CN105651910A - Enrichment-thermal desorption-chromatography separating unit - Google Patents
Enrichment-thermal desorption-chromatography separating unit Download PDFInfo
- Publication number
- CN105651910A CN105651910A CN201410729809.8A CN201410729809A CN105651910A CN 105651910 A CN105651910 A CN 105651910A CN 201410729809 A CN201410729809 A CN 201410729809A CN 105651910 A CN105651910 A CN 105651910A
- Authority
- CN
- China
- Prior art keywords
- cooling
- enrichment
- sampling device
- adsorption tube
- chromatographic column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004587 chromatography analysis Methods 0.000 title claims description 11
- 238000001179 sorption measurement Methods 0.000 claims abstract description 65
- 238000005070 sampling Methods 0.000 claims abstract description 61
- 238000010438 heat treatment Methods 0.000 claims abstract description 46
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000000926 separation method Methods 0.000 claims abstract description 22
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 13
- 238000013375 chromatographic separation Methods 0.000 claims abstract description 9
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims description 107
- 238000003795 desorption Methods 0.000 claims description 18
- 239000007921 spray Substances 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005485 electric heating Methods 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 25
- 238000002076 thermal analysis method Methods 0.000 abstract description 16
- 239000003463 adsorbent Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 3
- 238000004817 gas chromatography Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 33
- 238000009835 boiling Methods 0.000 description 8
- 239000012855 volatile organic compound Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011067 equilibration Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 102100037114 Elongin-C Human genes 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101001011859 Homo sapiens Elongin-A Proteins 0.000 description 1
- 101001011846 Homo sapiens Elongin-B Proteins 0.000 description 1
- 101000881731 Homo sapiens Elongin-C Proteins 0.000 description 1
- 101000836005 Homo sapiens S-phase kinase-associated protein 1 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
本发明提供了一种富集-热解析-色谱分离装置,由快速富集热解析装置、进样装置和快速分离装置组成。其中,快速富集热解析装置利用装有吸附剂的吸附管在低温二氧化碳气体的作用下,低温富集气体样品中的目标组分,通过缠绕在吸附管外的加热丝快速升温热解析,富集解析后的目标组分通过进样装置进入分离装置。分离装置采用低温二氧化碳气体冷却色谱柱,配合快速加热模块,实现较低的色谱柱初温和高的升温速率,从而获得高的分离效果,极快的分析速率和高的峰容量。本装置能够实现气体样品中痕量组分的在线富集,快速解析,超快速气相色谱分析。
The invention provides an enrichment-thermal analysis-chromatographic separation device, which is composed of a rapid enrichment thermal analysis device, a sampling device and a rapid separation device. Among them, the rapid enrichment thermal analysis device uses the adsorption tube equipped with adsorbent to enrich the target components in the gas sample at low temperature under the action of low-temperature carbon dioxide gas. The target components after collection and analysis enter the separation device through the sampling device. The separation device uses low-temperature carbon dioxide gas to cool the chromatographic column, and cooperates with the rapid heating module to achieve a low initial temperature of the chromatographic column and a high heating rate, thereby obtaining high separation effect, extremely fast analysis rate and high peak capacity. The device can realize online enrichment of trace components in gas samples, rapid analysis, and ultra-fast gas chromatography analysis.
Description
技术领域technical field
本发明属于分析仪器领域,具体地涉及一种气体样品快速富集-热解析-色谱分离装置。The invention belongs to the field of analytical instruments, in particular to a gas sample rapid enrichment-thermal analysis-chromatographic separation device.
背景技术Background technique
气体样品中的痕量物质分析,是分析化学和环境分析中一个重要的组成部分。其主要应用领域包括:1)空气中挥发性有机物(VolatileOrganicCompounds,简称为VOCs)的监测;空气中VOCs对人体健康具有危害性,并衍生出光化学污染及臭味问题,因此对其进行在线、快速、高灵敏检测具有重大意义。2)呼出气中痕量挥发性有机化合物的检测,对于疾病早期发现、早期诊断及筛查的具有重大的指导意义。3)工作环境中危险化合物的在线检测,它是安全生产的重要保障。The analysis of trace substances in gas samples is an important part of analytical chemistry and environmental analysis. Its main application areas include: 1) Monitoring of volatile organic compounds (Volatile Organic Compounds, referred to as VOCs) in the air; VOCs in the air are harmful to human health, and lead to photochemical pollution and odor problems, so online and fast , Highly sensitive detection is of great significance. 2) The detection of trace volatile organic compounds in exhaled breath has great guiding significance for early detection, early diagnosis and screening of diseases. 3) On-line detection of hazardous compounds in the working environment, which is an important guarantee for safe production.
由于成分复杂,气体样品中痕量物质的含量一般很低,直接检测困难,需要进行样品前处理。现有技术多采用冷阱吸附浓缩/热脱附法,在采样吸附管内填充一定体积的吸附剂,利用固体吸附剂在液氮或者-70℃低温下对轻组分样品吸附的特性,达到浓缩富集的目的,然后热解析器快速升温,利用高温下吸附剂对待测组分保留性能降低的特性,使待测组分脱附,并直接利用载气将挥发物运送至色谱仪进行分析测定。Due to the complex composition, the content of trace substances in gas samples is generally very low, and it is difficult to detect directly, so sample pretreatment is required. The existing technology mostly adopts the cold trap adsorption concentration/thermal desorption method, filling the sampling adsorption tube with a certain volume of adsorbent, and utilizing the characteristics of the solid adsorbent to adsorb light component samples at a low temperature of liquid nitrogen or -70°C to achieve concentration For the purpose of enrichment, the thermal desorber heats up quickly, and the desorption of the component to be tested is made by using the characteristic of the adsorbent that the retention performance of the component to be tested is reduced at high temperature, and the volatiles are directly transported to the chromatograph by the carrier gas for analysis and determination .
