CN105652312A - Optical fiber geophone system based on distributed optical fiber acoustic sensing technology - Google Patents
Optical fiber geophone system based on distributed optical fiber acoustic sensing technology Download PDFInfo
- Publication number
- CN105652312A CN105652312A CN201511001188.2A CN201511001188A CN105652312A CN 105652312 A CN105652312 A CN 105652312A CN 201511001188 A CN201511001188 A CN 201511001188A CN 105652312 A CN105652312 A CN 105652312A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- fiber detector
- sensing technology
- system based
- distribution type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 78
- 239000000835 fiber Substances 0.000 claims abstract description 49
- 230000005540 biological transmission Effects 0.000 claims abstract description 37
- 230000003287 optical effect Effects 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 230000035945 sensitivity Effects 0.000 claims description 7
- 230000006855 networking Effects 0.000 abstract description 5
- 206010070834 Sensitisation Diseases 0.000 abstract description 3
- 230000008313 sensitization Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/18—Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
- G01V1/181—Geophones
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/20—Arrangements of receiving elements, e.g. geophone pattern
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
本发明公开了一种基于分布式光纤声传感技术的光纤检波器系统,包括:分布式光纤声传感解调仪(1),该分布式光纤声传感解调仪用于发射光脉冲,并对反射的瑞利散射光进行相位解调;传输光缆(2),用于传输光脉冲,并产生瑞利散射光。光纤检波器阵列(3),其包括多个光纤检波器单元(30),每个光纤检波器单元按照一定的间隔固定在所述传输光缆上,用于对微弱地震波信号的探测。本发明通过分布式光纤声传感技术实现大规模传感单元组网,通过声压增敏实现对微弱地震波信号探测,该光纤检波器系统具有结构简单、组网能力强、成本低等特点。
The invention discloses an optical fiber detector system based on distributed optical fiber acoustic sensing technology, comprising: a distributed optical fiber acoustic sensing demodulator (1), which is used to emit light pulses , and perform phase demodulation on the reflected Rayleigh scattered light; the transmission optical cable (2) is used to transmit light pulses and generate Rayleigh scattered light. The optical fiber detector array (3) includes a plurality of optical fiber detector units (30), each fiber detector unit is fixed on the transmission optical cable at a certain interval, and is used for detecting weak seismic wave signals. The invention realizes large-scale sensing unit networking through distributed optical fiber acoustic sensing technology, realizes detection of weak seismic wave signals through sound pressure sensitization, and the optical fiber detector system has the characteristics of simple structure, strong networking ability, and low cost.
Description
技术领域technical field
本发明涉及油气矿藏资源勘探技术领域,特别是用于探测地震波的光纤传感领域。The invention relates to the technical field of exploration of oil and gas mineral resources, in particular to the field of optical fiber sensing for detecting seismic waves.
背景技术Background technique
地震检波器是用于地质勘探和工程测量的专用传感器,地震检波器的性能直接决定了地震勘探资料的质量。随着油气资源的紧缺,地震勘探向着高分辨率、高精度、深层勘探的方向发展,对检波器的性能也提出了更高的要求。传统动圈检波器动态范围小、灵敏度低、抗电磁干扰能力差。在可获得更高分辨率的井下垂直地震剖面法中,传统检波器更突显了体积笨重、操作复杂、系统可靠性低的缺点。因此,检波器本身的性能越来越成为地球物理勘探等多种勘探领域中的首要技术要求。与传统的动圈检波器相比,光纤检波器具有体积小、重量轻、抗腐蚀、抗电磁干扰、传输距离长、使用方便的特点,作为一种新型的地震检波技术,在油气矿藏资源勘探领域有着重要应用价值。The geophone is a special sensor used in geological exploration and engineering survey. The performance of the geophone directly determines the quality of the seismic exploration data. With the shortage of oil and gas resources, seismic exploration is developing in the direction of high-resolution, high-precision, and deep exploration, which also puts forward higher requirements for the performance of geophones. Traditional moving coil detectors have small dynamic range, low sensitivity, and poor ability to resist electromagnetic interference. In the downhole vertical seismic profiling method that can obtain higher resolution, the traditional geophone has the disadvantages of bulky volume, complicated operation and low system reliability. Therefore, the performance of the geophone itself has increasingly become the primary technical requirement in various exploration fields such as geophysical exploration. Compared with the traditional moving coil geophone, the fiber optic geophone has the characteristics of small size, light weight, corrosion resistance, anti-electromagnetic interference, long transmission distance and convenient use. As a new type of seismic detection technology, it is widely used in oil and gas mineral resource exploration field has important application value.
