CN105633261B - A kind of photo-thermal electricity switching memory devices and preparation method - Google Patents
A kind of photo-thermal electricity switching memory devices and preparation method Download PDFInfo
- Publication number
- CN105633261B CN105633261B CN201610003306.1A CN201610003306A CN105633261B CN 105633261 B CN105633261 B CN 105633261B CN 201610003306 A CN201610003306 A CN 201610003306A CN 105633261 B CN105633261 B CN 105633261B
- Authority
- CN
- China
- Prior art keywords
- energy storage
- phase
- material layer
- layer
- thermoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 230000005611 electricity Effects 0.000 title description 2
- 239000000463 material Substances 0.000 claims abstract description 56
- 238000004146 energy storage Methods 0.000 claims abstract description 53
- 239000011232 storage material Substances 0.000 claims abstract description 50
- 238000006243 chemical reaction Methods 0.000 claims abstract description 30
- 238000003860 storage Methods 0.000 claims abstract description 24
- 230000017525 heat dissipation Effects 0.000 claims abstract description 17
- 238000009413 insulation Methods 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 229910021389 graphene Inorganic materials 0.000 claims description 25
- 239000002131 composite material Substances 0.000 claims description 16
- 239000012782 phase change material Substances 0.000 claims description 14
- 229920001903 high density polyethylene Polymers 0.000 claims description 11
- 239000004700 high-density polyethylene Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000012188 paraffin wax Substances 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 10
- 239000002202 Polyethylene glycol Substances 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000011358 absorbing material Substances 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 5
- 229910021641 deionized water Inorganic materials 0.000 claims description 5
- 238000010907 mechanical stirring Methods 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 238000013329 compounding Methods 0.000 claims description 4
- 238000005470 impregnation Methods 0.000 claims description 4
- 230000031700 light absorption Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 3
- 230000003760 hair shine Effects 0.000 claims description 3
- 229910010272 inorganic material Inorganic materials 0.000 claims description 3
- 239000011147 inorganic material Substances 0.000 claims description 3
- 229920000620 organic polymer Polymers 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000013082 photovoltaic technology Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000011056 performance test Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Building Environments (AREA)
Abstract
本发明公开了一种光热电转换存储器件及制备方法,包括:保温层(1)、相变储能材料层(3)、热电材料层(4)和散热层(5),保温层(1)的下部与热电材料层(4)上表面密封形成覆盖空间(2),覆盖空间(2)内部抽真空形,覆盖空间(2)内容纳相变储能材料层(3),相变储能材料层(3)与热电材料层(4)上表面形成良好的导热连接,散热层(5)与热电材料层(4)下表面形成良好的导热连接,热电材料层(4)上表面为高温面,下表面为低温面。本发明相对于传统光伏技术,可以实现在太阳能间断的情况下连续工作,同时自身可以进行储能,从而有效提升太阳能的利用效率,降低存储成本,在绿色能源技术领域具有广阔应用前景。
The invention discloses a photothermal-electric conversion storage device and a preparation method thereof, comprising: a thermal insulation layer (1), a phase change energy storage material layer (3), a thermoelectric material layer (4), a heat dissipation layer (5), and a thermal insulation layer (1 ) is sealed with the upper surface of the thermoelectric material layer (4) to form a covered space (2), the inside of the covered space (2) is vacuum-pumped, and the covered space (2) contains a phase-change energy storage material layer (3). The energy material layer (3) forms a good heat conduction connection with the upper surface of the thermoelectric material layer (4), the heat dissipation layer (5) forms a good heat conduction connection with the lower surface of the thermoelectric material layer (4), and the upper surface of the thermoelectric material layer (4) is High temperature surface, lower surface is low temperature surface. Compared with the traditional photovoltaic technology, the present invention can realize continuous work in the case of intermittent solar energy, and can store energy by itself, thereby effectively improving the utilization efficiency of solar energy and reducing storage costs, and has broad application prospects in the field of green energy technology.
Description
技术领域technical field
本发明涉及能源和材料领域。具体涉及一种基于相变储能材料与热电材料相结合,在太阳能驱动下实现光热电转换和电能不间断输出。The present invention relates to the fields of energy and materials. It specifically relates to a combination of phase-change energy storage materials and thermoelectric materials to realize photothermal conversion and uninterrupted output of electric energy driven by solar energy.
