowire, metal alloy nanowire, metal heterojunction nanowire any one material or any several materials.
上述空穴注入层的材料优选为MoO3、V2O5、NiO2、WO3中的任意一种材料或任意几种材料。The material of the above-mentioned hole injection layer is preferably any one material or any several materials among MoO 3 , V 2 O 5 , NiO 2 , WO 3 .
上述给体层的材料优选为窄带系给体材料中的boron subphthalocyaninechloride (SubPc)、copper phthalocyanine (CuPc)、chloroaluminium phthalocyanine(ClAlPc)、zinc phthalocyanine (ZnPc)、rubrene、tetraphenyldibenzoperiflanthene(DBP)、bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2’]iridium(acetylacetonate)(t-bt)2Ir (acac)、4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9- enyl) -4H-pyran (DCJTB) 中的任意一种材料或任意几种材料。The material of the above-mentioned donor layer is preferably boron subphthalocyanine chloride (SubPc), copper phthalocyanine (CuPc), chloroaluminium phthalocyanine (ClAlPc), zinc phthalocyanine (ZnPc), rubrene, tetraphenyldibenzoperiflanthene (DBP), bis[2- (4-tertbutylphenyl)benzothiazolato-N,C2']iridium(acetylacetonate)(t-bt)2Ir(acac),4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl -9-enyl) -4H-pyran (DCJTB) any one material or any several materials.
上述受体层材料优选为富勒烯或富勒烯衍生物材料中的C60、C70、[6,6]-phenylC71 butyric acid methyl ester (PC71BM)、[6,6]-phenyl C61 butyric acid methylester (PC61BM)、indene-C60 bisadduct (ICBA)、poly(9,9-dioctylfluorene-co-benzothiadiazole (F8BT) 中的任意一种材料或任意几种材料。The above-mentioned acceptor layer material is preferably C 60 , C 70 , [6,6]-phenylC71 butyric acid methyl ester (PC71BM), [6,6]-phenyl C61 butyric acid in fullerene or fullerene derivative materials Any one or several of methylester (PC61BM), indene-C60 bisadduct (ICBA), poly(9,9-dioctylfluorene-co-benzothiadiazole (F8BT)
上述电子传输层的材料优选为石墨烯、碳纳米管、ZnO、Cs2CO3、2,2', 2”-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)、bathocuproine (BCP)、lithium Fluoride (LiF)、tris-(8-hydroxyquinolinato) aluminum (Alq3)、其他噁二唑类化合物、喹喔啉类化合物、含氰基的聚合物、其他含氮杂环化合物、有机硅材料、全氟化材料和有机硼材料中的任意一种材料或任意几种材料。The material of the electron transport layer is preferably graphene, carbon nanotubes, ZnO, Cs 2 CO 3 , 2,2', 2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H- benzimidazole) (TPBi), bathocuproine (BCP), lithium Fluoride (LiF), tris-(8-hydroxyquinolinato) aluminum (Alq3), other oxadiazole compounds, quinoxaline compounds, cyano-containing polymers, others Any one or several of nitrogen-containing heterocyclic compounds, organic silicon materials, perfluorinated materials and organic boron materials.
上述电极阴极层优选为Al、Ag、镁银合金和锂铝合金中的任意一种材料或任意几种材料。The cathode layer of the above-mentioned electrode is preferably any one material or any several materials among Al, Ag, magnesium-silver alloy and lithium-aluminum alloy.
