CN105652421A - Camera lens for digital projector - Google Patents
Camera lens for digital projector Download PDFInfo
- Publication number
- CN105652421A CN105652421A CN201610202317.2A CN201610202317A CN105652421A CN 105652421 A CN105652421 A CN 105652421A CN 201610202317 A CN201610202317 A CN 201610202317A CN 105652421 A CN105652421 A CN 105652421A
- Authority
- CN
- China
- Prior art keywords
- lens
- airspace
- plus
- digital projector
- digital
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 8
- 102220616555 S-phase kinase-associated protein 2_E48R_mutation Human genes 0.000 claims description 3
- 239000005308 flint glass Substances 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 2
- 239000005331 crown glasses (windows) Substances 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 230000004075 alteration Effects 0.000 abstract description 13
- 238000013461 design Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 10
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 238000005286 illumination Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005499 meniscus Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/22—Telecentric objectives or lens systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明公开了一种用于数字投影仪的镜头,包括沿光轴自物面到像面依次为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜;所述第四透镜和第五透镜之间设置有孔径光阑,且孔径光阑靠近第五透镜;该发明为采用了像方远心光路,控制CRA在一定范围内和照明系统相匹配,达到图像对比度好,能量利用率高的效果;靠近屏幕的第一透镜和第八透镜采用了非球面设计,其中第一透镜为非球面用于校正轴外视场的各单色像差和畸变,第八透镜用于校正轴上各单色像差。
The invention discloses a lens for a digital projector, which comprises a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, The seventh lens, the eighth lens and the ninth lens; an aperture stop is arranged between the fourth lens and the fifth lens, and the aperture stop is close to the fifth lens; the invention adopts an image-side telecentric optical path, and controls CRA matches the lighting system within a certain range to achieve good image contrast and high energy utilization; the first lens and the eighth lens near the screen adopt aspheric design, and the first lens is aspheric for correcting the axis For the monochromatic aberrations and distortions in the outer field of view, the eighth lens is used to correct the monochromatic aberrations on the axis.
Description
技术领域technical field
本发明涉及一种镜头,尤其涉及到一种用于数字投影仪的镜头。The invention relates to a lens, in particular to a lens for a digital projector.
背景技术Background technique
随着近几年来半导体技术的发展,以DLP(DigitalLightProcessing:数字光处理)、LCD(LiquidCrystalDisplay:液晶显示器)、LCOS(LiquidCrystalonSilicon:硅基液晶)等技术为主的投影显示产业都得到了迅速发展。这些年来,DLP投影显示技术凭借其丰富的色彩、高清晰的画面、高亮度的图像及高对比度的显示得到迅速发展,它可以实现体积更小,重量更轻的产品特性,由此DLP(DigitalLightProcessing:数字光处理)微型投影机也得到了迅猛的发展。DLP(DigitalLightProcessing:数字光处理)技术中的核心部件主要采用的是DMD(DigitalMicromirrorDevice:数字微反射镜)图像芯片,DMD(DigitalMicromirrorDevice:数字微反射镜)是美国德州仪器公司独家掌握并开发的数字图像芯片,它是由很多矩阵排列的数字微反射镜组成,工作时微型反光镜随图像数字信号会有10度、12度的翻转,将来自照明光源的光束通过微反射镜的翻转反射进入投影镜头成像在屏幕上。为匹配DMD(DigitalMicromirrorDevice:数字微反射镜)芯片的入射角度,提高投影显示画面的均匀性,合理布局投影设备部件,照明系统多采用TIR(totalinternalreflection:全内反射)棱镜,因此,DLP(DigitalLightProcessing:数字光处理)系统根据不同产品方案分远心照明系统和非远心照明系统。这就需要采用与TIR棱镜匹配的不同类型的投影镜头。With the development of semiconductor technology in recent years, the projection display industry based on technologies such as DLP (Digital Light Processing: Digital Light Processing), LCD (Liquid Crystal Display: Liquid Crystal Display), and LCOS (Liquid Crystalon Silicon: Liquid Crystal on Silicon) has developed rapidly. Over the years, DLP projection display technology has developed rapidly with its rich colors, high-definition images, high-brightness images and high-contrast displays. It can achieve smaller and lighter product features, so DLP (Digital Light Processing : digital light processing) miniature projectors have also obtained rapid development. The core component of DLP (Digital Light Processing: Digital Light Processing) technology mainly adopts DMD (Digital Micromirror Device: Digital Micro Mirror) image chip. DMD (Digital Micro Mirror Device: Digital Micro Mirror) is a digital image exclusively mastered and developed by Texas Instruments. Chip, which is composed of many digital micro-mirrors arranged in a matrix. When working, the micro-mirrors will flip 10 degrees and 12 degrees with the digital signal of the image, and the light beam from the lighting source will enter the projection lens through the flipping of the micro-mirrors. imaged on the screen. In order to match the incident angle of the DMD (Digital Micromirror Device: digital micro-mirror) chip, improve the uniformity of the projection display screen, and rationally arrange the components of the projection equipment, the lighting system mostly uses TIR (total internal reflection: total internal reflection) prisms. Therefore, DLP (Digital Light Processing: Digital light processing) systems are divided into telecentric lighting systems and non-telecentric lighting systems according to different product solutions. This requires a different type of projection lens to match the TIR prism.