背景技术Background technique
太阳能是一种绿色清洁的能源,实现其充分利用对于人类的可持续发展具有重要意义。光电转换是目前对太阳能进行有效利用的途径之一。通过光伏组件可以将太阳能转换成电能。但是由于太阳能具有间断性,光伏发电无法持续进行,并且需要额外储电装置对其产生的电能进行储存。加之生产光伏电池所用原材料紧缺,导致整体成本较高。Solar energy is a green and clean energy, and its full utilization is of great significance to the sustainable development of human beings. Photoelectric conversion is one of the ways to effectively utilize solar energy at present. Photovoltaic modules convert solar energy into electricity. However, due to the intermittent nature of solar energy, photovoltaic power generation cannot continue, and additional power storage devices are required to store the generated electric energy. Coupled with the shortage of raw materials used in the production of photovoltaic cells, the overall cost is relatively high.
发明内容Contents of the invention
针对上述现有技术中存在的问题,本发明的目的在于提供一种光热电转换存储器件及制备方法,实现太阳能间断情况下电能的持续供给,降低成本,充分提升对太阳能的利用率。In view of the problems existing in the above-mentioned prior art, the object of the present invention is to provide a photothermoelectric conversion storage device and its preparation method, which can realize the continuous supply of electric energy when the solar energy is interrupted, reduce the cost, and fully improve the utilization rate of the solar energy.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种光热电转换存储器件,包括:保温层(1)、相变储能材料层(3)、热电材料层(4)和散热层(5),保温层(1)的下部与热电材料层(4)上表面密封形成覆盖空间(2),覆盖空间(2)内部抽真空形,覆盖空间(2)内容纳相变储能材料层(3),相变储能材料层(3)与热电材料层(4)上表面形成良好的导热连接,散热层(5)与热电材料层(4)下表面形成良好的导热连接,热电材料层(4)上表面为高温面,下表面为低温面,太阳光透过保温层照射在相变储能材料层,由相变储能材料层实现对太阳光的捕捉吸收,同时转化成热能并进行存储,最后经过热电材料层将热能转化为电能;在太阳光间断的情况下,热电材料层也可以利用相变材料内部所存储的热能持续进行电能的输出。A photothermoelectric conversion storage device, comprising: an insulation layer (1), a phase change energy storage material layer (3), a thermoelectric material layer (4) and a heat dissipation layer (5), the lower part of the insulation layer (1) and the thermoelectric material layer (4) The upper surface is sealed to form a covered space (2), and the inside of the covered space (2) is vacuum-pumped, and the covered space (2) accommodates a phase-change energy storage material layer (3), and the phase-change energy storage material layer (3) and The upper surface of the thermoelectric material layer (4) forms a good heat conduction connection, the heat dissipation layer (5) forms a good heat conduction connection with the lower surface of the thermoelectric material layer (4), the upper surface of the thermoelectric material layer (4) is a high temperature surface, and the lower surface is a low temperature surface On the surface, sunlight shines on the phase-change energy storage material layer through the insulation layer, and the phase-change energy storage material layer realizes the capture and absorption of sunlight, and at the same time converts it into thermal energy and stores it, and finally converts the thermal energy into electrical energy through the thermoelectric material layer ; In the case of intermittent sunlight, the thermoelectric material layer can also use the heat energy stored inside the phase change material to continuously output electric energy.
所述的光热电转换存储器件,所述保温层使用透明有机玻璃或无机玻璃。In the photothermal-electric conversion storage device, transparent organic glass or inorganic glass is used for the thermal insulation layer.
所述的光热电转换存储器件,所述热电材料层包括无机材料碲化铋基温差发电片或有机聚合物PEDOT:PSS热电材料基温差发电片。In the photothermoelectric conversion storage device, the thermoelectric material layer includes an inorganic material bismuth telluride-based thermoelectric generation sheet or an organic polymer PEDOT:PSS thermoelectric material-based thermoelectric generation sheet.
所述的光热电转换存储器件,所述散热层包括材质为铜、钢、铝、铁、合金,散热方式为自然散热、强制风冷、强制水冷的散热片。In the photothermal-electric conversion storage device, the heat dissipation layer includes heat sinks made of copper, steel, aluminum, iron, or alloys, and the heat dissipation method is natural heat dissipation, forced air cooling, or forced water cooling.