现有的吸附浓缩/热脱附装置多采用常温安装吸附管,然后加热-吹扫进样。由于样品热脱附是通过将吸附管放置在热脱附仪的脱附腔内进行加热完成,带来以下问题:Most of the existing adsorption concentration/thermal desorption devices use normal temperature to install adsorption tubes, and then heat-purge to inject samples. Since the thermal desorption of the sample is completed by placing the adsorption tube in the desorption chamber of the thermal desorption instrument for heating, the following problems arise:
1.常温富集对低沸点组分的富集效率较低。1. The enrichment efficiency of low boiling point components is low at room temperature.
2.加热器升温速度慢,长时间的脱附过程和热脱附组份的传输线路造成热脱附组分峰展宽,降低了色谱柱对谱峰的分辨能力,定性和定量困难。因此商品化装置都使用二次冷阱和二次热解析技术,这又会导致分析周期长,而且增加了装置的成本和复杂性。2. The heating rate of the heater is slow, the long-term desorption process and the transmission line of the thermal desorption component cause the peak broadening of the thermal desorption component, which reduces the resolution ability of the chromatographic column to the peak, making qualitative and quantitative difficulties. Therefore, commercialized devices all use secondary cold trap and secondary thermal analysis technology, which will lead to long analysis period and increase the cost and complexity of the device.
3.热解析完成后,高温热解析管自然冷却到初始富集温度的时间太长,导致分析周期长,一般在10min以上。3. After the thermal desorption is completed, the time for the high-temperature thermal desorption tube to cool naturally to the initial enrichment temperature is too long, resulting in a long analysis period, generally more than 10 minutes.
4.常规色谱分析方法的分析周期太长,一般在15min以上,不利于快速分析;而普通的快速气相色谱难以同时保证足够的分析速率、分离度和峰容量,导致分析速度和分离效能难以兼顾。4. The analysis period of the conventional chromatographic analysis method is too long, generally more than 15 minutes, which is not conducive to rapid analysis; while ordinary fast gas chromatography is difficult to ensure sufficient analysis rate, resolution and peak capacity at the same time, resulting in difficulty in balancing analysis speed and separation efficiency .
发明内容Contents of the invention
为了解决上述问题,本发明提供了一种富集-热解析-色谱分离装置,采用低温CO2气体对填充有吸附剂的吸附管进行降温,以获取较低的富集温度,从而提高对低沸点组分的富集效率;使用缠绕在吸附管外的加热丝进行直热式热解析,以达到快速升温获得窄的进样谱带;热解析完成后,再次利用低温CO2气体对吸附管进行降温,使其尽快降至低温富集温度,减小分析周期。同时,利用低温CO2气体对色谱柱进行降温,进一步降低了进样谱带,提高了分离效率,提高对低沸点组分的分离度;分离完成可再次利用低温CO2气体对色谱柱进行快速降温,从而降低了整个分析周期时间。In order to solve the above problems, the present invention provides a kind of enrichment-thermal analysis-chromatographic separation device, which adopts low-temperature CO2 gas to cool down the adsorption tube filled with adsorbent, so as to obtain a lower enrichment temperature, thereby improving the concentration of low-temperature Enrichment efficiency of boiling point components; use the heating wire wound outside the adsorption tube for direct thermal analysis to achieve rapid temperature rise to obtain a narrow sample band; after thermal analysis is completed, use low-temperature CO 2 gas again Cool down to lower the low-temperature enrichment temperature as soon as possible to reduce the analysis period. At the same time, low-temperature CO 2 gas is used to cool the chromatographic column, which further reduces the sampling band, improves the separation efficiency, and improves the resolution of low boiling point components ; cooling, thereby reducing the overall analysis cycle time.
为了实现上述目的,本发明所采用的技术方案为:In order to achieve the above object, the technical solution adopted in the present invention is:
一种富集-热解析-色谱分离装置,由富集热解析装置、进样装置、分离装置和冷却源组成,其特征在于:An enrichment-thermal desorption-chromatographic separation device is composed of an enrichment thermal desorption device, a sampling device, a separation device and a cooling source, and is characterized in that:
所述富集热解析装置由吸附管、加热丝、第一冷却罩和第一冷却喷头组成;吸附管中填装有吸附剂;加热丝缠绕在吸附管外表面;吸附管的两端分别与样品源和进样装置相连;第一冷却罩将缠绕加热丝的吸附管包覆在其内部;第一冷却罩上设有第一冷却喷头和第一气体出口;第一冷却喷头与冷却源之间有管路连接,使冷却源中的冷却物质能经过第一冷却喷头进入第一冷却罩内部,从第一冷却罩上的第一气体出口排出。The enrichment thermal desorption device is composed of an adsorption tube, a heating wire, a first cooling cover and a first cooling nozzle; the adsorption tube is filled with an adsorbent; the heating wire is wound on the outer surface of the adsorption tube; the two ends of the adsorption tube are respectively connected with The sample source is connected to the sampling device; the first cooling cover wraps the adsorption tube wrapped with the heating wire inside; the first cooling cover is provided with a first cooling spray head and a first gas outlet; the first cooling spray head and the cooling source There is a pipeline connection between them, so that the cooling substance in the cooling source can enter the inside of the first cooling cover through the first cooling nozzle, and be discharged from the first gas outlet on the first cooling cover.