对于LCOS(LiquidCrystalonSilicon:硅基液晶)及LCD(LiquidCrystalDisplay:液晶显示器)投影光学系统,它们有一个共同的特点就是需要远心光束照明成像芯片,当然也就需要像方远心光路的投影镜头与之相匹配,这样可更好的保证像面照度均匀性。另外,由于DLP(DigitalLightProcessing:数字光处理),LCOS(LiquidCrystalonSilicon:硅基液晶)或LCD(LiquidCrystalDisplay:液晶显示器)系统均会采用TIR(totalinternalreflection:全内反射)或PBS(polarizationbeamsplitter偏振分光棱镜)棱镜来实现有效的照明,因此,投影镜头在与之匹配时需要保留较长的后工作距离,这大大增加了镜头长度和轴外像差的控制难度,其措施一般是增加镜片,一般都大于十片从而导致镜头变得复杂,而在视场角增大时,会有明显的畸变产生。通过调查不难发现市场上一些投影仪镜头一般存在体积大、像质不高、视场角度小等缺点。For LCOS (LiquidCrystalonSilicon: liquid crystal on silicon) and LCD (LiquidCrystalDisplay: liquid crystal display) projection optical systems, they have a common feature that they need a telecentric beam to illuminate the imaging chip, and of course a projection lens with a telecentric optical path is required. This can better ensure the uniformity of illumination on the image plane. In addition, since DLP (Digital Light Processing: digital light processing), LCOS (Liquid Crystalon Silicon: liquid crystal on silicon) or LCD (Liquid Crystal Display: liquid crystal display) systems will use TIR (total internal reflection: total internal reflection) or PBS (polarization beam splitter polarization beam splitter prism) prism to To achieve effective lighting, therefore, the projection lens needs to retain a long rear working distance when matching it, which greatly increases the difficulty of controlling the length of the lens and off-axis aberration. The measure is generally to increase the number of lenses, generally more than ten pieces As a result, the lens becomes complicated, and when the field of view increases, there will be obvious distortion. Through investigation, it is not difficult to find that some projector lenses on the market generally have shortcomings such as large size, low image quality, and small field of view.
发明内容Contents of the invention
为解决现有技术存在的上述缺陷,本发明提供一种能够适用于0.47inch1080pDMD(数字微反射镜芯片的具有较长后工作距离与远心照明系统相匹配的广角微型高清投影镜头,该镜头增大了视场角但依然实现照度均匀的效果,边缘相对照度大于80%。In order to solve the above-mentioned defects in the prior art, the present invention provides a wide-angle miniature high-definition projection lens suitable for 0.47inch1080pDMD (digital micromirror chip with a long rear working distance and a telecentric lighting system, the lens increases The field of view is enlarged but the effect of uniform illumination is still achieved, and the relative illumination of the edge is greater than 80%.