所述的光热电转换存储器件,所述定形相变储能材料制备方法为:将氧化石墨烯粉末通过超声及机械搅拌手段分散于去离子水中,获得浓度为1mg/mL-30mg/mL的氧化石墨烯水溶液;直接对其进行冷冻干燥,获得三维宏观石墨烯材料;采用三维宏观石墨烯为支撑定形和光吸收材料,分子量为10000的聚乙二醇为相变储能材料,通过真空浸渍吸附的方法,在真空烘箱中将三维石墨烯浸入聚乙二醇熔体中,制备复合定形相变储能材料,石墨烯质量含量为0.5%-10%。In the photothermal-electric conversion memory device, the preparation method of the shape-fixed phase-change energy storage material is: dispersing graphene oxide powder in deionized water by means of ultrasonic and mechanical stirring to obtain oxidized Graphene aqueous solution; freeze-dry it directly to obtain three-dimensional macroscopic graphene material; use three-dimensional macroscopic graphene as support shaping and light-absorbing material, and polyethylene glycol with a molecular weight of 10,000 is a phase-change energy storage material, which is adsorbed by vacuum impregnation The method involves immersing three-dimensional graphene in polyethylene glycol melt in a vacuum oven to prepare a composite shape-changing phase-change energy storage material, and the mass content of graphene is 0.5%-10%.
所述的光热电转换存储器件,所述定形相变储能材料选用质量分数为20%的高密度聚乙烯、1%黑色染料、79%石蜡制备,石蜡作为相变材料,高密度聚乙烯为支撑定形材料,黑色染料用以提升光吸收度,制备方法为:在160℃下将高密度聚乙烯熔融,然后加入染料和石蜡进行混合,通过复合获得复合定形相变储能材料。For the photothermal-electric conversion storage device, the shape-setting phase-change energy storage material is prepared from high-density polyethylene with a mass fraction of 20%, 1% black dye, and 79% paraffin. Paraffin is used as the phase-change material, and the high-density polyethylene is Supporting shaping material, black dye is used to increase light absorption, the preparation method is: melting high-density polyethylene at 160°C, then adding dye and paraffin for mixing, and compounding to obtain a composite shape-changing energy storage material.
任一所述的光热电转换存储器件的制备方法,步骤如下:The preparation method of any one of the photothermal-electric conversion storage devices, the steps are as follows:
步骤一:将支撑定形材料以及提升吸光度材料与相变材料相复合,制备可以实现光热转化的定形相变储能材料;Step 1: Composite the supporting shape-setting material and absorbing-enhancing material with the phase-change material to prepare a shape-setting phase-change energy storage material that can realize light-to-heat conversion;
步骤二:将定形相变储能材料下表面通过热界面材料贴合在温差发电片的高温面;Step 2: Attach the lower surface of the shaped phase change energy storage material to the high temperature surface of the thermoelectric power generation sheet through the thermal interface material;
步骤三:用透明的有机或无机玻璃作为保温层,将相变材料覆盖,并使覆盖空间形成真空状态;Step 3: Use transparent organic or inorganic glass as the insulation layer, cover the phase change material, and make the covered space form a vacuum state;
步骤四:将散热层通过热界面材料与温差发电片的低温面相贴合,即获得所述光热电转换存储器件。Step 4: Attach the heat dissipation layer to the low-temperature surface of the thermoelectric power generation sheet through a thermal interface material to obtain the photothermoelectric conversion storage device.