所述分离装置由色谱柱、色谱柱加热模块、第二冷却喷头及第二冷却罩组成;色谱柱前端与进样装置相连,后端与检测器相连;色谱柱加热模块与色谱柱紧密接触;第二冷却罩将色谱柱和色谱柱加热模块包覆在其内部;第二冷却罩上有第二冷却喷头和第二气体出口;第二冷却喷头与冷却源之间有管路连接,使冷却源中的冷却物质能经过第二冷却喷头进入第二冷却罩内部,从第二冷却罩上的第二气体出口排出。The separation device is composed of a chromatographic column, a chromatographic column heating module, a second cooling nozzle and a second cooling cover; the front end of the chromatographic column is connected to the sampling device, and the rear end is connected to the detector; the chromatographic column heating module is in close contact with the chromatographic column; The second cooling cover wraps the chromatographic column and the chromatographic column heating module inside; the second cooling spray head and the second gas outlet are arranged on the second cooling cover; there is a pipeline connection between the second cooling spray head and the cooling source, so that the cooling The cooling material in the source can pass through the second cooling spray head into the second cooling cover and be discharged from the second gas outlet on the second cooling cover.
所述进样装置为一密闭容器,密闭容器设有一进样装置出口与外界相通,进样装置经第一接头与吸附管相连;进样装置经第二接头与色谱柱相连;所述进样装置具有两种工作状态;状态1时,通过吸附管的气体经过第一接头进入进样装置后直接从进样装置出口排出;状态2时,通过吸附管的气体进入进样装置后,经过第二接头被传输至色谱柱。The sampling device is an airtight container, and the airtight container is provided with a sampling device outlet to communicate with the outside world, and the sampling device is connected to the adsorption tube through the first joint; the sampling device is connected to the chromatographic column through the second joint; the sampling device The device has two working states; in state 1, the gas passing through the adsorption tube enters the sampling device through the first joint and is directly discharged from the outlet of the sampling device; in state 2, after the gas passing through the adsorption tube enters the sampling device, it passes through the first The two adapters are transferred to the column.
所述第一冷却喷头和第二冷却喷头具有变径结构,出口处内径变小,即出口处垂直于流体流动方向的截面面积小于入口处垂直于流体流动方向的截面面积。The first cooling nozzle and the second cooling nozzle have variable diameter structures, and the inner diameter of the outlet becomes smaller, that is, the cross-sectional area of the outlet perpendicular to the fluid flow direction is smaller than the cross-sectional area of the inlet perpendicular to the fluid flow direction.
所述第一冷却喷头的出口面向吸附管,第一冷却喷头的出口距离吸附管的距离为1mm~50mm。The outlet of the first cooling spray head faces the adsorption tube, and the distance between the outlet of the first cooling spray head and the adsorption tube is 1 mm to 50 mm.
所述吸附管为石英管、玻璃管或内壁经过惰性处理的金属管,其内径为0.5mm-10mm;所述吸附管连接进样装置的一端有一内径变小的收口;收口处内径优选0.1~5mm,以减小进样谱带宽度。The adsorption tube is a quartz tube, a glass tube or a metal tube with an inert treatment on the inner wall, and its inner diameter is 0.5mm-10mm; the end of the adsorption tube connected to the sampling device has a closing port with a smaller inner diameter; the inner diameter of the closing part is preferably 0.1-10 mm. 5mm to reduce the width of the sample band.
所述进样装置为二位三通或三通以上的阀。The sampling device is a two-position, three-way or more than three-way valve.
所述进样装置的两种工作状态通过控制第一接头与进样装置出口之间的压差,以及进样装置出口与第二接头之间的压差来实现。The two working states of the sampling device are realized by controlling the pressure difference between the first joint and the outlet of the sampling device, and the pressure difference between the outlet of the sampling device and the second joint.
所述进样装置及其与色谱柱、吸附管的连接管路均被加热保温。The sampling device and the connecting pipelines with the chromatographic column and the adsorption tube are all heated and kept warm.
所述第二冷却喷头面向色谱柱。The second cooling spray head faces the chromatographic column.
所述冷却源为高压液态二氧化碳,冷却物质为低温二氧化碳气体。The cooling source is high-pressure liquid carbon dioxide, and the cooling substance is low-temperature carbon dioxide gas.
所述色谱柱加热模块为直热式电加热块或空气浴加热模块。The chromatographic column heating module is a direct heating electric heating block or an air bath heating module.
装置工作时,首先利用第一冷却喷头喷出的低温CO2气体冷却吸附管,达到需要的冷却温度后,气体样品通过吸附管,其中的目标组分被富集。此时,气体样品通过吸附管进入进样装置后,从进样装置的出口排出。富集完成后,通过缠绕在吸附管外的加热丝快速升温热解析,解析后的目标组分通过进样装置后,进入分离装置。热解析完成后,第一冷却喷头再次喷出低温CO2气体,使吸附管快速降温,从而降低了富集时间。同时,第二冷却喷头能将低温CO2气体喷入第二冷却罩对色谱柱进行降温,获得较低的色谱初始温度和高的升温速率,从而获得高的分离效果,极快的分析速率和高的峰容量。When the device is working, the adsorption tube is first cooled by the low-temperature CO2 gas sprayed from the first cooling nozzle. After reaching the required cooling temperature, the gas sample passes through the adsorption tube, and the target components in it are enriched. At this time, after the gas sample enters the sampling device through the adsorption tube, it is discharged from the outlet of the sampling device. After the enrichment is completed, the heating wire wrapped around the adsorption tube is rapidly heated for thermal analysis, and the analyzed target components enter the separation device after passing through the sampling device. After the thermal analysis is completed, the first cooling nozzle sprays out low-temperature CO gas again to rapidly cool down the adsorption tube, thereby reducing the enrichment time. At the same time, the second cooling nozzle can spray low-temperature CO2 gas into the second cooling cover to cool down the chromatographic column, obtain a lower chromatographic initial temperature and a high heating rate, thereby obtaining high separation effect, extremely fast analysis rate and High peak capacity.