一种本发明具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池的制备方法,其特征在于,包括以下步骤:A method for preparing an organic solar cell with an integrated hole transport layer for exciton blocking and sunlight sensitization of the present invention, is characterized in that it comprises the following steps:
1) 对透明衬底及透明导电阳极所组成的基板进行清洗,清洗后用干燥氮气吹干;1) Clean the substrate composed of the transparent substrate and the transparent conductive anode, and dry it with dry nitrogen after cleaning;
2) 采用旋转涂覆、印刷、喷涂或蒸镀方式,并采用空穴注入层材料,在步骤1)中的透明导电阳极表面上制备空穴注入层;2) Prepare a hole injection layer on the surface of the transparent conductive anode in step 1) by using spin coating, printing, spray coating or evaporation, and using a hole injection layer material;
3) 采用旋转涂覆、印刷、喷涂或蒸镀方式,并采用空穴传输材料,在步骤2)中制备的空穴注入层表面上再制备激子阻挡层;3) Using spin coating, printing, spraying or evaporation, and using a hole transport material, an exciton blocking layer is prepared on the surface of the hole injection layer prepared in step 2);
4) 采用旋转涂覆、印刷、喷涂或蒸镀方式,并采用有机电子给体层材料,在步骤3)中制备的激子阻挡层表面上再制备给体层;4) Using spin coating, printing, spraying or evaporation, and using an organic electron donor layer material, preparing a donor layer on the surface of the exciton blocking layer prepared in step 3);
5) 采用旋转涂覆、印刷、喷涂或蒸镀方式,并采用电子受体层材料,在步骤4)中制备的给体层表面上再制备受体层;5) Using spin coating, printing, spraying or evaporation, and using the electron acceptor layer material, preparing an acceptor layer on the surface of the donor layer prepared in step 4);
6) 采用旋转涂覆、印刷、喷涂或蒸镀方式,并采用电子传输层材料,在步骤5)中制备的受体层表面上再制备电子传输层;6) Using spin coating, printing, spraying or evaporation, and using electron transport layer materials, an electron transport layer is prepared on the surface of the acceptor layer prepared in step 5);
7) 进行掩模板更换,在步骤6)中制备的电子传输层表面再蒸镀阴极材料,形成电极阴极层,从而制成有机太阳能电池的各功能层。7) The mask plate is replaced, and the cathode material is evaporated on the surface of the electron transport layer prepared in step 6) to form an electrode cathode layer, thereby making each functional layer of the organic solar cell.
本发明基于具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池器件的制备方法是在器件的透明电极上,通过依次沉积空穴注入层、空穴传输层即激子阻挡层,然后在激子阻挡层上,通过真空蒸镀、旋涂、或印刷法依次沉积给体层、受体层和电子传输层,最后在电子传输层上通过真空蒸镀法沉积电极阴极。本发明在空穴注入层和给体材料之间插入一个宽带隙的激子阻挡层能有效防止激子淬灭,降低光伏电池的暗电流成分和电子泄漏电流。另外激子阻挡层的加入有利于平衡空穴和电子的传输性能,使电子空穴更多被限制在活性层得到分离,从而增强光电流。另外通过合理选择材料,沉积于太阳光入射端的激子阻挡层能够吸收紫外光产生可被给/受体材料吸收的可见光从而增加后续活性层的入射光子数量,这是一种简单有效的增敏太阳光从而提高光生电流的方法。The preparation method of the organic solar cell device based on the integrated hole transport layer with exciton blocking and solar light sensitization is to deposit the hole injection layer and the hole transport layer in sequence on the transparent electrode of the device. The barrier layer, and then on the exciton blocking layer, the donor layer, the acceptor layer and the electron transport layer are sequentially deposited by vacuum evaporation, spin coating, or printing, and finally the electrode cathode is deposited on the electron transport layer by vacuum evaporation. . The present invention inserts a wide bandgap exciton blocking layer between the hole injection layer and the donor material, which can effectively prevent excitons from quenching and reduce the dark current component and electron leakage current of the photovoltaic cell. In addition, the addition of the exciton blocking layer is beneficial to balance the transport properties of holes and electrons, so that the electron holes are more confined in the active layer and separated, thereby enhancing the photocurrent. In addition, through reasonable selection of materials, the exciton blocking layer deposited on the incident side of sunlight can absorb ultraviolet light to generate visible light that can be absorbed by the donor/acceptor material, thereby increasing the number of incident photons in the subsequent active layer, which is a simple and effective sensitization method. Sunlight thereby increasing the photogenerated current method.
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:Compared with the prior art, the present invention has the following obvious outstanding substantive features and significant advantages:
1. 相对于传统的具有单一空穴注入层的OPV结构,本发明器件中的激子阻挡层同时具备阻挡电子、防止激子淬灭、降低暗电流成分及电子泄漏电流和发射蓝光或绿光以增强入射太阳光光子数量的作用;1. Compared with the traditional OPV structure with a single hole injection layer, the exciton blocking layer in the device of the present invention has the functions of blocking electrons, preventing exciton quenching, reducing dark current components and electron leakage current, and emitting blue or green light To enhance the effect of the number of photons of incident sunlight;
2.本发明通过合理选择激子阻挡层材料,使之能级与给体层匹配、发射光谱与给/受体层的吸收光谱匹配,而其本身的光吸收不影响活性层的吸收;2. The present invention matches the energy level of the donor layer and the emission spectrum with the absorption spectrum of the donor/acceptor layer by rationally selecting the material of the exciton blocking layer, and its own light absorption does not affect the absorption of the active layer;
3.本发明制备的激子阻挡层厚度控制对整个器件的性能起着重要的作用,激子阻挡层的厚度最优控制在5-20nm,太薄太厚均会降低器件短路电流和填充因子;3. The thickness control of the exciton blocking layer prepared by the present invention plays an important role in the performance of the entire device, and the thickness of the exciton blocking layer is optimally controlled at 5-20nm, too thin or too thick will reduce the short circuit current and fill factor of the device;
4.本发明器件结构简单,激子阻挡层厚度和成分能够精确控制,可以得到稳定的性能,因此有利于制备级联OPV器件或量产。4. The structure of the device of the present invention is simple, the thickness and composition of the exciton blocking layer can be precisely controlled, and stable performance can be obtained, so it is beneficial to the preparation of cascaded OPV devices or mass production.