本发明是通过如下技术方案实现的:The present invention is achieved through the following technical solutions:
一种用于数字投影仪的镜头,包括沿光轴自物面到像面依次为第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜和第九透镜;A lens for a digital projector, comprising a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, a seventh lens, The eighth lens and the ninth lens;
所述第四透镜和第五透镜之间设置有孔径光阑,且孔径光阑靠近第五透镜;An aperture stop is arranged between the fourth lens and the fifth lens, and the aperture stop is close to the fifth lens;
所述第一透镜为正透镜、第二透镜为负透镜、第三透镜正透镜、第四透镜为正透镜、第五透镜正透镜、第六透镜为正透镜、第七透镜为负透镜、第八透镜为正透镜和第九透镜为正透镜;The first lens is a positive lens, the second lens is a negative lens, the third lens is a positive lens, the fourth lens is a positive lens, the fifth lens is a positive lens, the sixth lens is a positive lens, the seventh lens is a negative lens, and the fourth lens is a positive lens. The eighth lens is a positive lens and the ninth lens is a positive lens;
所述第一透镜为弯月形凹透镜,第二透镜为弯月形凹透镜、第三透镜为双凹透镜、第四透镜双凸透镜、第五透镜、第六透镜为平凹透镜,第七透镜为凹透镜、第八透镜为弯月形凹透镜和第九透镜为双凸透镜;The first lens is a meniscus concave lens, the second lens is a meniscus concave lens, the third lens is a biconcave lens, the fourth lens is a biconvex lens, the fifth lens, and the sixth lens are plano-concave lenses, and the seventh lens is a concave lens. The eighth lens is a meniscus concave lens and the ninth lens is a biconvex lens;
第六透镜和第七透镜组成双胶合透镜J1,且双胶合透镜J1的胶合面背离孔径光阑;The sixth lens and the seventh lens form the doublet lens J1, and the cemented surface of the doublet lens J1 is away from the aperture stop;
所述第一透镜和第八透镜均为非球面透镜;所述第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜和第九透镜均为球面透镜;The first lens and the eighth lens are all aspheric lenses; the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, the seventh lens and the ninth lens are all spherical lenses;
所述第一透镜、第二透镜、第三透镜和第四透镜的组合焦距为f1-4,第五透镜、第六透镜、第七透镜、第八透镜和第九透镜的组合焦距为f5-9;且0.75<|f1-4/f5-9|<0.95。The combined focal length of the first lens, the second lens, the third lens and the fourth lens is f 1-4 , and the combined focal length of the fifth lens, the sixth lens, the seventh lens, the eighth lens and the ninth lens is f 5-9 ; and 0.75<|f 1-4 /f 5-9 |<0.95.
进一步的,所述第六透镜透镜材料为冕牌玻璃,第七透镜透镜材料为火石玻璃。Further, the lens material of the sixth lens is crown glass, and the lens material of the seventh lens is flint glass.
进一步的,所述第一透镜和第八透镜透镜材料为E48R环烯烃共聚物。Further, the lens material of the first lens and the eighth lens is E48R cycloolefin copolymer.
进一步的,第一透镜和第二透镜之间的空气间隔为0.28mm,第二透镜和第三透镜之间的空气间隔为5.666mm,第三透镜和第四透镜之间的空气间隔为1.636mm,第四透镜与孔径光阑之间的空气间隔为10.175mm,孔径光阑光栏和第五透镜之间空气间隔为0.1mm,第五透镜与第六透镜和第七透镜组成双胶合透镜J1的胶合镜片之间空气间隔为5.044mm,第五透镜与第六透镜和第七透镜组成双胶合透镜J1的胶合镜片与第八透镜之间空气间隔为0.104mm,第八透镜和第九透镜之间空气间隔为0.1mm。Further, the air interval between the first lens and the second lens is 0.28mm, the air interval between the second lens and the third lens is 5.666mm, and the air interval between the third lens and the fourth lens is 1.636mm , the air gap between the fourth lens and the aperture stop is 10.175 mm, the air gap between the aperture stop diaphragm and the fifth lens is 0.1 mm, and the fifth lens forms a doublet lens J1 with the sixth lens and the seventh lens The air gap between the cemented lenses of the doublet lens J1 is 5.044mm, and the air gap between the cemented lenses of the fifth lens, the sixth lens, and the seventh lens is 0.104mm, and the gap between the eighth lens and the ninth lens is 0.104mm. The air gap between them is 0.1mm.
有益效果:Beneficial effect:
1.靠近屏幕的第一透镜和第八透镜采用了非球面设计,其中第一透镜为非球面用于校正轴外视场的各单色像差和畸变,第八透镜用于校正轴上各单色像差。1. The first lens and the eighth lens close to the screen adopt an aspheric design, in which the first lens is aspheric to correct the monochromatic aberrations and distortions of the off-axis field of view, and the eighth lens is used to correct the on-axis Monochromatic aberrations.