第一冷却喷头和第二冷却喷头的变径结构能导致高压气体膨胀做功制冷,进一步提高制冷效率。The variable-diameter structures of the first cooling nozzle and the second cooling nozzle can cause the high-pressure gas to expand and do work for cooling, thereby further improving the cooling efficiency.
第一冷却喷头能降低吸附管温度到-30℃,大大提高了吸附管富集低沸点组分的能力,且降低了吸附管从热解析后的高温状态回到富集时低温状态的平衡时间,减小了分析周期。The first cooling nozzle can reduce the temperature of the adsorption tube to -30°C, which greatly improves the ability of the adsorption tube to enrich low boiling point components, and reduces the equilibrium time for the adsorption tube to return from the high temperature state after thermal analysis to the low temperature state during enrichment , reducing the analysis cycle.
缠绕在吸附管外的加热丝,能够提供高达40℃/s的加热速率,以保证足够窄的进样谱带。The heating wire wrapped around the adsorption tube can provide a heating rate up to 40°C/s to ensure a sufficiently narrow sample band.
分离装置中的色谱柱加热模块与色谱柱紧密接触,以提供高的升温速率。利用低温CO2气体降温,能使色谱柱的初始柱温将至-30℃,以增加低沸点组分的保留能力和峰容量;大大缩短色谱柱的平衡时间,减小分析周期。The column heating module in the separation unit is in close contact with the column to provide a high heating rate. Using low-temperature CO2 gas to cool down, the initial column temperature of the chromatographic column can be reduced to -30°C, so as to increase the retention capacity and peak capacity of low-boiling components; greatly shorten the equilibration time of the chromatographic column, and reduce the analysis cycle.
本发明具有以下几个优点:The present invention has the following advantages:
1.本发明采用低温CO2气体对吸附管进行降温,能有效提高低沸点组分的富集效率,缩短吸附管热解析完成后回到初温的冷却时间,从而降低了富集热解析的总时间。1. The present invention uses low-temperature CO2 gas to cool the adsorption tube, which can effectively improve the enrichment efficiency of low boiling point components, shorten the cooling time for the adsorption tube to return to the initial temperature after thermal analysis is completed, thereby reducing the enrichment thermal analysis time. total time.
2.本发明采用带收口的吸附管结构和加热丝直热式加热,提高了热解析速度,降低了色谱进样谱带,提高了分离效率。2. The present invention adopts the structure of the adsorption tube with closed mouth and the direct heating of the heating wire, which improves the thermal analysis speed, reduces the chromatographic sampling band, and improves the separation efficiency.
3.本发明采用低温CO2气体对色谱柱进行降温,能有效提高对低沸点组分的分离度,增加了峰容量;并利用冷柱头效应,压缩色谱进样谱带,提高了分离效率;分析完成后冷却气体还能降低色谱柱的平衡时间,从而降低了整个分析周期时间。3. The present invention adopts low-temperature CO2 gas to cool the chromatographic column, which can effectively improve the resolution of low-boiling components and increase the peak capacity; and utilize the cold column head effect to compress the chromatographic sampling band and improve the separation efficiency; Cooling the gas after the analysis also reduces the equilibration time of the column, thereby reducing the overall analysis cycle time.
4.本发明采用色谱柱加热模块与色谱柱紧密接触的方式进行加热,能获取更高的程序升温速率,进一步提高了分离速度,从而保证了该装置能同时获得高的分离度、分离速度和峰容量。4. The present invention adopts the method of heating the chromatographic column heating module in close contact with the chromatographic column, which can obtain a higher programmed temperature rise rate and further improve the separation speed, thereby ensuring that the device can simultaneously obtain high resolution, separation speed and peak capacity.
附图说明Description of drawings
图1为本发明的装置的结构示意图。其中,100-富集热解析装置;101-吸附剂;102-吸附管;103-加热丝;104-冷却源;105-第一冷却喷头;106-第一冷却罩;107-第一气体出口;200-进样装置;201-第一接头;202-进样装置出口;203-第二接头;300-分离装置;301-色谱柱;302-色谱柱加热模块;303-第二冷却喷头;304-第二冷却罩;305-第二气体出口。Figure 1 is a schematic structural view of the device of the present invention. Among them, 100-enrichment thermal desorption device; 101-adsorbent; 102-adsorption tube; 103-heating wire; 104-cooling source; 105-first cooling nozzle; 106-first cooling cover; 107-first gas outlet 200-sampling device; 201-first joint; 202-exit of sampling device; 203-second joint; 304-second cooling cover; 305-second gas outlet.
图2为采用实施例1所述装置进行富集热解析及对吸附管降温时,吸附管温度变化曲线。Fig. 2 is the temperature change curve of the adsorption tube when the device described in Example 1 is used for enrichment thermal analysis and cooling of the adsorption tube.