附图说明Description of drawings
图1为本发明各实施例有机太阳能电池的结构示意图。FIG. 1 is a schematic structural view of an organic solar cell according to various embodiments of the present invention.
图2为本发明各实施例的不同激子阻挡层NPB和BSB-Cz单膜的吸收系数特性曲线。Fig. 2 is the characteristic curves of absorption coefficients of different exciton blocking layers NPB and BSB-Cz single films in various embodiments of the present invention.
图3为本发明各实施例的不同激子阻挡层NPB和BSB-Cz单膜的荧光光谱归一化特性曲线。Fig. 3 is the normalized characteristic curves of fluorescence spectra of different exciton blocking layers NPB and BSB-Cz single films of various embodiments of the present invention.
图4为本发明各实施例的给体DBP、SubPc和受体C60单膜的吸收系数特性曲线。Fig. 4 is the characteristic curves of absorption coefficients of donor DBP, SubPc and acceptor C 60 single membranes in various embodiments of the present invention.
具体实施方式Detailed ways
本发明的优选实施例详述如下:Preferred embodiments of the present invention are described in detail as follows:
实施例一:Embodiment one:
在本实施例中,参见图1,一种具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池,从下到上依次由衬底层1、透明导电阳极层2、空穴注入层3、激子阻挡层4、给体层5、受体层6、电子传输层7和电极阴极层8一共8层功能层结合组成,给体层5采用窄带系具强吸收的有机太阳能电池材料制成,受体层6采用富勒烯制成,激子阻挡层4的材料是宽带隙的具紫外吸收而几乎不吸收可见光的空穴传输材料,且激子阻挡层4的能级与给体层5的能级匹配。In this embodiment, referring to FIG. 1 , an organic solar cell with an integrated hole transport layer for exciton blocking and sunlight sensitization consists of a substrate layer 1 , a transparent conductive anode layer 2 , and a hole layer from bottom to top. The hole injection layer 3, the exciton blocking layer 4, the donor layer 5, the acceptor layer 6, the electron transport layer 7 and the electrode cathode layer 8 are composed of a total of 8 functional layers. made of solar cell materials, the acceptor layer 6 is made of fullerene, the material of the exciton blocking layer 4 is a wide bandgap hole transport material with ultraviolet absorption and almost no absorption of visible light, and the energy of the exciton blocking layer 4 The level matches the energy level of the donor layer 5.
在本实施例中,采用衬底层1及透明导电阳极层2所组成的ITO基板,ITO基板厚度为150nm,即选择透明的刻蚀成一定模板的IT0玻璃基板作为阳极,依次用洗剂、丙酮、去离子水、异丙醇超声清洗20分钟,氮气吹干,UV/O3处理15分钟备用。通过真空蒸镀的方法,在IT0玻璃基板上沉积MoO3制备厚度为5nm的空穴注入层3,然后沉积NPB制备厚度为5-10nm的激子阻挡层4,接下来沉积厚度为10-20nm的给体红光染料DBP来制备给体层5,然后沉积厚度为30-50nm的C60来制备受体层6,再沉积厚度为5-10nm的电子传输层材料Bphen制备电子传输层7,最后更换掩模板以蒸镀阴极金属Al,制备厚度为80-100nm的电极阴极层8。In this embodiment, the ITO substrate composed of the substrate layer 1 and the transparent conductive anode layer 2 is used, and the thickness of the ITO substrate is 150nm, that is, a transparent ITO glass substrate etched into a certain template is selected as the anode, and the anode is sequentially washed with lotion, acetone , deionized water, and isopropanol ultrasonic cleaning for 20 minutes, blown dry with nitrogen, and treated with UV/O 3 for 15 minutes for later use. By vacuum evaporation, deposit MoO 3 on the ITO glass substrate to prepare a hole injection layer 3 with a thickness of 5nm, then deposit NPB to prepare an exciton blocking layer 4 with a thickness of 5-10nm, and then deposit a thickness of 10-20nm The donor red light dye DBP is used to prepare the donor layer 5, and then the C 60 with a thickness of 30-50nm is deposited to prepare the acceptor layer 6, and the electron transport layer material Bphen with a thickness of 5-10nm is deposited to prepare the electron transport layer 7, Finally, the mask plate is replaced to vapor-deposit cathode metal Al to prepare electrode cathode layer 8 with a thickness of 80-100 nm.