2.采用了像方远心光路,控制CRA在一定范围内和照明系统相匹配,达到图像对比度好,能量利用率高的效果。2. The image square telecentric light path is adopted to control the CRA to match the lighting system within a certain range, so as to achieve the effect of good image contrast and high energy utilization rate.
3.该镜头具有高解像力,边缘解像达到芯片极限分辨率93本,像素到达200万超高清。3. The lens has high resolution, the edge resolution reaches the chip limit resolution of 93, and the pixel reaches 2 million ultra-high definition.
4.该镜头体积小且后工作距离大,光学TTL小于4.7cm,外径小于24mm,后工作距离大于19mm。4. The lens is small in size and has a large rear working distance, the optical TTL is less than 4.7cm, the outer diameter is less than 24mm, and the rear working distance is greater than 19mm.
5.该镜头实现视场角大于86度广角效果但畸变仅2%,且边缘像质不降低。5. The lens achieves a wide-angle effect with a field of view greater than 86 degrees, but the distortion is only 2%, and the edge image quality does not decrease.
6.该镜头在增大了视场角但依然实现照度均匀的效果,边缘相对照度大于80%。6. The lens increases the field of view but still achieves the effect of uniform illumination, and the relative illumination at the edge is greater than 80%.
附图说明Description of drawings
附图1为用于数字投影仪的镜头结构示意图;Accompanying drawing 1 is the lens structure schematic diagram that is used for digital projector;
附图2为用于数字投影仪的镜头的传递函数曲线图;Accompanying drawing 2 is the transfer function graph that is used for the lens of digital projector;
附图3为用于数字投影仪的镜头的场曲和畸变曲线图;Accompanying drawing 3 is the field curvature and distortion curve diagram of the lens that is used for digital projector;
附图4为用于数字投影仪的镜头的垂轴色差曲线图;Accompanying drawing 4 is the vertical axis chromatic aberration graph of the lens that is used for digital projector;
附图5为用于数字投影仪的镜头的能量集中度曲线图;Accompanying drawing 5 is the energy concentration graph that is used for the lens of digital projector;
附图标记如下:The reference signs are as follows:
L1-第一透镜、L2-第二透镜;L3-第三透镜;L4-第四透镜;L5-第五透镜;L6-第六透镜;L7-第七透镜;L8-第八透镜;L9-第九透镜。L1-first lens, L2-second lens; L3-third lens; L4-fourth lens; L5-fifth lens; L6-sixth lens; L7-seventh lens; L8-eighth lens; L9- Ninth lens.
具体实施方式detailed description
现结合附图1至5对本发明做进一步的阐述:Now in conjunction with accompanying drawing 1 to 5, the present invention is further elaborated:
一种用于数字投影仪的镜头,该投影镜头采用反摄远光学系统方案,第一透镜L1以及第八透镜L8透镜材料均为E48R非球面透镜,第一透镜L1为非球面透镜用于校正轴外视场的各单色像差和畸变,第八透镜L8用于校正轴上各单色像差。A lens for a digital projector, the projection lens adopts a reverse telephoto optical system scheme, the lens materials of the first lens L1 and the eighth lens L8 are both E48R aspherical lenses, and the first lens L1 is an aspheric lens for correction For various monochromatic aberrations and distortions in the off-axis field of view, the eighth lens L8 is used to correct various on-axis monochromatic aberrations.
为了保证广角的实现同时实现长后工作距离,因而光焦度分配如下,第一透镜Ll到第四透镜L4的组合焦距为f1-4,第五透镜L5到第九透镜L9的组合焦距为f5-9,则该光学系统需满足条件:|0.75<f1-4/f5-9|<0.95,如果|f1-4/f5-9|≥0.95,该系统就不能保证足够长的后工作距离,若|f1-4/f5-9|≤0.75,那么负组的光焦度会变得过大,从而导致像差过大。In order to ensure the realization of the wide angle and realize the long working distance at the same time, the focal power distribution is as follows, the combined focal length of the first lens L1 to the fourth lens L4 is f 1-4 , the combined focal length of the fifth lens L5 to the ninth lens L9 is f 5-9 , the optical system needs to satisfy the condition: |0.75<f 1-4 /f 5-9 |<0.95, if |f 1-4 /f 5-9 |≥0.95, the system cannot guarantee sufficient For a long back working distance, if |f 1-4 /f 5-9 |≤0.75, the power of the negative group will become too large, resulting in excessive aberration.
通过发散透镜对各个视场的光束发散后,使得光线的投射高度增加,孔径高级像差将会增大,于是选取第四透镜L4了一块高折射率材料的正透镜对光束进行会聚,一方面可以适当减小孔径高级像差所带来的影响,同时也更能保证像面均匀性的提高。After diverging the beams of each field of view through the diverging lens, the projection height of the light increases, and the high-level aberration of the aperture will increase. Therefore, the fourth lens L4 is selected as a positive lens with a high refractive index material to converge the beams. On the one hand It can properly reduce the influence of the advanced aberration of the aperture, and at the same time, it can better ensure the improvement of the uniformity of the image plane.
为了不使得进入后组的光束的入射角过大,使用双凸形状的第四透镜L4置于孔径光阑附近,使得进入后组的轴外光束的入射角适当减小,从而减小了高级像差的影响;系统后组中的第六透镜L6、第七透镜L7组合构成的胶合透镜J1在该系统中由于工作于汇聚光束中,根据这样的物象关系,需要将火石玻璃第七透镜L7放在屏幕一侧的方向,屏幕一侧方向就是像的方向,与物是对立的方向,以至于在校正系统的综合像差时不至于胶合面的半径过小,从而保证透镜的加工工艺性进一步提高。In order not to make the incident angle of the beam entering the rear group too large, the fourth lens L4 with a biconvex shape is placed near the aperture stop, so that the incident angle of the off-axis beam entering the rear group is appropriately reduced, thereby reducing the high-level The influence of aberration; the cemented lens J1 composed of the sixth lens L6 and the seventh lens L7 in the rear group of the system works in the converging light beam in this system. According to such object-image relationship, the seventh lens L7 of flint glass needs to be Placed on the side of the screen, the direction of the side of the screen is the direction of the image, which is the opposite direction to the object, so that the radius of the glued surface will not be too small when correcting the comprehensive aberration of the system, thereby ensuring the processability of the lens Further improve.
结合附图1,本发明的投影机投影镜头,其中物镜为由排列在同一光轴上的第一透镜L1,第二透镜L2和第三透镜L3、第四透镜L4、第五透镜L5,第六透镜L6、第七透镜L7,第八透镜L8,第九透镜L9。其中第一透镜L1与第八L8为非球面,该投影镜头采用像面远心结构,表1和表2分别为像方远心定焦投影镜头的为第一透镜L1与第八L8非球镜片参数;第一透镜L1和第二透镜L2之间的空气间隔为0.28mm,第二透镜L2和第三透镜L3之间的空气间隔为5.666mm,第三透镜L3和第四透镜L4之间的空气间隔为1.636mm,第四透镜L4与孔径光阑之间的空气间隔为10.175mm,孔径光阑光栏和第五透镜L5之间空气间隔为0.1mm,第五透镜L5与第六透镜L6和第七透镜L7组成双胶合透镜J1的胶合镜片之间空气间隔为5.044mm,第五透镜L5与第六透镜L6和第七透镜L7组成双胶合透镜J1的胶合镜片与第八透镜L8之间空气间隔为0.104mm,第八透镜L8和第九透镜L9之间空气间隔为0.1mm。In conjunction with accompanying drawing 1, projector projection lens of the present invention, wherein objective lens is by the first lens L1 that is arranged on the same optical axis, the second lens L2 and the 3rd lens L3, the 4th lens L4, the 5th lens L5, the 5th lens Six lenses L6, seventh lens L7, eighth lens L8, and ninth lens L9. The first lens L1 and the eighth L8 are aspherical, and the projection lens adopts the telecentric structure of the image plane. Table 1 and Table 2 respectively show that the first lens L1 and the eighth L8 are aspherical for the image square telecentric fixed-focus projection lens. Lens parameters; the air space between the first lens L1 and the second lens L2 is 0.28mm, the air space between the second lens L2 and the third lens L3 is 5.666mm, and the air space between the third lens L3 and the fourth lens L4 The air interval between the fourth lens L4 and the aperture stop is 1.636mm, the air interval between the aperture stop diaphragm and the fifth lens L5 is 0.1mm, the air interval between the fifth lens L5 and the sixth lens The air gap between the cemented lenses of the doublet lens J1 composed of L6 and the seventh lens L7 is 5.044 mm, and the fifth lens L5, the sixth lens L6 and the seventh lens L7 form the gap between the cemented lenses of the doublet lens J1 and the eighth lens L8 The air space between the eighth lens L8 and the ninth lens L9 is 0.1 mm.
非球面公式如下: The aspheric formula is as follows:
表1为第一透镜的镜头参数Table 1 is the lens parameters of the first lens
表2为第八透镜的镜头参数Table 2 is the lens parameters of the eighth lens
将表1和表2的前后表面的各个参数和非球面参数满足该公式。The parameters of the front and rear surfaces and the aspheric parameters in Tables 1 and 2 satisfy this formula.
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。The described embodiment is a preferred implementation of the present invention, but the present invention is not limited to the above-mentioned implementation, without departing from the essence of the present invention, any obvious improvement, replacement or modification that those skilled in the art can make Modifications all belong to the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610202317.2A CN105652421B (en) | 2016-04-01 | 2016-04-01 | A kind of camera lens for digital projector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610202317.2A CN105652421B (en) | 2016-04-01 | 2016-04-01 | A kind of camera lens for digital projector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105652421A true CN105652421A (en) | 2016-06-08 |
CN105652421B CN105652421B (en) | 2018-02-27 |
Family
ID=56497018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610202317.2A Expired - Fee Related CN105652421B (en) | 2016-04-01 | 2016-04-01 | A kind of camera lens for digital projector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105652421B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108254905A (en) * | 2017-12-20 | 2018-07-06 | 深圳市帅映科技股份有限公司 | A kind of camera lens of 4K LCOS optical projection systems |
CN109270669A (en) * | 2017-07-17 | 2019-01-25 | 上旸光学股份有限公司 | Telecentric lens system |
CN109491046A (en) * | 2018-11-27 | 2019-03-19 | 南京信息职业技术学院 | Super-large clear aperture lens structure for X-ray machine |
CN110794550A (en) * | 2018-08-01 | 2020-02-14 | 宁波舜宇车载光学技术有限公司 | Optical lens |
CN111142321A (en) * | 2020-02-26 | 2020-05-12 | 歌尔股份有限公司 | Optical system and projection apparatus |
CN111239977A (en) * | 2020-03-16 | 2020-06-05 | 苏州中科全象智能科技有限公司 | Low-distortion industrial projection lens |
CN111443462A (en) * | 2020-05-18 | 2020-07-24 | 苏州东方克洛托光电技术有限公司 | Projector additional lens |
CN113552692A (en) * | 2020-04-23 | 2021-10-26 | 上海微电子装备(集团)股份有限公司 | Imaging optical system and detection device |
CN115480367A (en) * | 2022-08-16 | 2022-12-16 | 福建福光股份有限公司 | One hundred million pixel large depth of field optical system and imaging method |
CN116125643A (en) * | 2023-02-10 | 2023-05-16 | 中国科学院光电技术研究所 | A super wide-angle bionic machine vision telecentric lens |
CN117270306A (en) * | 2023-08-28 | 2023-12-22 | 深圳爱图仕创新科技股份有限公司 | Projection illumination lens and illumination equipment |
CN118759696A (en) * | 2024-08-12 | 2024-10-11 | 中国科学院上海技术物理研究所 | Visible and near infrared spectrum imaging lens |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103048776A (en) * | 2011-10-17 | 2013-04-17 | 精工爱普生株式会社 | Projection zoom lens |
US20130141804A1 (en) * | 2011-12-06 | 2013-06-06 | Hon Hai Precision Industry Co., Ltd. | Projection lens system with long back focal length |
CN203337908U (en) * | 2013-07-26 | 2013-12-11 | 秦皇岛视听机械研究所 | Eight-stack nine-patch digital short-focus projection lens infrastructure |
-
2016
- 2016-04-01 CN CN201610202317.2A patent/CN105652421B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103048776A (en) * | 2011-10-17 | 2013-04-17 | 精工爱普生株式会社 | Projection zoom lens |
US20130141804A1 (en) * | 2011-12-06 | 2013-06-06 | Hon Hai Precision Industry Co., Ltd. | Projection lens system with long back focal length |
CN203337908U (en) * | 2013-07-26 | 2013-12-11 | 秦皇岛视听机械研究所 | Eight-stack nine-patch digital short-focus projection lens infrastructure |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109270669B (en) * | 2017-07-17 | 2021-02-26 | 上旸光学股份有限公司 | Telecentric lens system |