图3为采用实施例1所述装置进行分离时,色谱柱温度变化曲线。Fig. 3 is the temperature change curve of the chromatographic column when the device described in Example 1 is used for separation.
图4为采用实施例1所述装置分析浓度为100ppb的39种TO14标样的色谱图。Fig. 4 is the chromatograms of 39 kinds of TO14 standard samples whose concentration is 100ppb using the device described in Example 1.
具体实施方式detailed description
下面结合附图和实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments, where the schematic embodiments and descriptions of the present invention are used to explain the present invention, but not as a limitation to the present invention.
实施例1Example 1
一种富集-热解析-色谱分离装置,如图1所示,由富集热解析装置100、进样装置200、分离装置300和冷却源104组成。An enrichment-thermal desorption-chromatographic separation device, as shown in FIG.
富集热解析装置100由吸附管102、加热丝103、第一冷却罩106和第一冷却喷头105组成。吸附管102为石英管,主体直径3mm,其中装填有吸附剂101,吸附剂101为5mg石墨化炭黑和4mgCarbosieveSⅢ形成的混合物。吸附管102外部缠绕加热丝103,加热丝103为线径0.4mm的Ni-Cr合金,电阻为10欧姆,其加热速率能达到40℃/s。吸附管102的两端分别与样品源和进样装置200相连;吸附管102连接进样装置200的一端有一内径变小的收口,缩口部分直径0.6mm。The enrichment thermal desorption device 100 is composed of an adsorption tube 102 , a heating wire 103 , a first cooling cover 106 and a first cooling nozzle 105 . The adsorption tube 102 is a quartz tube with a main body diameter of 3 mm, which is filled with an adsorbent 101, which is a mixture of 5 mg of graphitized carbon black and 4 mg of Carbosieve SIII. The adsorption tube 102 is wound with a heating wire 103. The heating wire 103 is a Ni-Cr alloy with a wire diameter of 0.4 mm, a resistance of 10 ohms, and a heating rate of 40° C./s. Both ends of the adsorption tube 102 are respectively connected to the sample source and the sampling device 200 ; the end of the adsorption tube 102 connected to the sampling device 200 has a narrowing opening with a reduced inner diameter, and the diameter of the shrinking part is 0.6 mm.
第一冷却罩106将加热丝103和吸附管102包覆在其内部;第一冷却罩106上设有第一冷却喷头105和第一气体出口107;第一冷却喷头105与冷却源104之间有管路连接。冷却源104为高压液态二氧化碳,第一冷却喷头105的喷口内径为1.5mm,出口距离吸附管的距离为3mm。CO2气压为0.8MPa,工作时液态的CO2气化,吸收大量的热,产生低温高压CO2气体,对吸附管102进行降温。该气体通过第一冷却喷头时压力急剧减小膨胀做功,节流制冷进一步降低温度,从而获得更高的制冷效率。The first cooling cover 106 wraps the heating wire 103 and the adsorption tube 102 inside; the first cooling cover 106 is provided with a first cooling nozzle 105 and a first gas outlet 107; between the first cooling nozzle 105 and the cooling source 104 There are plumbing connections. The cooling source 104 is high-pressure liquid carbon dioxide, the inner diameter of the nozzle of the first cooling nozzle 105 is 1.5 mm, and the distance between the outlet and the adsorption tube is 3 mm. The pressure of CO 2 is 0.8MPa. During operation, the liquid CO 2 gasifies, absorbs a large amount of heat, produces low-temperature and high-pressure CO 2 gas, and cools down the adsorption tube 102 . When the gas passes through the first cooling nozzle, the pressure decreases sharply and expands to do work, and throttling refrigeration further reduces the temperature, thereby obtaining higher refrigeration efficiency.
分离装置300由色谱柱301、色谱柱加热模块302、第二冷却喷头303及第二冷却罩304组成;色谱柱301前端与进样装置200相连,后端与检测器相连;色谱柱加热模块302与色谱柱301紧密接触;第二冷却罩304将色谱柱301和色谱柱加热模块302包覆在其内部;第二冷却罩304上有第二冷却喷头303和第二气体出口305;第二冷却喷头303与冷却源104之间有管路连接。第二冷却喷头303与第一冷却喷头105的结构相同。The separation device 300 is composed of a chromatographic column 301, a chromatographic column heating module 302, a second cooling nozzle 303, and a second cooling cover 304; the front end of the chromatographic column 301 is connected to the sampling device 200, and the rear end is connected to the detector; the chromatographic column heating module 302 In close contact with the chromatographic column 301; the second cooling cover 304 wraps the chromatographic column 301 and the chromatographic column heating module 302 in its interior; the second cooling cover 304 has a second cooling nozzle 303 and a second gas outlet 305; the second cooling There is a pipeline connection between the spray head 303 and the cooling source 104 . The structure of the second cooling spray head 303 is the same as that of the first cooling spray head 105 .
进样装置200为一个二位六通阀,第一接头201和第二接头203分别为六通阀的两个阀孔接头。六通阀上的另一个阀孔与大气相通作为进样装置出口202。通过阀两个位置的切换实现两种工作状态:一种是富集状态。样品气经过吸附管102富集后残留的气体进入进样装置200从出口排出到外界。另一种是进样状态,热解析时吸附在吸附剂上的目标组分将经过吸附管102、进样装置200被传输至色谱柱301。The sampling device 200 is a two-position six-way valve, and the first joint 201 and the second joint 203 are respectively two valve port joints of the six-way valve. Another valve hole on the six-way valve communicates with the atmosphere as the outlet 202 of the sampling device. Two working states are realized by switching between two positions of the valve: one is enrichment state. The remaining gas after the sample gas is enriched through the adsorption tube 102 enters the sampling device 200 and is discharged to the outside from the outlet. The other is the sample injection state, in which the target components adsorbed on the adsorbent during thermal analysis will be transferred to the chromatographic column 301 through the adsorption tube 102 and the sample injection device 200 .