本实施例的激子阻挡层NPB的吸收和发射光谱分别见图2和图3。NPB的吸收峰为348nm,发射峰为438nm。给体层DBP和受体层C60的吸收光谱见图4。NPB发射的蓝光恰好在C60和DBP的吸收范围,额外增强了太阳光强度,且不影响给/受体本身对可见光的吸收。The absorption and emission spectra of the exciton blocking layer NPB of this embodiment are shown in Fig. 2 and Fig. 3 respectively. The absorption peak of NPB is 348nm and the emission peak is 438nm. The absorption spectra of the donor layer DBP and the acceptor layer C 60 are shown in FIG. 4 . The blue light emitted by NPB is just in the absorption range of C 60 and DBP, which additionally enhances the intensity of sunlight without affecting the absorption of visible light by the donor/acceptor itself.
本实施例制备了一种具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池,该器件的特征之处在于激子阻挡层,通过材料匹配,此激子阻挡层既能实现电子在阳极端的有效阻挡,降低光伏电池的暗电流成分和电子泄漏电流;又能吸收太阳光中紫外线发射纯蓝或天蓝光,增强了后续有机太阳能电池活性层即给/受体层的入射光子数量。两方面均能提高光生电流以改进光伏电池的功率转换效率。本实施例OPV器件在无其他额外光学设计及复杂工艺的情况下,用一种简单的方法同时实现了激子阻挡和太阳光增强的双重功效。本实施例制备工艺简单、设备要求低、适合量产。In this example, an organic solar cell with an integrated hole-transporting layer for exciton blocking and sunlight sensitization is prepared. The device is characterized by an exciton blocking layer. It can realize the effective blocking of electrons at the anode end, reduce the dark current component and electron leakage current of photovoltaic cells; it can also absorb ultraviolet rays in sunlight and emit pure blue or sky blue light, which enhances the active layer of subsequent organic solar cells, that is, the donor/acceptor layer the number of incident photons. Both aspects can increase the photogenerated current to improve the power conversion efficiency of photovoltaic cells. The OPV device of this embodiment achieves the dual effects of exciton blocking and solar light enhancement simultaneously in a simple way without additional optical design and complicated process. This embodiment has a simple preparation process, low equipment requirements, and is suitable for mass production.
实施例二:Embodiment two:
本实施例与实施例一基本相同,特别之处在于:This embodiment is basically the same as Embodiment 1, especially in that:
在本实施例中,参见图1,选择透明的刻蚀成一定模板的IT0玻璃基板作为阳极,IT0玻璃基板厚度为150nm。依次用洗剂、丙酮、去离子水、异丙醇超声清洗20分钟,氮气吹干,UV/O3处理15分钟备用。通过真空蒸镀的方法,在IT0玻璃基板上沉积空穴注入层MoO3,厚度为10nm,然后沉积激子阻挡层BSB-Cz,厚度控制在8-20nm,接下来沉积给体SubPc,厚度为7-20nm和受体层C60,厚度为30-50nm,再沉积电子传输层材料Bphen,厚度为5-10nm,然后更换掩模板以蒸镀阴极金属,蒸镀金属Al为阴极,厚度为100nm。In this embodiment, referring to FIG. 1 , a transparent ITO glass substrate etched into a certain template is selected as the anode, and the thickness of the ITO glass substrate is 150 nm. Use lotion, acetone, deionized water, and isopropanol to ultrasonically clean for 20 minutes in sequence, blow dry with nitrogen, and treat with UV/O 3 for 15 minutes before use. By vacuum evaporation method, the hole injection layer MoO 3 is deposited on the ITO glass substrate with a thickness of 10nm, and then the exciton blocking layer BSB-Cz is deposited with a thickness of 8-20nm, and then the donor SubPc is deposited with a thickness of 10nm. 7-20nm and acceptor layer C 60 with a thickness of 30-50nm, then deposit the electron transport layer material Bphen with a thickness of 5-10nm, and then replace the mask plate to evaporate the cathode metal, and evaporate the metal Al as the cathode with a thickness of 100nm .
本实施例的激子阻挡层BSB-Cz的吸收和发射光谱分别见图2和图3。BSB-Cz的吸收峰为370nm,发射峰为478nm。给体层SubPc和受体层C60的吸收光谱见图4。BSB-Cz发射的蓝绿光恰好在SubPc和C60的吸收范围,额外增强了太阳光强度,同时起到电子阻挡作用。The absorption and emission spectra of the exciton blocking layer BSB-Cz in this embodiment are shown in Fig. 2 and Fig. 3 respectively. The absorption peak of BSB-Cz is 370nm, and the emission peak is 478nm. The absorption spectra of the donor layer SubPc and the acceptor layer C 60 are shown in FIG. 4 . The blue-green light emitted by BSB-Cz is just in the absorption range of SubPc and C 60 , which additionally enhances the solar light intensity and plays an electron blocking role at the same time.
本实施例也通过材料匹配,同一空穴传输层能同时实现激子阻挡及增强后续给/受体层的入射光强度的功效。具有低成本,结构工艺简单,并可在柔性基板上制备等特点。能够在太阳能发电方面获得广泛的应用。In this embodiment, also through material matching, the same hole transport layer can simultaneously realize the effect of exciton blocking and enhancing the incident light intensity of the subsequent donor/acceptor layer. It has the characteristics of low cost, simple structure and process, and can be prepared on a flexible substrate. It can be widely used in solar power generation.
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明具有激子阻挡及太阳光增敏的一体式空穴传输层的有机太阳能电池及其制备方法的技术原理和发明构思,都属于本发明的保护范围。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and various changes can also be made according to the purpose of the invention of the present invention. The changes, modifications, substitutions, combinations or simplifications should be equivalent replacement methods, as long as they meet the purpose of the present invention, as long as they do not deviate from the concept of the integrated hole transport layer with exciton blocking and solar light sensitization of the present invention The technical principles and inventive concepts of the organic solar cell and its preparation method all belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610183854.7A CN105655491B (en) | 2016-03-29 | 2016-03-29 | The organic solar batteries and preparation method thereof of integral type hole transmission layer with exciton blocking and sunlight enhanced sensitivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610183854.7A CN105655491B (en) | 2016-03-29 | 2016-03-29 | The organic solar batteries and preparation method thereof of integral type hole transmission layer with exciton blocking and sunlight enhanced sensitivity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105655491A CN105655491A (en) | 2016-06-08 |
CN105655491B true CN105655491B (en) | 2018-12-07 |
Family
ID=56495737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610183854.7A Expired - Fee Related CN105655491B (en) | 2016-03-29 | 2016-03-29 | The organic solar batteries and preparation method thereof of integral type hole transmission layer with exciton blocking and sunlight enhanced sensitivity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105655491B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299133A (en) * | 2016-10-08 | 2017-01-04 | 吉林大学 | A polymer solar cell based on a metal oxide-metal nanostructure hybrid electron transport layer and its preparation method |
CN108695435B (en) * | 2018-05-21 | 2020-07-28 | 电子科技大学 | Organic solar cell based on ultrasonic annealing process and preparation method thereof |
CN110534650B (en) * | 2019-05-28 | 2021-08-10 | 华南理工大学 | Self-filtering narrow-spectral-response organic photodetector |
CN111180111A (en) * | 2020-01-14 | 2020-05-19 | 重庆烯宇新材料科技有限公司 | Silver nanowire transparent conductive film and flexible OLED |
CN112885967B (en) * | 2021-01-28 | 2022-12-02 | 电子科技大学 | Double-layer organic solar cell based on delayed fluorescent material and preparation method |
CN113838983B (en) * | 2021-08-26 | 2024-03-26 | 电子科技大学 | NPB/V-based 2 O 5 Organic photoelectric sensor of buffer layer and preparation method thereof |
CN114695678B (en) * | 2022-02-28 | 2023-04-25 | 电子科技大学 | A Method for Effectively Suppressing Dark Current in Organic Photodetectors with Inverted Structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101582332A (en) * | 2009-06-29 | 2009-11-18 | 中国科学院等离子体物理研究所 | Application of down-conversion luminescent material on dye-sensitized solar cells |
CN103682114A (en) * | 2012-09-14 | 2014-03-26 | 株式会社东芝 | Organic electroluminescence device |