所述的制备方法,所述定形相变储能材料制备方法为:将氧化石墨烯粉末通过超声及机械搅拌手段分散于去离子水中,获得浓度为1mg/mL-30mg/mL的氧化石墨烯水溶液;直接对其进行冷冻干燥,获得三维宏观石墨烯材料;采用三维宏观石墨烯为支撑定形和光吸收材料,分子量为10000的聚乙二醇为相变储能材料,通过真空浸渍吸附的方法,在真空烘箱中将三维石墨烯浸入聚乙二醇熔体中,制备复合定形相变储能材料,石墨烯质量含量为0.5%-10%。The preparation method, the preparation method of the shape-fixed phase change energy storage material is: dispersing graphene oxide powder in deionized water by means of ultrasonic and mechanical stirring to obtain an aqueous solution of graphene oxide with a concentration of 1 mg/mL-30 mg/mL directly freeze-dry it to obtain three-dimensional macroscopic graphene material; adopt three-dimensional macroscopic graphene as supporting shape-setting and light-absorbing material, and polyethylene glycol with a molecular weight of 10,000 as phase-change energy storage material, through the method of vacuum impregnation and adsorption, in Three-dimensional graphene is immersed in polyethylene glycol melt in a vacuum oven to prepare a composite shape-fixed phase-change energy storage material, and the mass content of graphene is 0.5%-10%.
所述的制备方法,所述定形相变储能材料选用质量分数为20%的高密度聚乙烯、1%黑色染料、79%石蜡制备,石蜡作为相变材料,高密度聚乙烯为支撑定形材料,黑色染料用以提升光吸收度,制备方法为:在160℃下将高密度聚乙烯熔融,然后加入染料和石蜡进行混合,通过复合获得复合定形相变储能材料。According to the preparation method, the shape-setting phase-change energy storage material is prepared from high-density polyethylene with a mass fraction of 20%, 1% black dye, and 79% paraffin, paraffin is used as the phase-change material, and high-density polyethylene is used as the supporting shape-setting material , the black dye is used to increase the light absorption. The preparation method is: melting high-density polyethylene at 160°C, then adding dye and paraffin for mixing, and obtaining a composite shape-setting phase-change energy storage material through compounding.
本发明具有以下特点和优点:The present invention has the following characteristics and advantages:
1本发明首次公开了利用将相变储能材料与热电材料相结合设计并制备光热电转换存储器件的方法。1 The present invention discloses for the first time a method for designing and preparing a photothermoelectric conversion storage device by combining a phase change energy storage material with a thermoelectric material.
2本发明公开的器件实现了在太阳能间断的情况下连续供给电能。2. The device disclosed in the present invention realizes the continuous supply of electric energy under the condition of intermittent solar energy.
3本发明提升了对太阳能的有效利用率,降低了光电转换及存储的整体成本。对绿色能源的发展具有重要意义。3. The present invention improves the effective utilization rate of solar energy and reduces the overall cost of photoelectric conversion and storage. It is of great significance to the development of green energy.
附图说明Description of drawings
图1是光热电转换存储器件结构示意图;Fig. 1 is a schematic diagram of the structure of a photothermal-electric conversion memory device;
图2是光热电转换存储器件工作过程示意图;Fig. 2 is a schematic diagram of the working process of a photothermal-electric conversion storage device;
图3是实施例1所涉及相变材料层吸收光谱图;Fig. 3 is the absorption spectrogram of the phase change material layer involved in embodiment 1;
图4是实施例1所涉及相变材料层光热转化曲线图;Fig. 4 is the light-to-heat conversion curve diagram of the phase change material layer involved in embodiment 1;
图5是实施例1所涉及相变材料层定形性能测试图(图中左列是纯的相变材料在30℃、70℃、90℃下的性能测试结果,右列是石墨烯复合相变储能材料30℃、70℃、90℃下的性能测试结果);Fig. 5 is the shape-setting performance test diagram of the phase change material layer involved in embodiment 1 (the left column in the figure is the performance test result of the pure phase change material at 30°C, 70°C, and 90°C, and the right column is the graphene composite phase change Performance test results of energy storage materials at 30°C, 70°C, and 90°C);
具体实施方式Detailed ways
以下结合具体实施例,对本发明进行详细说明。The present invention will be described in detail below in conjunction with specific embodiments.