如图2所示,该富集热解析装置100能够在第一冷却喷头105工作时降温至-25℃以提高富集效率;富集时,进样装置200处于富集状态,气体样品流过吸附管102,其中的VOCs被吸附剂101吸附富集。富集完成后,第一冷却喷头105停止工作,加热丝103施加加热电压,以40℃/s的升温速率升高吸附管102温度至320℃。此时,进样装置200处于进样状态,热解析下来的VOCs经过进样装置200进入色谱柱301。热解析进样5s,以降低进样谱带。进样完成后,第一冷却喷头105开始工作,在10-30s内快速降低吸附管102的温度至-25℃以继续富集,完成一个富集热解析周期。As shown in Figure 2, the enrichment thermal analysis device 100 can cool down to -25°C when the first cooling nozzle 105 is working to improve the enrichment efficiency; The adsorption tube 102, the VOCs therein are adsorbed and enriched by the adsorbent 101. After the enrichment is completed, the first cooling nozzle 105 stops working, and the heating wire 103 applies a heating voltage to raise the temperature of the adsorption tube 102 to 320° C. at a heating rate of 40° C./s. At this time, the sampling device 200 is in a sampling state, and the thermally desorbed VOCs enter the chromatographic column 301 through the sampling device 200 . Thermal analysis injection 5s, in order to reduce the injection band. After the sample injection is completed, the first cooling nozzle 105 starts to work, and rapidly lowers the temperature of the adsorption tube 102 to -25° C. within 10-30 seconds to continue the enrichment, and completes an enrichment thermal desorption cycle.
吸附管102进样端通过一段连接管连接到进样装置200,进样装置200也通过连接管连接到色谱柱301。连接管保温在80℃,进样装置200保温在70℃以减小分析残留。色谱柱301为10m×0.10mmi.d.×5μmOV-17。分离开始时第二冷却喷头303工作,色谱柱降低到初始柱温-20℃,以提高低沸点组分的分离度和峰容量,随后进入程序升温阶段;第二冷却喷头303停止工作,色谱柱加热模块302开始工作,迅速升温,以加快分离速度。分离完成后,第二冷却喷头303工作,将色谱柱温从高温降低至-20℃的初始温度,开始下一次分析。图3为该条件下,色谱柱温在一个分析周期内的变化。可以看到整个分析周期为130s,大大低于常规富集/热脱附-色谱分离系统的分析周期(一般15-30min)。The sampling end of the adsorption tube 102 is connected to the sampling device 200 through a connecting tube, and the sampling device 200 is also connected to the chromatographic column 301 through the connecting tube. The connecting tube was kept at 80°C, and the sampling device 200 was kept at 70°C to reduce analysis residues. The chromatographic column 301 is 10m×0.10mmi.d.×5μm OV-17. When the separation starts, the second cooling nozzle 303 works, and the chromatographic column is lowered to the initial column temperature -20°C to improve the resolution and peak capacity of the low-boiling components, and then enters the temperature programming stage; the second cooling nozzle 303 stops working, and the chromatographic column The heating module 302 starts to work and heats up rapidly to accelerate the separation speed. After the separation is completed, the second cooling nozzle 303 works to reduce the temperature of the chromatographic column from high temperature to the initial temperature of -20° C., and start the next analysis. Figure 3 shows the change of column temperature in one analysis cycle under this condition. It can be seen that the entire analysis period is 130s, which is much lower than the analysis period (generally 15-30min) of the conventional enrichment/thermal desorption-chromatographic separation system.
对100ppb的39种TO14标样进行快速富集热解析及气相色谱分离的结果如图4所示,图中数据为采用氢火焰离子化检测器的数据,也可采用其他气相色谱检测器。The results of rapid enrichment thermal analysis and gas chromatographic separation of 39 TO14 standard samples at 100 ppb are shown in Figure 4. The data in the figure is the data of the hydrogen flame ionization detector, and other gas chromatographic detectors can also be used.
实施例2Example 2
如实施例1所述的装置,其中进样装置200为一个三通两位电磁阀。The device as described in Embodiment 1, wherein the sampling device 200 is a three-way two-position solenoid valve.
实施例3Example 3
如实施例1所述的装置,其中吸附管102为内壁经过惰性处理的不锈钢管,吸附剂101为10mg碳分子筛TDX-1。进样装置200及其连接管处于室温环境中。所述装置能对低碳烃(如乙烷、乙烯、丙烷等)实现快速富集-热解析-色谱分离,整个分析周期小于2min。The device as described in Example 1, wherein the adsorption tube 102 is a stainless steel tube with an inert inner wall, and the adsorbent 101 is 10 mg carbon molecular sieve TDX-1. The sampling device 200 and its connecting pipes are in room temperature environment. The device can realize rapid enrichment-thermal analysis-chromatographic separation of low-carbon hydrocarbons (such as ethane, ethylene, propane, etc.), and the entire analysis period is less than 2 minutes.
实施例4Example 4
如实施例1所述的装置,其中进样装置200为采用Deanswitch结构的压力控制装置。The device as described in Embodiment 1, wherein the sampling device 200 is a pressure control device adopting a Deanswitch structure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410729809.8A CN105651910A (en) | 2014-12-03 | 2014-12-03 | Enrichment-thermal desorption-chromatography separating unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410729809.8A CN105651910A (en) | 2014-12-03 | 2014-12-03 | Enrichment-thermal desorption-chromatography separating unit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105651910A true CN105651910A (en) | 2016-06-08 |
Family
ID=56480734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410729809.8A Pending CN105651910A (en) | 2014-12-03 | 2014-12-03 | Enrichment-thermal desorption-chromatography separating unit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105651910A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107167537A (en) * | 2017-06-10 | 2017-09-15 | 苏州冷杉精密仪器有限公司 | A kind of adsorption tube and its thermal desorption device |
CN107328886A (en) * | 2016-04-28 | 2017-11-07 | 中国石油化工股份有限公司 | The sampling device of on-line chromatographic analysis system and the method that sample is handled using it |
CN108107145A (en) * | 2017-12-12 | 2018-06-01 | 优泰科技(深圳)有限公司 | Gas concentration instrument |
CN108693307A (en) * | 2018-04-11 | 2018-10-23 | 昆明和宸科技有限公司 | VOCs detection methods in a kind of air |
CN109718631A (en) * | 2018-12-21 | 2019-05-07 | 北京放射性核素实验室 | A kind of assembly type adsorption-desorption device |
CN109856294A (en) * | 2019-02-27 | 2019-06-07 | 南京普特保仪器有限公司 | A kind of chromatographic pretreating device of micro two-dimensional and its working method |
CN109900844A (en) * | 2017-12-08 | 2019-06-18 | 南京天成环境科技工程有限公司 | A kind of Thermal desorption module of equilibrium air pressure |
CN110462368A (en) * | 2017-03-31 | 2019-11-15 | 拉皮斯坎系统股份有限公司 | The heating of quick desorption device and cooling for trace detection |
CN110849680A (en) * | 2019-12-17 | 2020-02-28 | 北京市劳动保护科学研究所 | Gas enrichment device |
CN111487358A (en) * | 2020-05-26 | 2020-08-04 | 中国科学院城市环境研究所 | A system and method for automatic analysis of all components of atmospheric volatile organic compounds |
CN111627794A (en) * | 2020-04-17 | 2020-09-04 | 宁波大学 | Thermal desorption electrospray ion source with enrichment function |
CN112839727A (en) * | 2018-10-25 | 2021-05-25 | 因泰科设备股份有限公司 | System and method for pressure controlled diversion of chemical samples |
CN115876928A (en) * | 2023-01-09 | 2023-03-31 | 南京霍普斯科技有限公司 | Online detection and analysis device and analysis method for environment air malodorous substances |
US12072321B2 (en) | 2021-07-02 | 2024-08-27 | Asicotech Company Limited | Chromatographic apparatus for online enrichment of trace and ultra-trace components and method for analyzing trace and ultra-trace components using same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1580762A (en) * | 2003-08-01 | 2005-02-16 | 中国科学院大连化学物理研究所 | Method for enriching and trapping gas trace component for chromatograph capillary tube column analysis |
CN2685876Y (en) * | 2004-02-16 | 2005-03-16 | 高蕾 | Thermal desorption instrument for measuring air organic volatile matter |
WO2005111599A1 (en) * | 2004-05-17 | 2005-11-24 | Firmenich Sa | New multidimensional gas chromatography apparatus and analyte transfer procedure using a multiple-cool strand interface |
CN1786705A (en) * | 2004-12-07 | 2006-06-14 | 中国科学院大连化学物理研究所 | Scavenging trap for solid sample and its application |
CN201965043U (en) * | 2010-10-27 | 2011-09-07 | 中国科学院大连化学物理研究所 | Sampling tube and sampling enriching and thermal desorbing device for atmospheric trace volatile organic compounds |
CN102565247A (en) * | 2011-11-23 | 2012-07-11 | 福建中烟工业有限责任公司 | Trapping and releasing method for increasing performance of gas chromatograph center cutting technology |
CN102628842A (en) * | 2011-02-07 | 2012-08-08 | 安捷伦科技有限公司 | Column assembly for a gas chromatograph |
-
2014
- 2014-12-03 CN CN201410729809.8A patent/CN105651910A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1580762A (en) * | 2003-08-01 | 2005-02-16 | 中国科学院大连化学物理研究所 | Method for enriching and trapping gas trace component for chromatograph capillary tube column analysis |
CN2685876Y (en) * | 2004-02-16 | 2005-03-16 | 高蕾 | Thermal desorption instrument for measuring air organic volatile matter |
WO2005111599A1 (en) * | 2004-05-17 | 2005-11-24 | Firmenich Sa | New multidimensional gas chromatography apparatus and analyte transfer procedure using a multiple-cool strand interface |
CN1786705A (en) * | 2004-12-07 | 2006-06-14 | 中国科学院大连化学物理研究所 | Scavenging trap for solid sample and its application |
CN201965043U (en) * | 2010-10-27 | 2011-09-07 | 中国科学院大连化学物理研究所 | Sampling tube and sampling enriching and thermal desorbing device for atmospheric trace volatile organic compounds |
CN102628842A (en) * | 2011-02-07 | 2012-08-08 | 安捷伦科技有限公司 | Column assembly for a gas chromatograph |
CN102565247A (en) * | 2011-11-23 | 2012-07-11 | 福建中烟工业有限责任公司 | Trapping and releasing method for increasing performance of gas chromatograph center cutting technology |
Non-Patent Citations (3)
Title |
---|
WHALLEY, LK; LEWIS, AC; MCQUAID, JB: "Two high-speed, portable GC systems designed for the measurement of non-methane hydrocarbons and PAN: Results from the Jungfraujoch High Altitude Observatory", 《JOURNAL OF ENVIRONMENTAL MONITORING》 * |
国家质量监督检验检疫总局: "《中华人民共和国国家标准》", 19 November 2002 * |
彭虹: "在线测量大气挥发性有机物的冷阱浓缩/热解析仪的研制", 《分析化学》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107328886A (en) * | 2016-04-28 | 2017-11-07 | 中国石油化工股份有限公司 | The sampling device of on-line chromatographic analysis system and the method that sample is handled using it |
CN110462368A (en) * | 2017-03-31 | 2019-11-15 | 拉皮斯坎系统股份有限公司 | The heating of quick desorption device and cooling for trace detection |
CN107167537A (en) * | 2017-06-10 | 2017-09-15 | 苏州冷杉精密仪器有限公司 | A kind of adsorption tube and its thermal desorption device |
CN109900844A (en) * | 2017-12-08 | 2019-06-18 | 南京天成环境科技工程有限公司 | A kind of Thermal desorption module of equilibrium air pressure |
CN108107145A (en) * | 2017-12-12 | 2018-06-01 | 优泰科技(深圳)有限公司 | Gas concentration instrument |
CN108693307A (en) * | 2018-04-11 | 2018-10-23 | 昆明和宸科技有限公司 | VOCs detection methods in a kind of air |
CN112839727A (en) * | 2018-10-25 | 2021-05-25 | 因泰科设备股份有限公司 | System and method for pressure controlled diversion of chemical samples |
CN112839727B (en) * | 2018-10-25 | 2023-05-12 | 因泰科设备股份有限公司 | System and method for pressure controlled diversion of chemical samples |
CN109718631A (en) * | 2018-12-21 | 2019-05-07 | 北京放射性核素实验室 | A kind of assembly type adsorption-desorption device |
CN109856294A (en) * | 2019-02-27 | 2019-06-07 | 南京普特保仪器有限公司 | A kind of chromatographic pretreating device of micro two-dimensional and its working method |
CN110849680A (en) * | 2019-12-17 | 2020-02-28 | 北京市劳动保护科学研究所 | Gas enrichment device |
CN111627794A (en) * | 2020-04-17 | 2020-09-04 | 宁波大学 | Thermal desorption electrospray ion source with enrichment function |
CN111627794B (en) * | 2020-04-17 | 2023-04-25 | 宁波大学 | Thermal analysis electrospray ion source with enrichment function |
CN111487358A (en) * | 2020-05-26 | 2020-08-04 | 中国科学院城市环境研究所 | A system and method for automatic analysis of all components of atmospheric volatile organic compounds |
US12072321B2 (en) | 2021-07-02 | 2024-08-27 | Asicotech Company Limited | Chromatographic apparatus for online enrichment of trace and ultra-trace components and method for analyzing trace and ultra-trace components using same |
CN115876928A (en) * | 2023-01-09 | 2023-03-31 | 南京霍普斯科技有限公司 | Online detection and analysis device and analysis method for environment air malodorous substances |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105651910A (en) | Enrichment-thermal desorption-chromatography separating unit | |
US11067548B2 (en) | Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS) | |
CN110333127B (en) | Online measurement system, method and application of gas-phase semi-volatile organic compounds | |
CN102062767B (en) | Atmospheric sample online sampling-enrichment-thermal desorption-chromatographic sampling combined device | |
US8939011B2 (en) | On-line analyzer for VOCs and method of using the same | |
CN106290688B (en) | A kind of particulate matter organic chemical components on-line measurement system and method | |
CN104569228B (en) | A kind of sampling device | |
CN201965043U (en) | Sampling tube and sampling enriching and thermal desorbing device for atmospheric trace volatile organic compounds | |
CN100336576C (en) | Sample-taking adsorption tube and its hydrolyzed adsorption device | |
CN101294936B (en) | Plant source volatile organic matter test method | |
CN215339692U (en) | Novel portable gas chromatography mass spectrometer | |
CN105043846A (en) | Volatile organic compound sample gas trapping system and method | |
CN103134875A (en) | On-line pretreatment device of aquatic volatile organic compounds | |
CN102175796A (en) | Dynamic headspace-cold focusing-GC (Gas Chromatography)-MS (Mass Spectrometer) tobacco headspace element analysis method | |
CN110044663A (en) | Laboratory flames intermediate product sampling system and analysis method | |
CN111579315A (en) | VOCs and IVOCs simultaneous on-line collecting and detecting method | |
CN104198319B (en) | A kind of device and its application process for studying cigarette additive cracking process | |
CN103760283B (en) | A kind of absorption thermal desorption sampling device and method | |
CN205786045U (en) | A kind of volatile organic matter sample gas trapping system | |
CN206074528U (en) | A kind of particulate matter organic chemical components on-line measurement system | |
CN204302250U (en) | A kind of sampling device | |
CN219399540U (en) | Adsorption component, high-low temperature component and pretreatment device | |
CN105353046A (en) | Volatile organic compound gas freezing capture system and capture method | |
RU2361200C1 (en) | Gas chromatographic method of determining mass concentration of impurities in natural gas | |
CN210639133U (en) | Single cold hydrazine secondary thermal desorption equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160608 |