CN104916780A (en) * | 2014-03-12 | 2015-09-16 | 兰州大学 | Infrared organic photosensitive diode based on exciplex photosensitive layer |
CN105118921A (en) * | 2015-09-14 | 2015-12-02 | 中国科学院长春应用化学研究所 | Organic photoelectric detector with high external quantum efficiency and broad spectral response and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4325324B2 (en) * | 2003-09-10 | 2009-09-02 | コニカミノルタホールディングス株式会社 | Organic electroluminescence device |
-
2016
- 2016-03-29 CN CN201610183854.7A patent/CN105655491B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101582332A (en) * | 2009-06-29 | 2009-11-18 | 中国科学院等离子体物理研究所 | Application of down-conversion luminescent material on dye-sensitized solar cells |
CN103682114A (en) * | 2012-09-14 | 2014-03-26 | 株式会社东芝 | Organic electroluminescence device |
CN104916780A (en) * | 2014-03-12 | 2015-09-16 | 兰州大学 | Infrared organic photosensitive diode based on exciplex photosensitive layer |
CN105118921A (en) * | 2015-09-14 | 2015-12-02 | 中国科学院长春应用化学研究所 | Organic photoelectric detector with high external quantum efficiency and broad spectral response and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
"Deep ultraviolet-to-NIR broad spectral response organic photodetectors with large gain";Dezhi Yang等;《J. Mater. Chem. C》;20160224;第4卷;全文 * |
"Effective exciton blocking by the hole-transporting material 5,10,15-tribenzyl- 5H-diindolo [3,2-a:3′,2′-c]-carbazole (TBDI) in the tetraphenyldibenzoperiflanthene (DBP) based organic photovoltaic cells";JingZhang等;《Applied Surface Science》;20151201;第357卷;第1281页第1栏第2段至第1287页第2栏第2段,图1-5、8、9 * |
Also Published As
Publication number | Publication date |
---|---|
CN105655491A (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105655491B (en) | The organic solar batteries and preparation method thereof of integral type hole transmission layer with exciton blocking and sunlight enhanced sensitivity | |
Hadipour et al. | Organic tandem and multi‐junction solar cells | |
TWI402981B (en) | Organic double heterostructure photovoltaic cell with reciprocal carrier exciton blocking layer | |
CN101133499B (en) | Multilayer Organic Solar Cells | |
JP5473218B2 (en) | Multilayer organic photosensitive device | |
US9431621B2 (en) | Metal oxide charge transport material doped with organic molecules | |
WO2007013496A1 (en) | Organic power generating device | |
CN105118921B (en) | An organic photodetector with high external quantum efficiency and wide spectral response and its preparation method | |
KR20110060956A (en) | Organic tandem solar cell | |
CN102074658B (en) | Electric charge production layer, lamination layer organic light-emitting diode and preparation method thereof | |
AU2013352112A1 (en) | Hybrid planar-graded heterojunction for organic photovoltaics | |
ES2923405T3 (en) | Organic photosensitive devices with exciton blocking charge carrier filters | |
CN101504971B (en) | Organic opto-electric device based on bi-polar organic material and production process thereof | |
JP2004165516A (en) | Organic solar cells | |
US11121336B2 (en) | Hybrid planar-mixed heterojunction for organic photovoltaics | |
WO2015061771A1 (en) | Exciton management in organic photovoltaic multi-donor energy cascades | |
CN101710610A (en) | Organic light emitting diode of alkali metal carbonate-doped organic electron injecting layer | |
CN108428801A (en) | A kind of organic up-conversion device | |
KR20220062297A (en) | Paraphenylene as Buffer and Color Adjustment Layer for Solar Cells | |
CN106410031B (en) | Organic solar cell with adjustable incident light intensity and preparation method thereof | |
JP2011198811A (en) | Photoelectric conversion element and organic thin-film solar cell | |
CN103346259B (en) | A kind of organic solar batteries | |
JP5118296B2 (en) | Stacked organic solar cell | |
Zhang et al. | Effective exciton blocking by the hole-transporting material 5, 10, 15-tribenzyl-5H-diindolo [3, 2-a: 3′, 2′-c]-carbazole (TBDI) in the tetraphenyldibenzoperiflanthene (DBP) based organic photovoltaic cells | |
CN110635038A (en) | Active layer of organic solar cells and organic solar panel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181207 Termination date: 20210329 |