如图1所示,光热电转换存储器件结构包括:有机玻璃保温层1、相变储能材料层3、热电材料层4和散热层5,有机玻璃保温层1的下部与热电材料层4上表面密封形成覆盖空间2,覆盖空间2内部抽真空形,覆盖空间2内容纳相变储能材料层3,相变储能材料层3与热电材料层4上表面形成良好的热连接,散热层5与热电材料层4下表面形成良好的热连接,热电材料层4上表面为高温面,下表面为低温面。As shown in Figure 1, the structure of the photothermoelectric conversion storage device includes: organic glass insulation layer 1, phase change energy storage material layer 3, thermoelectric material layer 4 and heat dissipation layer 5, the lower part of the organic glass insulation layer 1 and the upper part of the thermoelectric material layer 4 The surface is sealed to form a covered space 2, and the inside of the covered space 2 is vacuum-pumped. The covered space 2 contains a phase-change energy storage material layer 3, and the phase-change energy storage material layer 3 forms a good thermal connection with the upper surface of the thermoelectric material layer 4. The heat dissipation layer 5 forms a good thermal connection with the lower surface of the thermoelectric material layer 4, the upper surface of the thermoelectric material layer 4 is a high-temperature surface, and the lower surface is a low-temperature surface.
实施例1Example 1
第一步,将氧化石墨烯粉末通过超声及机械搅拌手段分散于去离子水中,获得浓度为1mg/mL-30mg/mL的氧化石墨烯水溶液。直接对其进行冷冻干燥,获得三维宏观石墨烯材料。In the first step, the graphene oxide powder is dispersed in deionized water by means of ultrasonic and mechanical stirring to obtain a graphene oxide aqueous solution with a concentration of 1 mg/mL-30 mg/mL. It is directly freeze-dried to obtain a three-dimensional macroscopic graphene material.
第二步,采用三维宏观石墨烯为支撑定形和光吸收材料,分子量为10000的聚乙二醇为相变储能材料。通过真空浸渍吸附的方法,在真空烘箱中将三维石墨烯浸入聚乙二醇熔体中,制备复合定形相变储能材料,石墨烯质量含量为0.5%-10%。In the second step, three-dimensional macroscopic graphene is used as the supporting shape and light-absorbing material, and polyethylene glycol with a molecular weight of 10,000 is used as the phase-change energy storage material. Through the method of vacuum impregnation and adsorption, three-dimensional graphene is immersed in polyethylene glycol melt in a vacuum oven to prepare a composite shape-fixed phase-change energy storage material, and the mass content of graphene is 0.5%-10%.
第二步,采用无机材料碲化铋基温差发电片作为热电材料层,将高导热硅脂均匀涂抹在温差发电片的高温面,随后将制备的复合定形相变储能材料贴合于其上。In the second step, the inorganic material bismuth telluride-based thermoelectric power generation sheet is used as the thermoelectric material layer, and high thermal conductivity silicone grease is evenly applied to the high-temperature surface of the thermoelectric power generation sheet, and then the prepared composite shape-setting phase change energy storage material is attached to it .
第三步,将贴合在温差发电片表面的相变储能材料用边缘带有密封胶圈的透明有机玻璃覆盖,并将覆盖空间形成真空状态。The third step is to cover the phase-change energy storage material attached to the surface of the thermoelectric power generation sheet with transparent organic glass with a sealing rubber ring on the edge, and make the covered space into a vacuum state.
第四步,采用水冷散热片作为散热层。将高导热硅脂均匀涂抹在温差发电片的低温面,随后将散热片贴合于其上。即得所述的光热电转换存储器件。The fourth step is to use water cooling fins as the heat dissipation layer. Apply high thermal conductivity silicone grease evenly on the low-temperature surface of the thermoelectric chip, and then attach the heat sink to it. That is, the photothermal-electric conversion storage device is obtained.