近些年来,出现了各种不同类型的光纤检波器系统:一种是基于光纤光栅或者激光器的光纤检波器系统(申请号:CN101915940A),采用光纤光栅或光纤激光器作为敏感单元,经增敏封装(比如涂覆)形成光纤检波器,通过波分复用和空分复用来增加检波器单元数量,因此光纤检波器间需要诸多分束合束单元和连接保护单元,导致该类型光纤检波器系统光路复杂,光器件过多,制作困难,成本高。一种是基于干涉仪的光纤检波器系统(申请号:CN104199086A),采用一对波长相同的光纤光栅形成FP干涉仪,通过级联实现光纤检波器阵列。该类型光纤检波器系统需要光纤光栅作为反射镜,光纤光栅在高温情况下会出现反射率退化,影响系统性能指标,此外随着光纤检波器数量的增加,光纤光栅数量必然增加,进而导致信号光功率的下降,因此该类型光纤检波器系统的检波器数量受限,无法实现大规模的组网。In recent years, various types of fiber detector systems have emerged: one is based on fiber gratings or lasers (application number: CN101915940A), which uses fiber gratings or fiber lasers as sensitive units, and is encapsulated by sensitivity enhancement. (such as coating) to form a fiber optic detector, and increase the number of detector units through wavelength division multiplexing and space division multiplexing, so many beam splitting and combining units and connection protection units are required between fiber optic detectors, resulting in the The optical path of the system is complicated, there are too many optical components, the fabrication is difficult, and the cost is high. One is an interferometer-based optical fiber detector system (application number: CN104199086A), which uses a pair of fiber gratings with the same wavelength to form an FP interferometer, and realizes an optical fiber detector array through cascading. This type of fiber optic detector system requires fiber gratings as reflectors. Fiber gratings will degrade in reflectivity under high temperature conditions, which will affect system performance indicators. In addition, with the increase in the number of fiber optic detectors, the number of fiber gratings will inevitably increase, which will lead to signal light Therefore, the number of detectors in this type of optical fiber detector system is limited, and large-scale networking cannot be realized.
分布式光纤传感技术利用检测传输光纤中背向瑞利散射光的相位信号来实现分布式振动或声传感。当外界振动或声音作用于传输光纤某一位置时,该位置处的光纤将会感受到外界应力或应变的作用,引起光纤拉伸和折射率变化,进而引起导致背向散射光在传输时的相位发生变化,因此通过检测相位变化来实现对外界振动或声音的测量。基于相位生成载波技术的分布式光纤声传感系统(申请号CN201410032610)可以实现传输光纤任意位置处的振动或声信号探测,但由于传输光纤灵敏度较差,难以用于微弱地震波信号的探测。Distributed optical fiber sensing technology utilizes the phase signal of detecting Rayleigh backscattered light in the transmission fiber to realize distributed vibration or acoustic sensing. When external vibration or sound acts on a certain position of the transmission fiber, the fiber at this position will feel the effect of external stress or strain, which will cause the fiber to stretch and change the refractive index, which in turn will cause backscattered light during transmission. The phase changes, so the measurement of external vibration or sound is realized by detecting the phase change. The distributed optical fiber acoustic sensing system based on phase generation carrier technology (application number CN201410032610) can detect vibration or acoustic signals at any position of the transmission fiber, but it is difficult to detect weak seismic wave signals due to the poor sensitivity of the transmission fiber.
发明内容Contents of the invention
本发明的主要目的在于提供一种基于分布式光纤声传感技术的光纤检波器系统,具备大规模阵元数量的优势,同时具有微弱地震波信号探测能力,且结构简单,成本低。The main purpose of the present invention is to provide an optical fiber detector system based on distributed optical fiber acoustic sensing technology, which has the advantage of a large number of array elements, and has the ability to detect weak seismic wave signals, and has a simple structure and low cost.
为达到上述目的,本发明提出了一种基于分布式光纤声传感技术的光纤检波器系统,包括:In order to achieve the above object, the present invention proposes a fiber optic detector system based on distributed fiber optic acoustic sensing technology, including:
分布式光纤声传感解调仪,该分布式光纤声传感解调仪用于发射光脉冲,并对反射的瑞利散射光进行相位解调;Distributed fiber optic acoustic sensor demodulator, the distributed fiber optic acoustic sensor demodulator is used to emit light pulses and perform phase demodulation on the reflected Rayleigh scattered light;
传输光缆,用于传输光脉冲,并产生瑞利散射光。Transmission cables for transmitting light pulses and generating Rayleigh scattered light.
光纤检波器阵列,其包括多个光纤检波器单元,每个光纤检波器单元按照一定的间隔固定在所述传输光缆上,用于对微弱地震波信号的探测。The optical fiber detector array includes a plurality of optical fiber detector units, each fiber detector unit is fixed on the transmission optical cable at a certain interval, and is used for detecting weak seismic wave signals.
本发明的优点在于,通过分布式光纤声传感技术实现大规模传感单元组网,通过声压增敏实现对微弱地震波信号探测,该光纤检波器系统具有结构简单、组网能力强、成本低等特点。The advantages of the present invention are that large-scale sensing unit networking is realized through distributed optical fiber acoustic sensing technology, weak seismic wave signal detection is realized through sound pressure sensitization, and the optical fiber detector system has simple structure, strong networking capability, low cost low-level features.
附图说明Description of drawings
为进一步说明本发明的具体技术内容,以下结合实例和附图对本发明作一详细的描述,其中:For further illustrating concrete technical content of the present invention, below in conjunction with example and accompanying drawing, the present invention is described in detail, wherein:
图1是本发明提供的一种基于分布式光纤声传感技术的光纤检波器系统的示意图。Fig. 1 is a schematic diagram of an optical fiber detector system based on distributed optical fiber acoustic sensing technology provided by the present invention.
图2是本发明中悬臂梁式光纤检波器单元的结构示意图。Fig. 2 is a structural schematic diagram of a cantilever beam optical fiber detector unit in the present invention.
图3是本发明中芯轴式光纤检波器单元的结构示意图。Fig. 3 is a schematic structural view of a mandrel-type optical fiber detector unit in the present invention.
图1中,1为分布式光纤声传感解调仪、2为传输光缆、3为光纤检波器阵列、30为光纤检波器单元。In Fig. 1, 1 is a distributed optical fiber acoustic sensor demodulator, 2 is a transmission optical cable, 3 is a fiber optic detector array, and 30 is a fiber optic detector unit.
图2中,301为传输光缆中的传输光纤、302为悬臂梁结构件、303为质量块。图3中,301为传输光缆中的传输光纤、304为弹性圆柱体、305为质量块、306为刚性支架。In FIG. 2 , 301 is a transmission optical fiber in a transmission optical cable, 302 is a cantilever beam structure, and 303 is a mass block. In FIG. 3 , 301 is a transmission fiber in the transmission cable, 304 is an elastic cylinder, 305 is a mass block, and 306 is a rigid support.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
请参考图1,本发明提供一种基于分布式光纤声传感技术的光纤检波器系统,包括:Please refer to Fig. 1, the present invention provides a kind of optical fiber detector system based on distributed optical fiber acoustic sensing technology, including:
一分布式光纤声传感解调仪1,该分布式光纤声传感解调仪用于发射光脉冲,并对反射的瑞利散射光进行相位解调。A distributed optical fiber acoustic sensor demodulator 1, the distributed optical fiber acoustic sensor demodulator is used to emit light pulses and perform phase demodulation on reflected Rayleigh scattered light.
一传输光缆2,用于传输光脉冲,并产生反向瑞利散射光。A transmission optical cable 2 is used to transmit light pulses and generate reverse Rayleigh scattered light.
一光纤检波器阵列3,该光纤检波器阵列由若干光纤检波器单元30组成,实现对微弱地震波信号的探测。A fiber optic detector array 3, the fiber optic detector array is composed of several fiber optic detector units 30 to realize the detection of weak seismic wave signals.
光纤检波器单元用于对传输光纤进行振动增敏,可采用悬臂梁式或者芯轴式结构。The optical fiber detector unit is used to sensitize the vibration of the transmission optical fiber, and can adopt a cantilever beam type or a mandrel type structure.
在本实施例中,分布式光纤声传感解调仪用于发射光脉冲,并对光纤瑞利散射光进行相位解调。分布式光纤声传感解调仪能够还原传输光缆和光纤检波器阵列任意位置处的振动或者声信号,其空间分辨率一般在1m至10m之间,对于10km的传感距离,可以得到1000至10000个传感单元。传输光缆一般采用铠装光缆,光缆内部的传输光纤能够探测外界振动或者声信号,但探测能力有限,无法满足微弱信号探测。针对微弱地震波信号,需要对传输光缆内部的传输光纤进行振动增敏形成光纤检波器单元,光纤检波器单元通过空间串联形成光纤检波器阵列,检波器单元之间无任何光器件且无需熔接。为保证光纤检波器单元间不存在串扰,光纤检波器单元间隔应大于等于光纤声传感解调仪的空间分辨率。In this embodiment, the distributed optical fiber acoustic sensor demodulator is used to emit light pulses and perform phase demodulation on the Rayleigh scattered light of the optical fiber. The distributed optical fiber acoustic sensor demodulator can restore the vibration or acoustic signal at any position of the transmission optical cable and optical fiber detector array, and its spatial resolution is generally between 1m and 10m. 10000 sensing units. The transmission optical cable generally adopts armored optical cable. The transmission optical fiber inside the optical cable can detect external vibration or acoustic signal, but the detection ability is limited, which cannot meet the detection of weak signals. For weak seismic wave signals, it is necessary to sensitize the transmission fiber inside the transmission cable to form a fiber detector unit. The fiber detector units are connected in space to form a fiber detector array. There is no optical device between the detector units and no fusion is required. In order to ensure that there is no crosstalk between the fiber optic detector units, the distance between the fiber optic detector units should be greater than or equal to the spatial resolution of the fiber optic acoustic sensor demodulator.
基于分布式声传感技术的光纤检波器单元是通过对将传感光缆中的一段传输光纤直接进行振动增敏而形成的独立传感单元,无需任何光纤光栅、光纤激光器、光纤耦合器等光学元件,因此结构简单、制作容易且成本低。根据增敏方式不同对应类型的光纤检波器单元,图2为悬臂梁式光纤检波器单元的结构示意图,图3为芯轴式光纤检波器单元的结构示意图。The optical fiber detector unit based on distributed acoustic sensing technology is an independent sensing unit formed by directly sensitizing a section of transmission optical fiber in the sensing optical cable, without any optical fiber grating, fiber laser, fiber coupler, etc. components, so the structure is simple, easy to manufacture and low cost. According to different types of optical fiber detector units corresponding to different sensitization methods, Fig. 2 is a schematic structural diagram of a cantilever beam optical fiber detector unit, and Fig. 3 is a structural schematic diagram of a mandrel type optical fiber detector unit.
如图2所示,悬臂梁式光纤检波器单元包括悬臂梁结构件302和质量块,悬臂梁结构302的底边固定在待测对象上,质量块303固定在悬臂梁结构302悬置的上边;所述悬臂梁式光纤检波器单元其用于将一段传输光纤301粘贴在悬臂梁结构件302上表面(定义为XY平面),悬臂梁的质量块303用于感受垂直于悬臂梁结构件表面方向(Z方向)的外界振动信号,当有Z方向的振动时,质量块带动引起悬臂梁结构件产生形变,进而带动粘贴在悬臂梁结构件表面的光纤发生形变,实现对微弱振动信号(比如地震波)的探测。传输光纤可以采用各种形状粘贴在悬臂梁结构件表面,比如直线型,S型等。通过调整粘贴在悬臂梁结构件表面的传感光纤长度来调节悬臂梁式光纤检波器单元的灵敏度。其中悬臂梁结构是具有一定形状的结构,其一端固定,另一端悬置,如常用的形状是三角形,长方形等。传输光缆主要结构是传感光纤和保护套管组成,把传感光缆的保护套管剥除露出传感光纤,然后将传感光纤粘贴在悬臂梁结构件上。As shown in Figure 2, the cantilever beam type optical fiber detector unit includes a cantilever beam structure 302 and a quality block, the bottom edge of the cantilever beam structure 302 is fixed on the object to be measured, and the mass block 303 is fixed on the suspended top of the cantilever beam structure 302 The cantilever beam type optical fiber detector unit is used to paste a section of transmission optical fiber 301 on the upper surface of the cantilever beam structure 302 (defined as the XY plane), and the mass block 303 of the cantilever beam is used to feel the surface perpendicular to the cantilever beam structure. The external vibration signal in the Z direction (Z direction), when there is vibration in the Z direction, the mass block will cause the deformation of the cantilever beam structure, and then drive the deformation of the optical fiber pasted on the surface of the cantilever beam structure, so as to realize the detection of weak vibration signals (such as detection of seismic waves). The transmission optical fiber can be pasted on the surface of the cantilever beam structure in various shapes, such as straight, S-shaped, etc. The sensitivity of the cantilever beam optical fiber detector unit is adjusted by adjusting the length of the sensing optical fiber pasted on the surface of the cantilever beam structure. The cantilever beam structure is a structure with a certain shape, one end of which is fixed and the other end is suspended. For example, the commonly used shapes are triangles, rectangles, etc. The main structure of the transmission optical cable is composed of sensing optical fiber and protective sleeve. The protective sleeve of the sensing optical cable is stripped to expose the sensing optical fiber, and then the sensing optical fiber is pasted on the cantilever beam structure.
如图3所示,芯轴式光纤检波器单元包括弹性圆柱体304、质量块305和支撑架306;所述支撑架306固定在被测对象上,所述弹性圆柱体304的上下端面固定在支撑架306上,所述质量块305固定在所述弹性圆柱体的侧面。所述芯轴式光纤检波器单元是将一段传输光纤缠绕并固定在由弹性橡胶经浇筑固化形成弹性圆柱体的侧面,沿弹性圆柱体轴向振动作用于检波器单元时,质量块由于具有较大机械惯性,将挤压或拉伸弹性圆柱体产生形变,进而带动固定在弹性圆柱体侧面的光纤发生形变,实现对微弱振动信号(比如地震波)的探测。通过调整缠绕在弹性圆柱体表面光纤的长度来调节芯轴式光纤检波器单元的灵敏度。As shown in Figure 3, the mandrel-type optical fiber detector unit includes an elastic cylinder 304, a mass block 305 and a support frame 306; the support frame 306 is fixed on the measured object, and the upper and lower end surfaces of the elastic cylinder 304 are fixed On the support frame 306, the mass block 305 is fixed on the side of the elastic cylinder. The mandrel-type optical fiber detector unit winds and fixes a section of transmission optical fiber on the side of an elastic cylinder formed by casting and curing elastic rubber. When the axial vibration of the elastic cylinder acts on the detector unit, the mass block has a relatively Large mechanical inertia will squeeze or stretch the elastic cylinder to produce deformation, and then drive the optical fiber fixed on the side of the elastic cylinder to deform, realizing the detection of weak vibration signals (such as seismic waves). The sensitivity of the mandrel fiber optic detector unit is adjusted by adjusting the length of the fiber wound on the surface of the elastic cylinder.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511001188.2A CN105652312A (en) | 2015-12-28 | 2015-12-28 | Optical fiber geophone system based on distributed optical fiber acoustic sensing technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511001188.2A CN105652312A (en) | 2015-12-28 | 2015-12-28 | Optical fiber geophone system based on distributed optical fiber acoustic sensing technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105652312A true CN105652312A (en) | 2016-06-08 |
Family
ID=56476997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511001188.2A Pending CN105652312A (en) | 2015-12-28 | 2015-12-28 | Optical fiber geophone system based on distributed optical fiber acoustic sensing technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105652312A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106500823A (en) * | 2016-12-05 | 2017-03-15 | 华南理工大学 | Based on the device that thin footpath multimode fibre realizes the distributed sound wave sensing of high sensitivity |
CN107831528A (en) * | 2017-09-28 | 2018-03-23 | 光子瑞利科技(北京)有限公司 | Fiber optic seismic monitoring system based on back rayleigh scattering principle |
CN108253999A (en) * | 2016-12-29 | 2018-07-06 | 中国科学院半导体研究所 | A kind of noise-reduction method for distribution type fiber-optic sound sensor-based system |
CN110703316A (en) * | 2019-10-23 | 2020-01-17 | 电子科技大学 | Optical fiber ground seismic wave detection method and system |
CN111947765A (en) * | 2020-07-13 | 2020-11-17 | 深圳华中科技大学研究院 | Fully-distributed underwater acoustic sensing system based on micro-structure optical fiber hydrophone towing cable |
CN112698385A (en) * | 2020-12-08 | 2021-04-23 | 山东省科学院激光研究所 | Enhanced composite distributed multi-component optical fiber detector |
CN113495290A (en) * | 2021-08-19 | 2021-10-12 | 北京普瑞联合国际投资有限公司 | Deep stratum low-frequency weak seismic wave signal detection system and method thereof |
CN113589358A (en) * | 2021-07-29 | 2021-11-02 | 中油奥博(成都)科技有限公司 | Underground photoelectric composite cable with power device and borehole seismic data acquisition method |
CN114578412A (en) * | 2022-05-05 | 2022-06-03 | 华中科技大学 | Optical fiber micro-vibration detection measuring system |
CN116480338A (en) * | 2023-03-17 | 2023-07-25 | 天捺科技(珠海)有限公司 | Distributed Fiber Acoustic Transceiver |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101598802A (en) * | 2009-06-17 | 2009-12-09 | 中国科学院半导体研究所 | Fiber laser detectors that can be used on land and underwater |
CN101915940A (en) * | 2010-07-14 | 2010-12-15 | 中国科学院半导体研究所 | Optical fiber downhole vertical seismic profiling system |
CN202133785U (en) * | 2011-07-12 | 2012-02-01 | 中国科学院半导体研究所 | A fiber detector |
WO2014064460A2 (en) * | 2012-10-26 | 2014-05-01 | Optasense Holdings Limited | Fibre optic cable for acoustic/seismic sensing |
US20150076334A1 (en) * | 2010-08-09 | 2015-03-19 | Schlumberger Technology Corporation | Seismic acquisition system including a distributed sensor having an optical fiber |
CN104467984A (en) * | 2014-12-10 | 2015-03-25 | 电子科技大学 | Distributed type optical fiber acoustic wave communication method and device |
-
2015
- 2015-12-28 CN CN201511001188.2A patent/CN105652312A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101598802A (en) * | 2009-06-17 | 2009-12-09 | 中国科学院半导体研究所 | Fiber laser detectors that can be used on land and underwater |
CN101915940A (en) * | 2010-07-14 | 2010-12-15 | 中国科学院半导体研究所 | Optical fiber downhole vertical seismic profiling system |
US20150076334A1 (en) * | 2010-08-09 | 2015-03-19 | Schlumberger Technology Corporation | Seismic acquisition system including a distributed sensor having an optical fiber |
CN202133785U (en) * | 2011-07-12 | 2012-02-01 | 中国科学院半导体研究所 | A fiber detector |
WO2014064460A2 (en) * | 2012-10-26 | 2014-05-01 | Optasense Holdings Limited | Fibre optic cable for acoustic/seismic sensing |
CN104467984A (en) * | 2014-12-10 | 2015-03-25 | 电子科技大学 | Distributed type optical fiber acoustic wave communication method and device |
Non-Patent Citations (2)
Title |
---|
刘文义 等: "光纤传感技术——未来地震监测的发展方向", 《地震》 * |
刘育梁 等: "光纤地震波探测的研究进展", 《激光与光电子学进展》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106500823B (en) * | 2016-12-05 | 2023-04-21 | 华南理工大学 | Device for realizing high-sensitivity distributed acoustic wave sensing based on small-diameter multimode optical fiber |
CN106500823A (en) * | 2016-12-05 | 2017-03-15 | 华南理工大学 | Based on the device that thin footpath multimode fibre realizes the distributed sound wave sensing of high sensitivity |
CN108253999A (en) * | 2016-12-29 | 2018-07-06 | 中国科学院半导体研究所 | A kind of noise-reduction method for distribution type fiber-optic sound sensor-based system |
CN108253999B (en) * | 2016-12-29 | 2020-06-19 | 中国科学院半导体研究所 | A Noise Reduction Method for Distributed Optical Fiber Acoustic Sensing System |
CN107831528A (en) * | 2017-09-28 | 2018-03-23 | 光子瑞利科技(北京)有限公司 | Fiber optic seismic monitoring system based on back rayleigh scattering principle |
CN110703316A (en) * | 2019-10-23 | 2020-01-17 | 电子科技大学 | Optical fiber ground seismic wave detection method and system |
CN111947765A (en) * | 2020-07-13 | 2020-11-17 | 深圳华中科技大学研究院 | Fully-distributed underwater acoustic sensing system based on micro-structure optical fiber hydrophone towing cable |
CN112698385A (en) * | 2020-12-08 | 2021-04-23 | 山东省科学院激光研究所 | Enhanced composite distributed multi-component optical fiber detector |
CN112698385B (en) * | 2020-12-08 | 2023-04-07 | 山东省科学院激光研究所 | Enhanced composite distributed multi-component optical fiber detector |
CN113589358A (en) * | 2021-07-29 | 2021-11-02 | 中油奥博(成都)科技有限公司 | Underground photoelectric composite cable with power device and borehole seismic data acquisition method |
CN113495290A (en) * | 2021-08-19 | 2021-10-12 | 北京普瑞联合国际投资有限公司 | Deep stratum low-frequency weak seismic wave signal detection system and method thereof |
CN114578412A (en) * | 2022-05-05 | 2022-06-03 | 华中科技大学 | Optical fiber micro-vibration detection measuring system |
CN116480338A (en) * | 2023-03-17 | 2023-07-25 | 天捺科技(珠海)有限公司 | Distributed Fiber Acoustic Transceiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105652312A (en) | Optical fiber geophone system based on distributed optical fiber acoustic sensing technology | |
CN201155991Y (en) | A New Fiber Bragg Grating Acceleration Sensor | |
AU2010336498B2 (en) | Detecting broadside and directional acoustic signals with a fiber optical distributed acoustic sensing (DAS) assembly | |
WO2021196815A1 (en) | Strengthened-type hydrophone measurement apparatus and method based on low bending loss chirped grating array optical fiber | |
CN104390694B (en) | Cladded-fiber grating vibration senses instrument | |
CN103208161B (en) | Active detection type fiber grating cable tunnel safety defense monitoring system | |
CN105628169A (en) | Fiber-optic hydrophone system based on distributed optical fiber sound sensing technology | |
CN102944613A (en) | Detecting and positioning system for optical fiber acoustic emission | |
CN111579050B (en) | Interference type optical fiber vector hydrophone with reference interferometer | |
CN110261892B (en) | Single-component, three-component fiber grating vibration sensor and sensing array | |
CN106813766B (en) | Sound magnetic is the same as the distributed optical fiber sensing system surveyed | |
CN112698385B (en) | Enhanced composite distributed multi-component optical fiber detector | |
CN102636250A (en) | Optical fiber vector vibration sensor | |
CN110703316A (en) | Optical fiber ground seismic wave detection method and system | |
CN104483008A (en) | Fiber grating three-dimensional vibration sensor | |
CN107907202B (en) | A fiber optic vector hydrophone and its sensing method for realizing common-mode noise self-suppression | |
CN101799555A (en) | Optical fiber ocean bottom seismograph | |
CN102262241A (en) | Fiber-optic geophone | |
CN101806919A (en) | Probe structure of optical fiber Bragg grating seismic detector | |
CN203083975U (en) | Optical acoustic emission detection and positioning system | |
Liu et al. | Sensitivity enhancement of interferometric fiber-optic accelerometers using multi-core fiber | |
CN110045457A (en) | A kind of sound wave enhanced sensitivity optical fiber based on covering softening and more cladding structures | |
CN210802682U (en) | A Fiber Optic Interference Hydrophone Detection System | |
CN110244348B (en) | Photoelectric combined type geophone and detecting system | |
CN101806918A (en) | Probe structure of vertical fiber Bragg grating seismometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160608 |