CN109270669A (en) * | 2017-07-17 | 2019-01-25 | 上旸光学股份有限公司 | Telecentric lens system |
CN108254905A (en) * | 2017-12-20 | 2018-07-06 | 深圳市帅映科技股份有限公司 | A kind of camera lens of 4K LCOS optical projection systems |
CN110794550A (en) * | 2018-08-01 | 2020-02-14 | 宁波舜宇车载光学技术有限公司 | Optical lens |
CN110794550B (en) * | 2018-08-01 | 2022-03-29 | 宁波舜宇车载光学技术有限公司 | Optical lens |
CN109491046A (en) * | 2018-11-27 | 2019-03-19 | 南京信息职业技术学院 | Super-large clear aperture lens structure for X-ray machine |
CN109491046B (en) * | 2018-11-27 | 2021-03-05 | 南京信息职业技术学院 | Super-large clear aperture lens structure for X-ray machine |
CN111142321A (en) * | 2020-02-26 | 2020-05-12 | 歌尔股份有限公司 | Optical system and projection apparatus |
CN111239977A (en) * | 2020-03-16 | 2020-06-05 | 苏州中科全象智能科技有限公司 | Low-distortion industrial projection lens |
CN113552692A (en) * | 2020-04-23 | 2021-10-26 | 上海微电子装备(集团)股份有限公司 | Imaging optical system and detection device |
CN113552692B (en) * | 2020-04-23 | 2022-09-23 | 上海微电子装备(集团)股份有限公司 | Imaging optical system and detection device |
CN111443462A (en) * | 2020-05-18 | 2020-07-24 | 苏州东方克洛托光电技术有限公司 | Projector additional lens |
CN115480367A (en) * | 2022-08-16 | 2022-12-16 | 福建福光股份有限公司 | One hundred million pixel large depth of field optical system and imaging method |
CN115480367B (en) * | 2022-08-16 | 2024-03-15 | 福建福光股份有限公司 | One hundred million-pixel large-depth-of-field optical system and imaging method |
CN116125643A (en) * | 2023-02-10 | 2023-05-16 | 中国科学院光电技术研究所 | A super wide-angle bionic machine vision telecentric lens |
CN117270306A (en) * | 2023-08-28 | 2023-12-22 | 深圳爱图仕创新科技股份有限公司 | Projection illumination lens and illumination equipment |
CN117270306B (en) * | 2023-08-28 | 2025-03-14 | 深圳爱图仕创新科技股份有限公司 | Projection illumination lens and illumination equipment |
CN118759696A (en) * | 2024-08-12 | 2024-10-11 | 中国科学院上海技术物理研究所 | Visible and near infrared spectrum imaging lens |
Also Published As
Publication number | Publication date |
---|---|
CN105652421B (en) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105652421B (en) | A kind of camera lens for digital projector | |
CN105158884B (en) | A kind of ultrashort out-of-focus projection's lens system | |
US8437093B2 (en) | Projection lens system and projector apparatus | |
JP5670602B2 (en) | Projection lens and projection display device | |
CN106896480B (en) | Telecentric zoom lens of projector | |
JP2015108797A (en) | Wide-angle projection optical system | |
JP5650687B2 (en) | Zoom projection lens | |
CN109491053B (en) | Miniature projection lens | |
CN102645724A (en) | fixed focus lens | |
JP2011013657A (en) | Projection zoom lens and projection type display apparatus | |
TW202111379A (en) | Projection lens and projector | |
WO2023070811A1 (en) | Optical system and projection device | |
CN109407288B (en) | Refraction and reflection type ultra-short-focus projection lens system | |
JP5081049B2 (en) | Projection zoom lens and projection display device | |
CN103869450B (en) | LED digital micro projector projection lens | |
JP5384415B2 (en) | Wide angle lens for projection and projection display device | |
CN109491060B (en) | An ultra-short-focus objective lens for desktop projection | |
JP2011017899A (en) | Projection variable focus lens and projection display device | |
TWI544274B (en) | Projection device | |
CN107329352B (en) | Projection lens and projection system | |
CN102789045B (en) | Zoom projection lens | |
CN102043229A (en) | fixed focus lens | |
TWI412813B (en) | Zoom projection lens | |
JP2005257896A (en) | Zoom lens, image display apparatus and imaging apparatus | |
CN211528812U (en) | Lens, imaging system and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180227 Termination date: 20190401 |
|
CF01 | Termination of patent right due to non-payment of annual fee |