如图1和图2所示,光热电转换存储器件工作过程及原理如下:太阳光透过高透光率的有机玻璃保温层1,照射在相变储能材料层3表面。相变储能材料层3可以有效对太阳光进行捕捉吸收并转换成热能进行存储。有机玻璃保温层1内部空间为高真空状态,由此可以实现较好的保温功效,避免相变储能材料层3热量向外界的损耗。如图3所示,复合相变储能材料具有高吸光度。由此,通过图4和图5结果可以看出,复合相变储能材料可以实现光热转换,同时具有良好的定形性能。热电材料层4的高温面温度随之升高,与低温面形成温度差,回路中产生温差电动势,从而输出电能。当太阳能间断后,由于相变储能层3中储存有太阳能转换得到的热能,故仍可为热电材料层提供工作环境,使整个器件连续工作。As shown in Fig. 1 and Fig. 2, the working process and principle of the photothermoelectric conversion storage device are as follows: sunlight passes through the organic glass insulation layer 1 with high light transmittance, and shines on the surface of the phase-change energy storage material layer 3 . The phase change energy storage material layer 3 can effectively capture and absorb sunlight and convert it into heat energy for storage. The internal space of the plexiglass insulation layer 1 is in a high vacuum state, thereby achieving better insulation effect and avoiding the loss of heat from the phase change energy storage material layer 3 to the outside. As shown in Figure 3, the composite phase change energy storage material has high absorbance. Therefore, it can be seen from the results in Figure 4 and Figure 5 that the composite phase change energy storage material can realize light-to-heat conversion and has good shape-setting properties. The temperature of the high-temperature surface of the thermoelectric material layer 4 rises accordingly, forming a temperature difference with the low-temperature surface, generating a thermoelectric potential in the circuit, thereby outputting electric energy. When the solar energy is interrupted, since the heat energy converted from solar energy is stored in the phase change energy storage layer 3 , it can still provide a working environment for the thermoelectric material layer, so that the entire device can work continuously.
实施例2Example 2
整体结构设计与制备方法与实施例1相同,不同之处在于:在复合相变材料制备中,选用质量分数为20%的高密度聚乙烯为支撑定形材料,1%黑色染料用以提升光吸收度,79%石蜡作为相变材料。在160℃下将高密度聚乙烯熔融,然后加入染料和石蜡进行混合,通过复合获得复合定形相变储能材料。The overall structural design and preparation method are the same as in Example 1, except that in the preparation of the composite phase change material, high-density polyethylene with a mass fraction of 20% is selected as the supporting and shaping material, and 1% black dye is used to improve light absorption Degree, 79% paraffin as a phase change material. Melt high-density polyethylene at 160°C, then add dye and paraffin for mixing, and obtain a composite shape-setting phase-change energy storage material through compounding.
采用有机聚合物PEDOT:PSS热电材料基温差发电片进行热电转换。The organic polymer PEDOT:PSS thermoelectric material-based thermoelectric power generation sheet is used for thermoelectric conversion.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that those skilled in the art can make improvements or changes based on the above description, and all these improvements and changes should belong to the protection scope of the appended claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610003306.1A CN105633261B (en) | 2016-01-04 | 2016-01-04 | A kind of photo-thermal electricity switching memory devices and preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610003306.1A CN105633261B (en) | 2016-01-04 | 2016-01-04 | A kind of photo-thermal electricity switching memory devices and preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105633261A CN105633261A (en) | 2016-06-01 |
CN105633261B true CN105633261B (en) | 2018-06-08 |
Family
ID=56047991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610003306.1A Active CN105633261B (en) | 2016-01-04 | 2016-01-04 | A kind of photo-thermal electricity switching memory devices and preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105633261B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106190791A (en) * | 2016-07-12 | 2016-12-07 | 厦门理工学院 | A kind of phase-transition heat-storage firedamp gas equipment improving Solar use |
CN107311467A (en) * | 2017-05-27 | 2017-11-03 | 北京大学 | A kind of preparation method, Graphene glass and the photo-thermal conversion device of the photo-thermal conversion device based on Graphene glass |
CN108011544A (en) * | 2017-12-14 | 2018-05-08 | 李清花 | A kind of temperature difference piezoelectricity circulation electric generating apparatus |
CN108807655B (en) * | 2018-02-07 | 2020-09-11 | 厦门大学 | Photothermal-electric conversion device and method of making the same |
CN108400192A (en) * | 2018-04-28 | 2018-08-14 | 贵州中益能新材料科技有限公司 | Method for improving photovoltaic power generation efficiency |
CN109103325B (en) * | 2018-07-13 | 2020-05-12 | 西北工业大学 | A multi-level thermoelectric module with a phase-change energy storage layer |
CN109728750A (en) * | 2019-02-15 | 2019-05-07 | 山东大学 | A thermoelectric conversion device and its working method |
CN110161599B (en) * | 2019-05-17 | 2021-04-23 | 中北大学 | A nanostructure for selective infrared stealth with different polarization states |
CN110255916A (en) * | 2019-07-09 | 2019-09-20 | 山东光韵智能科技有限公司 | A kind of automobile center console cover board difunctional compound power-generating material and its manufacturing method |
CN111168006A (en) * | 2020-01-14 | 2020-05-19 | 湖北若林电器科技有限公司 | Preparation method of thermoelectric conversion element sheet of 3D flame electric fireplace |
CN112968657A (en) * | 2021-02-05 | 2021-06-15 | 浙江工商大学 | Photo-thermal coupling system and application |
CN114851642B (en) * | 2022-05-13 | 2024-10-29 | 中国科学院苏州纳米技术与纳米仿生研究所 | Bionic structure for high-efficiency energy aggregation and storage, and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102742032A (en) * | 2009-05-28 | 2012-10-17 | Gmz能源公司 | Thermoelectric system and method of operating same |
CN103017368A (en) * | 2012-12-18 | 2013-04-03 | 上海交通大学 | Phase-change heat transfer type intermediate temperature heat reservoir as well as manufacturing and application thereof |
CN103748779A (en) * | 2012-07-17 | 2014-04-23 | 守谷成人 | Solar thermal power generation device |
CN104465841A (en) * | 2014-11-18 | 2015-03-25 | 上海理工大学 | Light-heat-electricity conversion device and manufacturing method |
-
2016
- 2016-01-04 CN CN201610003306.1A patent/CN105633261B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102742032A (en) * | 2009-05-28 | 2012-10-17 | Gmz能源公司 | Thermoelectric system and method of operating same |
CN103748779A (en) * | 2012-07-17 | 2014-04-23 | 守谷成人 | Solar thermal power generation device |
CN103017368A (en) * | 2012-12-18 | 2013-04-03 | 上海交通大学 | Phase-change heat transfer type intermediate temperature heat reservoir as well as manufacturing and application thereof |
CN104465841A (en) * | 2014-11-18 | 2015-03-25 | 上海理工大学 | Light-heat-electricity conversion device and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN105633261A (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105633261B (en) | A kind of photo-thermal electricity switching memory devices and preparation method | |
CN113871506B (en) | Photovoltaic-thermoelectric coupling power generation system and method based on aerogel thermal insulation and phase change temperature control | |
CN106486563A (en) | A kind of photovoltaic photo-thermal heat collector based on phase change thermal management | |
CN102072641A (en) | Generating system using surface residual heat of dry cement rotary kiln | |
CN108599622A (en) | A kind of temperature difference electricity generation device of efficient absorption solar energy | |
CN102509741A (en) | Compounding phase-change material and device used for heat dissipation of silicon group solar battery | |
CN209545466U (en) | Thermoelectricity/phase-change energy storage device based on photovoltaic power generation technology | |
CN105526737B (en) | Nano-fluid heat absorbing type light-volt solar heat pump system | |
CN101814870A (en) | Solar trench type temperature-difference generating device | |
CN204834643U (en) | Solar photovoltaic light and heat building integration module | |
CN210511561U (en) | Self-powered street lamp pole | |
CN206250210U (en) | A kind of photovoltaic photo-thermal heat collector based on phase change thermal management | |
CN101800258A (en) | Electricity-heat-cold triplex co-generation building integrated radiation panel | |
Chang et al. | Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator | |
CN205752202U (en) | Building Photovoltaic Photothermal Integrated Components of CIGS Thin Film Photovoltaic Cells on Metal Substrate | |
CN205542900U (en) | Electrolyte thermoelectric cell with guide electrode | |
CN205647426U (en) | Cold and hot complementary heat transfer device of light and heat | |
CN203840238U (en) | Solar energy vacuum tube idle sunning power generation device and idle sunning power generation module group | |
CN201038138Y (en) | Photovoltaic diode | |
CN109286338A (en) | A kind of photoelectric conversion storage device and preparation method | |
CN204285894U (en) | A kind of nano-fluid heat absorbing type photovoltaic-solar energy heat pump system | |
CN101252153B (en) | Solar energy cell assembly and heat taking method thereof | |
CN103138645A (en) | Thermoelectric conversion device for solar photovoltaic power generation system | |
CN206251053U (en) | A kind of sound insulation type photovoltaic and photothermal integration component | |
CN209085064U (en) | A photovoltaic photothermal integrated vacuum tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |