[go: up one dir, main page]

CN105629231A - Method and system for splicing SAR sub-aperture - Google Patents

Method and system for splicing SAR sub-aperture Download PDF

Info

Publication number
CN105629231A
CN105629231A CN201410638078.6A CN201410638078A CN105629231A CN 105629231 A CN105629231 A CN 105629231A CN 201410638078 A CN201410638078 A CN 201410638078A CN 105629231 A CN105629231 A CN 105629231A
Authority
CN
China
Prior art keywords
aperture
sub
frequency
data
azimuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410638078.6A
Other languages
Chinese (zh)
Other versions
CN105629231B (en
Inventor
郭鑫
董学志
马灵霞
汪红强
陈元伟
王剑
纪强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Space Star Technology Co Ltd
Original Assignee
Space Star Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Star Technology Co Ltd filed Critical Space Star Technology Co Ltd
Priority to CN201410638078.6A priority Critical patent/CN105629231B/en
Publication of CN105629231A publication Critical patent/CN105629231A/en
Application granted granted Critical
Publication of CN105629231B publication Critical patent/CN105629231B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

一种SAR的子孔径拼接方法,包括,在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;采用圆周移位算法拆分子孔径方位向频谱移位数据,获取子孔径方位向顺序数据;采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据,用于与所述子孔径拼接。本发明可有效减小成像处理的运算量,提高数据处理速度。

A sub-aperture splicing method for SAR, comprising: extracting sub-aperture azimuth direction spectrum shift data from sub-aperture imaging data information; using a circular shift algorithm to split the sub-aperture azimuth direction spectrum shift data to obtain sub-aperture azimuth direction order Data; using the non-first sub-aperture extraction method to extract the effective data information of the next sub-aperture for obtaining the next sub-aperture imaging data information; extracting the next sub-aperture azimuth direction spectrum shift data in the next sub-aperture imaging data information; using The circular shift algorithm splits the azimuth shift data of the next sub-aperture to obtain the azimuth sequence data of the next sub-aperture for splicing with the sub-aperture. The invention can effectively reduce the calculation amount of imaging processing and improve the data processing speed.

Description

一种SAR的子孔径拼接方法及系统A SAR sub-aperture splicing method and system

技术领域technical field

本发明涉及SAR成像领域,尤其涉及一种SAR的子孔径拼接方法及系统。The invention relates to the field of SAR imaging, in particular to a SAR sub-aperture splicing method and system.

背景技术Background technique

星载滑动聚束模式是目前SAR卫星的一种新模式,通过改变方位向波束的照射方向,增加目标点的合成孔径长度,提高方位向的分辨率,最高可达0.5m。为了保证一定的观测带宽,与条带模式一样,滑动聚束模式的方位向采样频率不能任意增加;而另一方面,由于合成孔径长度的增加,导致滑动聚束模式的方位向带宽远超过采样频率。针对滑动聚束模式数据的处理方法从思路上主要分为以下两种:The spaceborne sliding spotlight mode is a new mode of SAR satellites at present. By changing the irradiation direction of the azimuth beam, the length of the synthetic aperture of the target point is increased, and the resolution of the azimuth direction is improved, up to 0.5m. In order to ensure a certain observation bandwidth, like the strip mode, the azimuth sampling frequency of the sliding beamforming mode cannot be increased arbitrarily; on the other hand, due to the increase of the synthetic aperture length, the azimuth bandwidth of the sliding beamforming mode far exceeds the sampling frequency frequency. The processing methods for sliding beamforming mode data are mainly divided into the following two types in terms of ideas:

1.两步成像处理算法,该算法最早用于处理聚束模式的数据,第一步通过方位向derotation处理进行去斜操作,避免方位向频谱的混叠,第二步利用传统的聚焦成像算法进行聚焦处理。1. Two-step imaging processing algorithm. This algorithm was first used to process data in spotlight mode. The first step is to perform deskewing operation through azimuth derotation processing to avoid aliasing spectrum aliasing. The second step uses traditional focusing imaging algorithm Perform focus processing.

2.子孔径处理算法,为缓解方位向信号的欠采样,子孔径的处理思想是首先进行方位向数据分块,缓解方位向频谱的混叠,在进行聚焦处理后,完成子孔径拼接。2. Sub-aperture processing algorithm. In order to alleviate the undersampling of azimuth signals, the idea of sub-aperture processing is to first divide the azimuth data into blocks to alleviate the aliasing of the azimuth spectrum. After focusing processing, the sub-aperture splicing is completed.

上述两种算法中,两步处理算法最初是针对聚束模式处理算法提出的,因此在处理滑动聚束模式数据时具有一定的限制性;Among the above two algorithms, the two-step processing algorithm was originally proposed for the beamforming mode processing algorithm, so it has certain limitations when processing sliding beamforming mode data;

子孔径处理算法需要对原始数据进行分块,适用于并行高速运算系统,现有技术中的子孔径处理都是是在时域内对子孔径完成拼接,且都是在成像算法处理过程中对子孔径进行拼接,该方法增加了成像处理的运算量,不利于成像速度提高。The sub-aperture processing algorithm needs to divide the original data into blocks, which is suitable for parallel high-speed computing systems. The sub-aperture processing in the prior art is to complete the splicing of sub-apertures in the time domain, and all of them are in the process of imaging algorithm processing. Aperture splicing, this method increases the calculation amount of imaging processing, which is not conducive to the improvement of imaging speed.

因此如何突破两步法的局限性,并且在划分子孔径的基础上减小成像处理的数据量完成方位向子孔径拼接成为本发明重点解决的问题。Therefore, how to break through the limitations of the two-step method, and reduce the amount of imaging processing data on the basis of dividing the sub-apertures to complete the sub-aperture splicing in the azimuth direction becomes the key problem to be solved in the present invention.

发明内容Contents of the invention

本发明提供一种SAR的子孔径拼接方法及系统,采用该方法对星载SAR滑动聚束模式的数据进行快速成像显示,在成像算法处理过程之后对子孔径进行拼接,有效减小成像处理的运算量,提高快视处理速度。本发明的一种SAR的子孔径拼接方法,包括,The invention provides a SAR sub-aperture splicing method and system. The method is used to perform fast imaging and display on the data of the spaceborne SAR sliding spotlight mode, and the sub-apertures are spliced after the imaging algorithm processing process, effectively reducing the cost of imaging processing. The amount of calculation is reduced, and the quick view processing speed is improved. A SAR sub-aperture splicing method of the present invention comprises,

在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;extracting the sub-aperture azimuth direction spectrum shift data from the imaging data information of the sub-aperture;

采用圆周移位算法拆分子孔径方位向频谱移位数据,获取子孔径方位向顺序数据;Use the circular shift algorithm to split the sub-aperture azimuth spectrum shift data to obtain sub-aperture azimuth sequence data;

采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;Using a non-first sub-aperture extraction method to extract effective data information of the next sub-aperture for obtaining imaging data information of the next sub-aperture;

在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;Extracting the next sub-aperture azimuth spectrum shift data from the next sub-aperture imaging data information;

采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据,用于与所述子孔径拼接。A circular shift algorithm is used to split the azimuth spectrum shift data of the next sub-aperture to obtain the azimuth sequence data of the next sub-aperture for splicing with the sub-aperture.

根据本发明的上述方法,所述采用圆周移位算法拆分当前子孔径方位向频谱移位数据,包括:According to the above method of the present invention, the use of a circular shift algorithm to split the current sub-aperture azimuth direction spectrum shift data includes:

根据所述子孔径方位向频谱移位数据的频谱范围和脉冲重复频率计算出圆周移位次数;Calculate the number of circular shifts according to the spectrum range and pulse repetition frequency of the sub-aperture azimuth shift data;

原固定带宽的起始频率和终止频率经过按照所获取的圆周移位次数移位之后,对应获取新建固定带宽的起始频率和终止频率;After the start frequency and stop frequency of the original fixed bandwidth are shifted according to the number of circular shifts obtained, the start frequency and stop frequency of the new fixed bandwidth are obtained correspondingly;

根据预设条件和已获取的新建固定带宽的起始频率和终止频率,在起点为零,终点为脉冲重复频率的频率区间范围内获取子孔径方位向频谱顺序数据。According to the preset conditions and the obtained start frequency and stop frequency of the newly-built fixed bandwidth, the sub-aperture azimuth spectrum order data is obtained within the range of the frequency range whose starting point is zero and the ending point is the pulse repetition frequency.

根据本发明的上述方法,还包括:According to above-mentioned method of the present invention, also comprise:

在当前子孔径方位向频谱移位数据中获取子孔径最低频率,根据所述子孔径最低频率和脉冲重复频率的商值取整获取圆周移位次数。The sub-aperture minimum frequency is obtained from the current sub-aperture azimuth shift data, and the number of circular shifts is obtained by rounding the quotient of the sub-aperture minimum frequency and the pulse repetition frequency.

根据本发明的上述方法,所述获取新建固定带宽的起始频率和终止频率,包括:According to the above method of the present invention, the acquisition of the start frequency and stop frequency of the newly-built fixed bandwidth includes:

圆周移位次数与脉冲重复频率相乘获得的乘积和原固定带宽起始频率相加的和得到经过圆周移位后新建固定带宽的起始频率;The sum of the product obtained by multiplying the number of circular shifts by the pulse repetition frequency and the initial frequency of the original fixed bandwidth is added to obtain the initial frequency of the new fixed bandwidth after the circular shift;

圆周移位次数与脉冲重复频率相乘获得的乘积和原固定带宽终止频率相加的和得到经过圆周移位后新建固定带宽的终止频率。The sum of the product obtained by multiplying the number of circular shifts by the pulse repetition frequency and the stop frequency of the original fixed bandwidth is obtained to obtain the stop frequency of the new fixed bandwidth after the circular shift.

根据本发明的上述方法,所述预设条件,包括:According to the above method of the present invention, the preset conditions include:

经过圆周移位后新的带宽起点大于零,且,The new bandwidth starting point after the circular shift is greater than zero, and,

圆周移位次数加一后与脉冲重复频率相乘获得的乘积和原固定带宽起始频率相加得到的和小于脉冲重复频率。The sum of the product obtained by multiplying the number of circular shifts by one and the pulse repetition frequency and the initial frequency of the original fixed bandwidth is less than the pulse repetition frequency.

根据本发明的上述方法,所述采用非首个子孔径提取方法提取下一个子孔径有效数据信息,包括:According to the above method of the present invention, the non-first sub-aperture extraction method is used to extract the effective data information of the next sub-aperture, including:

根据子孔径的时频关系,获取子孔径有效结束目标点的时频特性;According to the time-frequency relationship of the sub-aperture, the time-frequency characteristics of the effective end target point of the sub-aperture are obtained;

根据子孔径的时频关系,获取整个场景瞬时最低频率的时频特性;According to the time-frequency relationship of the sub-aperture, the time-frequency characteristics of the instantaneous lowest frequency of the entire scene are obtained;

根据所述子孔径有效结束目标点的时频特性和所述整个场景瞬时最低频率的时频特性,获取下一个子孔径在整个场景回波中的位置;Acquiring the position of the next sub-aperture in the echo of the entire scene according to the time-frequency characteristic of the effective end target point of the sub-aperture and the time-frequency characteristic of the instantaneous lowest frequency of the entire scene;

根据下一个子孔径在整个场景回波中的位置,在整个场景回波数据中提取下一个子孔径有效数据信息。According to the position of the next sub-aperture in the echo of the whole scene, effective data information of the next sub-aperture is extracted from the echo data of the whole scene.

根据本发明的上述方法,所述根据所述子孔径有效结束目标点的时频特性和所述整个场景瞬时最低频率的时频特性,获取下一个子孔径在整个场景回波中的位置,包括:According to the above method of the present invention, the position of the next sub-aperture in the echo of the entire scene is obtained according to the time-frequency characteristics of the effective end target point of the sub-aperture and the time-frequency characteristics of the instantaneous lowest frequency of the entire scene, including :

根据所述子孔径有效结束目标点的时频特性和整个场景瞬时最低频率的时频特性获取下一个子孔径结束时间点;Acquiring the next sub-aperture end time point according to the time-frequency characteristic of the effective end target point of the sub-aperture and the time-frequency characteristic of the instantaneous lowest frequency of the whole scene;

根据所述下一个子孔径的结束时间点和子孔径的时间长度,获取下一个子孔径的起始时间点;Acquiring the start time point of the next sub-aperture according to the end time point of the next sub-aperture and the time length of the sub-aperture;

根据所述下一个子孔径的起始时间点和下一个子孔径的结束时间点,获取下一个子孔径在整个场景回波中的位置。According to the start time point of the next sub-aperture and the end time point of the next sub-aperture, the position of the next sub-aperture in the echo of the whole scene is acquired.

根据本发明的另一方面,还提供一种SAR的子孔径拼接系统,包括:According to another aspect of the present invention, there is also provided a SAR sub-aperture splicing system, including:

移位数据单元:其用于在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;Shift data unit: it is used to extract the sub-aperture azimuth direction spectrum shift data from the imaging data information of the sub-aperture;

顺序数据单元:其采用圆周移位算法拆分子孔径方位向频谱移位数据,用于获取子孔径方位向顺序数据;Sequential data unit: it uses a circular shift algorithm to split the sub-aperture azimuth spectrum shift data to obtain sub-aperture azimuth sequential data;

下一个成像数据单元:其采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;The next imaging data unit: it uses the non-first sub-aperture extraction method to extract the effective data information of the next sub-aperture, and is used to obtain the imaging data information of the next sub-aperture;

下一个移位数据单元:其用于在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;The next shift data unit: it is used to extract the next sub-aperture azimuth spectrum shift data in the next sub-aperture imaging data information;

下一个顺序数据单元:其采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据序列,用于与所述子孔径拼接。Next sequential data unit: it uses a circular shift algorithm to split the next sub-aperture azimuth spectrum shift data to obtain the next sub-aperture azimuth sequential data sequence for splicing with the sub-aperture.

本发明与现有技术相比的有益效果在于:The beneficial effect of the present invention compared with prior art is:

本发明的方法在成像算法处理过程后获取了子孔径的成像数据信息,再在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;采用圆周移位算法拆分子孔径方位向频谱移位数据,获取子孔径方位向顺序数据;采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据,用于与子孔径拼接。本方法突破两步法的局限性,并且在划分子孔径的基础上减小成像处理的数据量完成方位向子孔径拼接有效的减小成像处理的运算量,提高快视处理速度。The method of the present invention obtains the imaging data information of the sub-aperture after the imaging algorithm processing process, and then extracts the sub-aperture azimuth direction spectrum shift data from the sub-aperture imaging data information; bit data to obtain sub-aperture azimuth sequence data; use the non-first sub-aperture extraction method to extract the effective data information of the next sub-aperture, which is used to obtain the next sub-aperture imaging data information; extract the next sub-aperture imaging data information from the next sub-aperture imaging data information The azimuth spectrum shift data of the aperture; use the circular shift algorithm to split the azimuth spectrum shift data of the next sub-aperture, and obtain the azimuth sequence data of the next sub-aperture for splicing with the sub-aperture. This method breaks through the limitations of the two-step method, and reduces the amount of imaging processing data on the basis of dividing the sub-apertures to complete the azimuth direction sub-aperture splicing, effectively reducing the calculation amount of imaging processing, and improving the fast-view processing speed.

附图说明Description of drawings

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort.

图1为实施例一提供的一种SAR的子孔径拼接方法处理流程图;Fig. 1 is the processing flowchart of a kind of SAR sub-aperture mosaic method that embodiment 1 provides;

图2为实施例二提供的一种SAR的子孔径拼接方法处理流程图;Fig. 2 is the processing flowchart of a kind of SAR sub-aperture mosaic method that embodiment 2 provides;

图3为本发明实施例二采用ECS(ExtendedChirpScaling)结合SPECAN成像算法成像的流程图;Fig. 3 is the flow chart of using ECS (ExtendedChirpScaling) combined with SPECAN imaging algorithm imaging in Embodiment 2 of the present invention;

图4为本发明实施例二提供的星地几何关系;Fig. 4 is the geometric relationship between the star and the earth provided by Embodiment 2 of the present invention;

图5为本发明实施例二提供的非首个子孔径提取方法示意图;5 is a schematic diagram of a non-first sub-aperture extraction method provided in Embodiment 2 of the present invention;

图6为实施例三提供的提供的一种SAR的子孔径拼接系统的系统模块图。FIG. 6 is a system block diagram of a SAR sub-aperture stitching system provided by the third embodiment.

具体实施方式detailed description

以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。The implementation of the present invention will be described in detail below in conjunction with the accompanying drawings and examples, so as to fully understand and implement the process of how to apply technical means to solve technical problems and achieve technical effects in the present invention. It should be noted that, as long as there is no conflict, each embodiment and each feature in each embodiment of the present invention can be combined with each other, and the formed technical solutions are all within the protection scope of the present invention.

第一实施例first embodiment

本发明实施例一提供的一种SAR的子孔径拼接方法处理流程图如图1所示,包括如下的处理步骤:The processing flowchart of a SAR sub-aperture splicing method provided by Embodiment 1 of the present invention is shown in FIG. 1 , including the following processing steps:

步骤S110,在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;Step S110, extracting sub-aperture azimuth spectrum shift data from sub-aperture imaging data information;

步骤S120,采用圆周移位算法拆分子孔径方位向频谱移位数据,获取子孔径方位向顺序数据;Step S120, using a circular shift algorithm to split the sub-aperture azimuth spectrum shift data to obtain sub-aperture azimuth sequence data;

步骤S130,采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;Step S130, using the non-first sub-aperture extraction method to extract the effective data information of the next sub-aperture for obtaining the imaging data information of the next sub-aperture;

步骤S140,在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;Step S140, extracting the next sub-aperture azimuth spectrum shift data from the next sub-aperture imaging data information;

步骤S150,采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据,用于与所述子孔径拼接。Step S150, using a circular shift algorithm to split the azimuth shift data of the next sub-aperture to obtain the azimuth sequence data of the next sub-aperture for splicing with the sub-aperture.

第二实施例second embodiment

本发明实施例二提供的一种SAR的子孔径拼接方法处理流程图如图2所示,包括如下的处理步骤:The processing flowchart of a SAR sub-aperture splicing method provided by Embodiment 2 of the present invention is shown in FIG. 2 , including the following processing steps:

步骤S210,采用预设成像算法对当前子孔径回波数据的有效信息进行处理,获取当前子孔径的成像数据信息;Step S210, using a preset imaging algorithm to process the effective information of the echo data of the current sub-aperture, and obtain the imaging data information of the current sub-aperture;

本实施例中,采用ECS算法和SPECAN算法作为预设成像算法对当前子孔径回波数据的有效信息进行处理具体如附图3所示,包括如下步骤:In this embodiment, the ECS algorithm and the SPECAN algorithm are used as the preset imaging algorithm to process the effective information of the current sub-aperture echo data, as shown in Figure 3, including the following steps:

步骤A,根据在整个场景回波数据中提取首个子孔径回波数据的有效信息,计算当前子孔径的多普勒参数;Step A, calculating the Doppler parameters of the current sub-aperture according to the effective information of the first sub-aperture echo data extracted from the echo data of the whole scene;

步骤B,从当前子孔径回波数据的有效信息中,提取方位向采样数据,对方位向采样数据进行方位向短点数离散傅立叶变换处理,然后进行ChirpScaling因子相乘处理;Step B, extracting azimuth sampling data from the effective information of the current sub-aperture echo data, performing azimuth short-point discrete Fourier transform processing on the azimuth sampling data, and then performing ChirpScaling factor multiplication processing;

步骤C,从当前子孔径回波数据的有效信息中,提取距离向采样数据,对距离向采样数据依次进行离散傅立叶变换、距离压缩、二次距离压缩、距离徙动校正、距离向傅立叶反变换和残余因子补偿处理;Step C, extract the range sampling data from the effective information of the current sub-aperture echo data, and sequentially perform discrete Fourier transform, range compression, secondary range compression, range migration correction, and range inverse Fourier transform on the range sampling data and residual factor compensation processing;

步骤D,对方位向中经过ChirpScaling因子相乘处理的数据进行方位向聚焦处理,再对方位向短点采样数据进行傅立叶反变换,结合所述当前子孔径的多普勒参数对方位向短点采样数据进行去斜处理,对经所述去斜处理后的方位向短点采样数据进行傅立叶变换,得到方位向频谱移位数据及时域内的距离向采样数据组成的子孔径降分辨率图像。Step D, perform azimuth focusing processing on the data in the azimuth that has been multiplied by the ChirpScaling factor, and then perform inverse Fourier transform on the sampling data of the short points in the azimuth, and combine the Doppler parameters of the current sub-aperture to focus on the short points in the azimuth The sampling data is subjected to deskewing processing, and Fourier transform is performed on the azimuth short-point sampling data after the deskewing processing to obtain a sub-aperture reduced resolution image composed of azimuth spectrum shift data and range sampling data in the time domain.

步骤S220,在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;Step S220, extracting sub-aperture azimuth spectrum shift data from sub-aperture imaging data information;

步骤S230,采用圆周移位算法拆分子孔径方位向频谱移位数据,获取子孔径方位向顺序数据;Step S230, using a circular shift algorithm to split the sub-aperture azimuth spectrum shift data to obtain sub-aperture azimuth sequence data;

本实施例中采用圆周移位算法拆分当前子孔径方位向频谱移位数据的方法:In this embodiment, the circular shift algorithm is used to split the current sub-aperture azimuth spectrum shift data:

根据所述子孔径方位向频谱移位数据的频谱范围和脉冲重复频率计算出圆周移位次数;Calculate the number of circular shifts according to the spectrum range and pulse repetition frequency of the sub-aperture azimuth shift data;

具体地,在当前子孔径方位向频谱移位数据中获取子孔径最低频率,所述子孔径最低频率和脉冲重复频率的商值取整获取圆周移位次数;Specifically, the sub-aperture minimum frequency is obtained in the current sub-aperture azimuth shift data, and the quotient of the sub-aperture minimum frequency and the pulse repetition frequency is rounded to obtain the number of circular shifts;

原固定带宽的起始频率和终止频率经过按照所获取的圆周移位次数移位之后,对应获取新建固定带宽的起始频率和终止频率;After the start frequency and stop frequency of the original fixed bandwidth are shifted according to the number of circular shifts obtained, the start frequency and stop frequency of the new fixed bandwidth are obtained correspondingly;

根据预设条件和已获取的新建固定带宽的起始频率和终止频率,在起点为零,终点为脉冲重复频率的频率区间范围内获取子孔径方位向频谱顺序数据。According to the preset conditions and the obtained start frequency and stop frequency of the newly-built fixed bandwidth, the sub-aperture azimuth spectrum order data is obtained within the range of the frequency range whose starting point is zero and the ending point is the pulse repetition frequency.

所述获取新建固定带宽的起始频率和终止频率,包括:The acquisition of the start frequency and stop frequency of the new fixed bandwidth includes:

圆周移位次数与脉冲重复频率相乘获得的乘积和原固定带宽起始频率相加的和得到经过圆周移位后新建固定带宽的起始频率;The sum of the product obtained by multiplying the number of circular shifts by the pulse repetition frequency and the initial frequency of the original fixed bandwidth is added to obtain the initial frequency of the new fixed bandwidth after the circular shift;

圆周移位次数与脉冲重复频率相乘获得的乘积和原固定带宽终止频率相加的和得到经过圆周移位后新建固定带宽的终止频率。The sum of the product obtained by multiplying the number of circular shifts by the pulse repetition frequency and the stop frequency of the original fixed bandwidth is obtained to obtain the stop frequency of the new fixed bandwidth after the circular shift.

所设置的预设条件,包括:The preset conditions set include:

经过圆周移位后新的带宽起点大于零,且,The new bandwidth starting point after the circular shift is greater than zero, and,

圆周移位次数加一后与脉冲重复频率相乘获得的乘积和原固定带宽起点频率相加得到的和小于脉冲重复频率。The sum of the product obtained by multiplying the number of circular shifts by one and the pulse repetition frequency and the starting frequency of the original fixed bandwidth is less than the pulse repetition frequency.

所述根据预设条件和已获取的新建固定带宽的起始频率和终止频率,在起点为零,终点为脉冲重复频率的频率区间范围内获取子孔径方位向频谱顺序数据,包括:According to the preset conditions and the obtained start frequency and stop frequency of the newly-built fixed bandwidth, the sub-aperture azimuth direction spectrum order data is obtained within the frequency range where the start point is zero and the end point is the pulse repetition frequency, including:

对以零起始频率至脉冲重复频率的区间段进行区间划分,得到D1区间段、D2区间段和D3区间段;Carry out interval division on the interval segment from the zero start frequency to the pulse repetition frequency, and obtain the D1 interval segment, the D2 interval segment and the D3 interval segment;

所述D1区间段:以零起始频率为D1区间段起点,以经过圆周移位后新建固定带宽频率区间终点为D1区间段终点;The D1 interval segment: the zero start frequency is used as the starting point of the D1 interval segment, and the end point of the new fixed bandwidth frequency interval after the circular shift is used as the end point of the D1 interval segment;

所述D2区间段:以经过圆周移位后新建固定带宽频率区间终点为D2区间段起点,以圆周移位次数加一后与脉冲重复频率相乘获得的乘积和原固定带宽起点频率相加得到的和为D2区间段终点;The D2 section: take the end point of the newly-built fixed bandwidth frequency interval after the circular shift as the starting point of the D2 section, and add the product obtained by multiplying the pulse repetition frequency by the number of circular shifts plus one to the original fixed bandwidth starting frequency. The sum of is the end point of the D2 interval;

所述D3区间段:以圆周移位次数加一后与脉冲重复频率相乘获得的乘积和原固定带宽起点频率相加得到的和为D3区间段起点,以脉冲重复频率为D3区间段终点;The D3 interval segment: the sum obtained by multiplying the pulse repetition frequency by the number of circular shifts plus one and the original fixed bandwidth start frequency is the starting point of the D3 interval segment, and the pulse repetition frequency is the end point of the D3 interval segment;

所述子孔径方位向频谱顺序数据存在于D1区间段和D3区间段。The sub-aperture azimuth spectrum sequence data exists in the D1 interval segment and the D3 interval segment.

具体示例如下,Specific examples are as follows,

iPRFAmbiguty为圆周移位次数,具体地,在当前子孔径方位向频谱移位数据中获取子孔径最低频率,所述子孔径最低频率和脉冲重复频率的商值取整获取圆周移位次数。iPRFAmguty is the number of circular shifts. Specifically, the lowest frequency of the sub-aperture is obtained from the current sub-aperture azimuth shift data, and the quotient of the lowest sub-aperture frequency and the pulse repetition frequency is rounded to obtain the number of circular shifts.

PRF(pulserecurrencefrequency)为脉冲重复频率;PRF (pulserecurrencefrequency) is the pulse repetition frequency;

原预设固定带宽频率区间[fa_start,sub#n,fa_end,sub#n]经过按照所获取的圆周移位次数iPRFAmbiguty移位之后,会圆周移位到新建固定带宽频率区间[fa_start,sub#n+iPRFAmbiguty*prf,fa_end,sub#n+iPRFAmbiguty*prf],且满足下述条件:After the original preset fixed bandwidth frequency interval [f a_start, sub#n , f a_end, sub#n ] is shifted according to the obtained circular shift times iPRFAmguty, it will be circularly shifted to the new fixed bandwidth frequency interval [f a_start, sub#n +iPRFAmguty*prf, f a_end, sub#n +iPRFAmguty*prf], and the following conditions are met:

fa_start,sub#n+iPRFAmbiguty*prf<0f a_start, sub#n +iPRFAmguty*prf<0

fa_start,sub#n+(iPRFAmbiguty+1)*prf<prff a_start, sub#n +(iPRFAmguty+1)*prf<prf

以零起始频率至脉冲重复频率的区间段进行区间划分,得到D1区间段、D2区间段和D3区间段;Divide the intervals from the zero start frequency to the pulse repetition frequency to obtain the D1 interval, D2 interval and D3 interval;

D1区间段:以零起始频率为D1区间段起点,以经过圆周移位后新的带宽终点为D1区间段终点,D1 interval segment: take the zero start frequency as the starting point of the D1 interval segment, and take the new bandwidth end point after the circular shift as the end point of the D1 interval segment,

即为:[0,fa_end,sub#n+iPRFAmbiguty*prf];That is: [0, f a_end, sub#n +iPRFAmguty*prf];

D2区间段:以经过圆周移位后新的带宽终点为D2区间段起点,以圆周移位次数加一后与脉冲重复频率的乘积再和原固定带宽起点频率相加得到的和为D2区间段终点,D2 interval segment: the new bandwidth end point after the circular shift is taken as the starting point of the D2 interval segment, and the sum obtained by adding the product of the number of circular shifts and the pulse repetition frequency to the original fixed bandwidth starting frequency is the D2 interval segment end,

即为:That is:

[fa_end,sub#n+iPRFAmbiguty*prf,fa_start,sub#n+(iPRFAmbiguty+1)*prf];[f a_end, sub#n + iPRFAmguty*prf, f a_start, sub#n + (iPRFAmguty+1)*prf];

D3区间段:以圆周移位次数加一后与脉冲重复频率的乘积再和原固定带宽起点频率相加得到的和为D3区间段起点,以脉冲重复频率为D3区间段终点,D3 interval segment: The sum obtained by adding the number of circular shifts plus one to the pulse repetition frequency and the original fixed bandwidth start frequency is the starting point of the D3 interval segment, and the pulse repetition frequency is the end point of the D3 interval segment.

即为:[fa_start,sub#n+(iPRFAmbiguty+1)*prf,prf];That is: [f a_start, sub#n + (iPRFAmguty+1)*prf, prf];

获取当前子孔径方位向频谱顺序数据存在于D1区间段和D3区间段;[0,fa_end,sub#n+iPRFAmbiguty*prf]∪[fa_start,sub#n+(iPRFAmbiguty+1)*prf,prf];Obtaining the current sub-aperture azimuth spectrum sequence data exists in the D1 interval segment and the D3 interval segment; [0, f a_end, sub#n + iPRFAmguty*prf]∪[f a_start, sub#n +(iPRFAmguty+1)*prf, prf];

步骤S240,采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;Step S240, using a non-first sub-aperture extraction method to extract valid data information of the next sub-aperture for obtaining imaging data information of the next sub-aperture;

非首个子孔径提取方法适用于在整个场景回波中提取非首个子孔径,基于首个子孔径已确定的基础上使用。The non-first sub-aperture extraction method is suitable for extracting the non-first sub-aperture in the echo of the whole scene, and it is used on the basis that the first sub-aperture has been determined.

步骤S2401,根据子孔径的时频关系,获取子孔径有效结束目标点的时频特性;Step S2401, according to the time-frequency relationship of the sub-aperture, obtain the time-frequency characteristics of the effective end target point of the sub-aperture;

本实施例的子孔径时频关系中,时域内的某个时间点,对应频域内的两个目标点,分别为该时间点的起始目标点和该时间点的结束目标点。In the sub-aperture time-frequency relationship in this embodiment, a certain time point in the time domain corresponds to two target points in the frequency domain, which are the start target point of the time point and the end target point of the time point respectively.

本实施例中的有效结束目标点为子孔径起始时刻的结束目标点。The effective end target point in this embodiment is the end target point at the start time of the sub-aperture.

本实施中,用一条经过子孔径起始时刻的结束目标点,且以整个场景的具备调频率为斜率的直线作为子孔径起始时刻的结束目标点时频特性线,表示子孔径有效结束目标点的时频特性;In this implementation, a straight line passing through the end target point at the start time of the sub-aperture and taking the modulation frequency of the entire scene as the slope is used as the time-frequency characteristic line of the end target point at the start time of the sub-aperture to represent the effective end target of the sub-aperture The time-frequency characteristics of the point;

根据子孔径起始时刻的结束目标点的时频坐标和整个场景的具备调频率,获取子孔径起始时刻的结束目标点的时频特性线,表示子孔径有效结束目标点的时频特性;According to the time-frequency coordinates of the end target point at the start time of the sub-aperture and the modulation frequency of the whole scene, the time-frequency characteristic line of the end target point at the start time of the sub-aperture is obtained, representing the time-frequency characteristic of the effective end target point of the sub-aperture;

子孔径起始时刻的有效结束目标点的时频坐标为:以子孔径起始时刻为横坐标,以子孔径起始时刻的最高频率为纵坐标。The time-frequency coordinates of the effective end target point at the start time of the sub-aperture are: the abscissa is the start time of the sub-aperture, and the highest frequency at the start time of the sub-aperture is the ordinate.

由附图5所示,子孔径起始时刻的有效结束目标点B,坐标为(ta_start,sub#n,fa_start_max,sub#n)经过目标点B的虚线为子孔径起始时刻的结束目标点时频特性线,且具备调频率fr,则子孔径起始时刻的结束目标点的时频特性线:As shown in accompanying drawing 5, the effectively ending target point B of the sub-aperture start moment, the coordinates are (t a_start, sub#n , f a_start_max, sub#n ) The dotted line passing through the target point B is the end of the sub-aperture start moment The time-frequency characteristic line of the target point, and has the modulation frequency f r , then the time-frequency characteristic line of the end target point at the beginning of the sub-aperture:

fa-fa_start_max,sub#n=fr×(ta-ta_start,sub#n)f a -f a_start_max, sub#n = f r ×(t a -t a_start, sub#n )

其中 f a _ start _ max , sub # n = - 2 &times; V vel &lambda; &times; sin ( arctan ( t a _ start , sub # n &times; V vel R rot ) - &theta; a 2 ) in f a _ start _ max , sub # no = - 2 &times; V vel &lambda; &times; sin ( arctan ( t a _ start , sub # no &times; V vel R rot ) - &theta; a 2 )

Vvel为参考斜距处的雷达等效速度,λ为考斜距处的雷达载波波长,θa为方位向波束宽度,ta_start,sub#n为子孔径起始时刻时间点。V vel is the radar equivalent velocity at the reference slant distance, λ is the radar carrier wavelength at the test slant distance, θ a is the azimuth beam width, t a_start, sub#n is the sub-aperture start time point.

本实施例中具备调频率为fr,本领域的本领域技术人员应能理解具备调频率fr可以通过整个场景的回波数据所包含的有效信息获取,是本领域的公知常识。In this embodiment, the modulation frequency is f r . Those skilled in the art should understand that the modulation frequency f r can be obtained through the effective information contained in the echo data of the entire scene, which is common knowledge in the field.

此外,除了子孔径起始时刻的结束目标点之外,其他存在于起始时刻的结束目标点时频特性线上的点都可以用来获取子孔径起始时刻的有效结束目标点时频特性线,此处不一一赘述。In addition, in addition to the end target point at the start time of the sub-aperture, other points existing on the time-frequency characteristic line of the end target point at the start time can be used to obtain the effective time-frequency characteristics of the end target point at the start time of the sub-aperture line, which will not be repeated here.

步骤S2402,根据子孔径的时频关系,获取整个场景瞬时最低频率的时频特性;Step S2402, according to the time-frequency relationship of the sub-aperture, obtain the time-frequency characteristics of the instantaneous lowest frequency of the whole scene;

本实施例中,用整个场景瞬时最低频率的时频特性线表示整个场景瞬时最低频率的时频特性;In this embodiment, the time-frequency characteristic line of the instantaneous minimum frequency of the entire scene is used to represent the time-frequency characteristic of the instantaneous minimum frequency of the entire scene;

子孔径起始时刻的起始目标点,位于整个场景瞬时最低频率的时频特性线上,根据子孔径起始时刻的起始目标点的时频坐标和整个场景中心的多普勒中心的变化率,获取整个场景瞬时最低频率的时频特性线,表示整个场景瞬时最低频率的时频特性;The initial target point at the initial moment of the sub-aperture is located on the time-frequency characteristic line of the instantaneous lowest frequency of the entire scene, according to the time-frequency coordinates of the initial target point at the initial moment of the sub-aperture and the change of the Doppler center of the entire scene center rate, obtain the time-frequency characteristic line of the instantaneous minimum frequency of the entire scene, and represent the time-frequency characteristic of the instantaneous minimum frequency of the entire scene;

子孔径起始时刻的起始目标点的时频坐标为:以子孔径起始时刻为横坐标,以子孔径起始时刻的最低频率为纵坐标。The time-frequency coordinates of the initial target point at the initial moment of the sub-aperture are as follows: the initial moment of the sub-aperture is taken as the abscissa, and the lowest frequency at the initial moment of the sub-aperture is taken as the ordinate.

由附图5所示,子孔径起始时刻的起始目标点A,坐标为(ta_start,sub#n,fa_start_min,sub#n)经过目标点A的实线为整个场景瞬时最低频率的时频特性线上,且整个场景中心的多普勒中心的变化率为Krot,整个场景瞬时最低频率的时频特性线为:As shown in Figure 5, the initial target point A at the beginning of the sub-aperture, the coordinates are (t a_start, sub#n , f a_start_min, sub#n ) The solid line passing through the target point A is the instantaneous minimum frequency of the entire scene On the time-frequency characteristic line, and the rate of change of the Doppler center of the entire scene center is K rot , the time-frequency characteristic line of the instantaneous minimum frequency of the entire scene is:

fa-fa_start_min,sub#n=Krot×(ta-ta_start,sub#n)f a -f a_start_min, sub#n =K rot ×(t a -t a_start, sub#n )

其中, f a _ start _ max , sub # n = - 2 &times; V vel &lambda; &times; sin ( arctan ( t a _ start , sub # n &times; V vel R rot ) - &theta; a 2 ) in, f a _ start _ max , sub # no = - 2 &times; V vel &lambda; &times; sin ( arctan ( t a _ start , sub # no &times; V vel R rot ) - &theta; a 2 )

Vvel为参考斜距处的雷达等效速度,λ为考斜距处的雷达载波波长,θa为方位向波束宽度,ta_start,sub#n为子孔径起始时刻时间点。V vel is the radar equivalent velocity at the reference slant distance, λ is the radar carrier wavelength at the test slant distance, θ a is the azimuth beam width, t a_start, sub#n is the sub-aperture start time point.

本实施例中整个场景中心的多普勒中心的变化率为Krot,本领域的本领域技术人员应能理解整个场景中心的多普勒中心的变化率为Krot可以通过整个场景的回波数据所包含的有效信息获取。In this embodiment, the rate of change of the Doppler center of the entire scene center is K rot , those skilled in the art should be able to understand that the rate of change of the Doppler center of the entire scene center K rot can pass through the echoes of the entire scene Access to effective information contained in the data.

步骤S2403,根据所述子孔径有效结束目标点的时频特性和所述整个场景瞬时最低频率的时频特性,获取下一个子孔径在整个场景回波中的位置;Step S2403, according to the time-frequency characteristics of the effective end target point of the sub-aperture and the time-frequency characteristics of the instantaneous lowest frequency of the whole scene, obtain the position of the next sub-aperture in the echo of the whole scene;

根据所述子孔径有效结束目标点的时频特性和整个场景瞬时最低频率的时频特性获取下一个子孔径结束时间位置;Obtain the next sub-aperture end time position according to the time-frequency characteristics of the effective end target point of the sub-aperture and the time-frequency characteristics of the instantaneous lowest frequency of the entire scene;

子孔径起始时刻的结束目标点的时频特性线与整个场景瞬时最低频率的时频特性线的交点为下一个子孔径结束时间点,建立方程组:The intersection of the time-frequency characteristic line of the end target point at the beginning of the sub-aperture and the time-frequency characteristic line of the instantaneous lowest frequency of the entire scene is the next sub-aperture end time point, and the equations are established:

ff aa -- ff aa __ startstart __ maxmax ,, subsub ## nno == ff rr &times;&times; (( tt aa -- tt aa __ startstart ,, subsub ## nno )) ff aa -- ff aa __ startstart __ minmin ,, subsub ## nno == KK rotrot &times;&times; (( tt aa -- tt aa __ startstart ,, subsub ## nno ))

求解上述方程:Solve the above equation:

tt aa == (( ff aa __ startstart __ maxmax ,, subsub ## nno -- ff aa __ startstart __ minmin ,, subsub ## nno )) -- (( ff rr -- KK rotrot )) &times;&times; tt aa __ startstart ,, subsub ## nno KK rotrot -- ff rr

ta即为下一个子孔径子孔径结束时间点。t a is the end time point of the next sub-aperture sub-aperture.

根据所述下一个子孔径的结束时间点和子孔径的时间长度,获取下一个子孔径的起始时间点;Acquiring the start time point of the next sub-aperture according to the end time point of the next sub-aperture and the time length of the sub-aperture;

计算下一个子孔径的时间范围[ta_start,sub#n+1,ta_end,sub#n+1],其中,Calculate the time range of the next sub-aperture [t a_start, sub#n+1 , t a_end, sub#n+1 ], where,

ta_end,sub#n+1=ta t a_end, sub#n+1 = t a

ta_start,sub#n+1=ta_end,sub#n+1-Tsub t a_start, sub#n+1 = t a_end, sub#n+1 -T sub

Tsub为子孔径时间长度,本领域的本领域技术人员应能理解子孔径时间长度Tsub可以通过整个场景的回波数据所包含的有效信息获取,是本领域的公知常识。T sub is the sub-aperture time length, and those skilled in the art should understand that the sub-aperture time length T sub can be obtained from the effective information contained in the echo data of the entire scene, which is common knowledge in the art.

根据所述下一个子孔径的起始时间点ta_start,sub#n+1和下一个子孔径的结束时间点ta_end,sub#n+1,获取下一个子孔径在整个场景回波中的位置。According to the start time point t a_start of the next sub-aperture, sub#n+1 and the end time point t a_end, sub#n+1 of the next sub-aperture, obtain the echo of the next sub-aperture in the whole scene Location.

步骤S2404,根据下一个子孔径在整个场景回波中的位置,在整个场景回波数据中提取下一个子孔径有效数据信息。Step S2404, according to the position of the next sub-aperture in the echo of the entire scene, extract valid data information of the next sub-aperture from the echo data of the entire scene.

步骤S250,在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;Step S250, extracting the next sub-aperture azimuth spectrum shift data from the next sub-aperture imaging data information;

步骤S260,采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据,用于与所述子孔径拼接。Step S260, using a circular shift algorithm to split the azimuth spectrum shift data of the next sub-aperture to obtain the azimuth sequence data of the next sub-aperture for splicing with the sub-aperture.

本领域技术人员应能理解上述当前子孔径回波数据的有效信息,包括,星历参数,SAR(合成孔径雷达)特性参数以及当前子孔径的正交采样数据。Those skilled in the art should be able to understand the effective information of the above-mentioned current sub-aperture echo data, including ephemeris parameters, SAR (Synthetic Aperture Radar) characteristic parameters and orthogonal sampling data of the current sub-aperture.

整个场景的回波数据所包含的有效信息,包括,星历参数,SAR(合成孔径雷达)特性参数以及整个场景的正交采样数据。The effective information contained in the echo data of the whole scene includes ephemeris parameters, SAR (Synthetic Aperture Radar) characteristic parameters and orthogonal sampling data of the whole scene.

星历参数包括星上时间、卫星的位置和速度、卫星的姿态(俯仰角、横滚角、偏航角)等。The ephemeris parameters include on-board time, satellite position and velocity, satellite attitude (pitch angle, roll angle, yaw angle) and so on.

SAR(合成孔径雷达)特性参数包括波长、距离向带宽、距离向采样频率、脉冲宽度、脉冲重复频率、距离向波束中心视角、距离向波束宽度、方位向部署宽度、方位向起始/结束扫描角度、方位向波束宽度、起始采样时间、距离向采样点数等。SAR (Synthetic Aperture Radar) characteristic parameters include wavelength, range bandwidth, range sampling frequency, pulse width, pulse repetition frequency, range beam center viewing angle, range beam width, azimuth deployment width, azimuth start/end scan Angle, beam width in azimuth, initial sampling time, number of sampling points in range, etc.

第三实施例third embodiment

本发明还提供一种SAR的子孔径拼接系统的系统,图6为一种SAR的子孔径拼接系统的系统的系统模块图,下面参照附图6对该实施例进行说明,本系统主要包括移位数据单元61,顺序数据单元62,下一个成像数据单元63,下一个移位数据单元64和下一个顺序数据单元65,其中,The present invention also provides a system of a SAR sub-aperture splicing system. FIG. 6 is a system block diagram of a SAR sub-aperture splicing system. The embodiment will be described below with reference to the accompanying drawing 6. This system mainly includes mobile Bit data unit 61, sequential data unit 62, next imaging data unit 63, next shift data unit 64 and next sequential data unit 65, wherein,

移位数据单61:其用于在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;Shift data sheet 61: it is used to extract sub-aperture azimuth spectrum shift data from sub-aperture imaging data information;

顺序数据单元62:其采用圆周移位算法拆分子孔径方位向频谱移位数据,用于获取子孔径方位向顺序数据;Sequential data unit 62: it uses a circular shift algorithm to split the sub-aperture azimuth spectrum shift data, and is used to obtain sub-aperture azimuth sequential data;

下一个成像数据单元63:其采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;The next imaging data unit 63: it uses a non-first sub-aperture extraction method to extract the effective data information of the next sub-aperture for obtaining the imaging data information of the next sub-aperture;

下一个移位数据单元64:其用于在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;The next shift data unit 64: it is used to extract the next sub-aperture azimuth direction spectrum shift data in the next sub-aperture imaging data information;

下一个顺序数据单元65:其采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据序列,用于与所述子孔径拼接。Next sequential data unit 65: it uses a circular shift algorithm to split the azimuth spectrum shift data of the next sub-aperture to obtain the next sub-aperture azimuth sequential data sequence for splicing with the sub-aperture.

本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本发明所必须的。Those skilled in the art can understand that the accompanying drawing is only a schematic diagram of an embodiment, and the modules or processes in the accompanying drawing are not necessarily necessary for implementing the present invention.

通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。It can be seen from the above description of the implementation manners that those skilled in the art can clearly understand that the present invention can be implemented by means of software plus a necessary general hardware platform. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in storage media, such as ROM/RAM, disk , CD, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments of the present invention.

本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的装置及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。Each embodiment in this specification is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the device or system embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and for relevant parts, refer to part of the description of the method embodiments. The device and system embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, It can be located in one place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without creative effort.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (8)

1.一种SAR的子孔径拼接方法,其特征在于,包括,1. A sub-aperture splicing method of SAR, characterized in that, comprising, 在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;extracting the sub-aperture azimuth direction spectrum shift data from the imaging data information of the sub-aperture; 采用圆周移位算法拆分子孔径方位向频谱移位数据,获取子孔径方位向顺序数据;Use the circular shift algorithm to split the sub-aperture azimuth spectrum shift data to obtain sub-aperture azimuth sequence data; 采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;Using a non-first sub-aperture extraction method to extract effective data information of the next sub-aperture for obtaining imaging data information of the next sub-aperture; 在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;Extracting the next sub-aperture azimuth spectrum shift data from the next sub-aperture imaging data information; 采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据,用于与所述子孔径拼接。A circular shift algorithm is used to split the azimuth spectrum shift data of the next sub-aperture to obtain the azimuth sequence data of the next sub-aperture for splicing with the sub-aperture. 2.如权利要求1所述的一种SAR的子孔径拼接方法,其特征在于,所述采用圆周移位算法拆分当前子孔径方位向频谱移位数据,包括:2. the sub-aperture splicing method of a kind of SAR as claimed in claim 1, is characterized in that, described employing circular shift algorithm to split current sub-aperture azimuth direction spectrum shift data, comprising: 根据所述子孔径方位向频谱移位数据的频谱范围和脉冲重复频率计算出圆周移位次数;Calculate the number of circular shifts according to the spectrum range and pulse repetition frequency of the sub-aperture azimuth shift data; 原固定带宽的起始频率和终止频率经过按照所获取的圆周移位次数移位之后,对应获取新建固定带宽的起始频率和终止频率;After the start frequency and stop frequency of the original fixed bandwidth are shifted according to the number of circular shifts obtained, the start frequency and stop frequency of the new fixed bandwidth are obtained correspondingly; 根据预设条件和已获取的新建固定带宽的起始频率和终止频率,在起点为零,终点为脉冲重复频率的频率区间范围内获取子孔径方位向频谱顺序数据。According to the preset conditions and the obtained start frequency and stop frequency of the newly-built fixed bandwidth, the sub-aperture azimuth spectrum order data is obtained within the frequency range with the start point being zero and the end point being the pulse repetition frequency. 3.如权利要求2所述的一种SAR的子孔径拼接方法,其特征在于,还包括:3. the sub-aperture splicing method of a kind of SAR as claimed in claim 2, is characterized in that, also comprises: 在当前子孔径方位向频谱移位数据中获取子孔径最低频率,根据所述子孔径最低频率和脉冲重复频率的商值取整获取圆周移位次数。The sub-aperture minimum frequency is obtained from the current sub-aperture azimuth shift data, and the number of circular shifts is obtained by rounding the quotient of the sub-aperture minimum frequency and the pulse repetition frequency. 4.如权利要求2所述的一种SAR的子孔径拼接方法,其特征在于,所述获取新建固定带宽的起始频率和终止频率,包括:4. the sub-aperture splicing method of a kind of SAR as claimed in claim 2, is characterized in that, described acquisition starts frequency and stop frequency of newly-built fixed bandwidth, comprises: 圆周移位次数与脉冲重复频率相乘获得的乘积和原固定带宽起始频率相加的和得到经过圆周移位后新建固定带宽的起始频率;The sum of the product obtained by multiplying the number of circular shifts by the pulse repetition frequency and the initial frequency of the original fixed bandwidth is added to obtain the initial frequency of the new fixed bandwidth after the circular shift; 圆周移位次数与脉冲重复频率相乘获得的乘积和原固定带宽终止频率相加的和得到经过圆周移位后新建固定带宽的终止频率。The sum of the product obtained by multiplying the number of circular shifts by the pulse repetition frequency and the stop frequency of the original fixed bandwidth is obtained to obtain the stop frequency of the new fixed bandwidth after the circular shift. 5.如权利要求2所述的一种SAR的子孔径拼接方法,其特征在于,所述预设条件,包括:5. the sub-aperture splicing method of a kind of SAR as claimed in claim 2 is characterized in that, described preset condition comprises: 经过圆周移位后新的带宽起点大于零,且,The new bandwidth starting point after the circular shift is greater than zero, and, 圆周移位次数加一后与脉冲重复频率相乘获得的乘积和原固定带宽起始频率相加得到的和小于脉冲重复频率。The sum of the product obtained by multiplying the number of circular shifts by one and the pulse repetition frequency and the initial frequency of the original fixed bandwidth is less than the pulse repetition frequency. 6.如权利要求1所述的一种SAR的子孔径拼接方法,其特征在于,所述采用非首个子孔径提取方法提取下一个子孔径有效数据信息,包括:6. the sub-aperture splicing method of a kind of SAR as claimed in claim 1, is characterized in that, described adopting non-first sub-aperture extracting method to extract next sub-aperture effective data information, comprises: 根据子孔径的时频关系,获取子孔径有效结束目标点的时频特性;According to the time-frequency relationship of the sub-aperture, the time-frequency characteristics of the effective end target point of the sub-aperture are obtained; 根据子孔径的时频关系,获取整个场景瞬时最低频率的时频特性;According to the time-frequency relationship of the sub-aperture, the time-frequency characteristics of the instantaneous lowest frequency of the entire scene are obtained; 根据所述子孔径有效结束目标点的时频特性和所述整个场景瞬时最低频率的时频特性,获取下一个子孔径在整个场景回波中的位置;Acquiring the position of the next sub-aperture in the echo of the entire scene according to the time-frequency characteristic of the effective end target point of the sub-aperture and the time-frequency characteristic of the instantaneous lowest frequency of the entire scene; 根据下一个子孔径在整个场景回波中的位置,在整个场景回波数据中提取下一个子孔径有效数据信息。According to the position of the next sub-aperture in the echo of the whole scene, effective data information of the next sub-aperture is extracted from the echo data of the whole scene. 7.如权利要求6所述的一种SAR的子孔径拼接方法,其特征在于,所述根据所述子孔径有效结束目标点的时频特性和所述整个场景瞬时最低频率的时频特性,获取下一个子孔径在整个场景回波中的位置,包括:7. The sub-aperture splicing method of a kind of SAR as claimed in claim 6, is characterized in that, described according to the time-frequency characteristic of effectively ending target point of described sub-aperture and the time-frequency characteristic of the instantaneous lowest frequency of described whole scene, Get the position of the next sub-aperture in the echo of the whole scene, including: 根据所述子孔径有效结束目标点的时频特性和整个场景瞬时最低频率的时频特性获取下一个子孔径结束时间点;Acquiring the next sub-aperture end time point according to the time-frequency characteristic of the effective end target point of the sub-aperture and the time-frequency characteristic of the instantaneous lowest frequency of the whole scene; 根据所述下一个子孔径的结束时间点和子孔径的时间长度,获取下一个子孔径的起始时间点;Acquiring the start time point of the next sub-aperture according to the end time point of the next sub-aperture and the time length of the sub-aperture; 根据所述下一个子孔径的起始时间点和下一个子孔径的结束时间点,获取下一个子孔径在整个场景回波中的位置。According to the start time point of the next sub-aperture and the end time point of the next sub-aperture, the position of the next sub-aperture in the echo of the whole scene is obtained. 8.一种SAR的子孔径拼接系统,其特征在于,包括:8. A sub-aperture splicing system for SAR, characterized in that it comprises: 移位数据单元:其用于在子孔径的成像数据信息中提取子孔径方位向频谱移位数据;Shift data unit: it is used to extract the sub-aperture azimuth direction spectrum shift data from the imaging data information of the sub-aperture; 顺序数据单元:其采用圆周移位算法拆分子孔径方位向频谱移位数据,用于获取子孔径方位向顺序数据;Sequential data unit: it uses a circular shift algorithm to split the sub-aperture azimuth spectrum shift data to obtain sub-aperture azimuth sequential data; 下一个成像数据单元:其采用非首个子孔径提取方法提取下一个子孔径有效数据信息,用于获取下一个子孔径成像数据信息;The next imaging data unit: it uses the non-first sub-aperture extraction method to extract the effective data information of the next sub-aperture, and is used to obtain the imaging data information of the next sub-aperture; 下一个移位数据单元:其用于在下一个子孔径成像数据信息中提取下一个子孔径方位向频谱移位数据;The next shift data unit: it is used to extract the next sub-aperture azimuth spectrum shift data in the next sub-aperture imaging data information; 下一个顺序数据单元:其采用圆周移位算法拆分下一个子孔径方位向频谱移位数据,获取下一个子孔径方位向顺序数据序列,用于与所述子孔径拼接。Next sequential data unit: it uses a circular shift algorithm to split the next sub-aperture azimuth spectrum shift data to obtain the next sub-aperture azimuth sequential data sequence for splicing with the sub-aperture.
CN201410638078.6A 2014-11-06 2014-11-06 A kind of sub-aperture stitching method and system of SAR Active CN105629231B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410638078.6A CN105629231B (en) 2014-11-06 2014-11-06 A kind of sub-aperture stitching method and system of SAR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410638078.6A CN105629231B (en) 2014-11-06 2014-11-06 A kind of sub-aperture stitching method and system of SAR

Publications (2)

Publication Number Publication Date
CN105629231A true CN105629231A (en) 2016-06-01
CN105629231B CN105629231B (en) 2018-08-28

Family

ID=56044347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410638078.6A Active CN105629231B (en) 2014-11-06 2014-11-06 A kind of sub-aperture stitching method and system of SAR

Country Status (1)

Country Link
CN (1) CN105629231B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802136A (en) * 2017-01-16 2017-06-06 暨南大学 One kind is based on Legendre's Fourier polynomial cylinder interference joining method and system
CN109425859A (en) * 2017-08-31 2019-03-05 北京航空航天大学 A kind of sequential image imaging method and device
CN110988877A (en) * 2019-11-25 2020-04-10 西安空间无线电技术研究所 Satellite-borne high-resolution SAR high squint Doppler deconvolution method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812082A (en) * 1996-03-13 1998-09-22 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Method for azimuth scaling of SAR data and highly accurate processor for two-dimensional processing of scanSAR data
EP0924534A2 (en) * 1997-12-22 1999-06-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for processing Spotlight SAR raw data
US20100207808A1 (en) * 2007-07-04 2010-08-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for processing TOPS (Terrain Observation by Progressive Scan)-SAR (Synthetic Aperture Radar)-Raw Data
CN102680974A (en) * 2012-05-25 2012-09-19 西安空间无线电技术研究所 Signal processing method of satellite-bone sliding spotlight synthetic aperture radar
CN102879778A (en) * 2012-07-26 2013-01-16 北京理工大学 Improved subaperture processing method of highly squinted-looking airborne SAR (synthetic aperture radar)
CN103235305A (en) * 2013-03-29 2013-08-07 中国人民解放军国防科学技术大学 Spaceborne ultrahigh-resolution sliding bunching SAR (synthetic aperture radar) imaging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812082A (en) * 1996-03-13 1998-09-22 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Method for azimuth scaling of SAR data and highly accurate processor for two-dimensional processing of scanSAR data
EP0924534A2 (en) * 1997-12-22 1999-06-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for processing Spotlight SAR raw data
US20100207808A1 (en) * 2007-07-04 2010-08-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for processing TOPS (Terrain Observation by Progressive Scan)-SAR (Synthetic Aperture Radar)-Raw Data
CN102680974A (en) * 2012-05-25 2012-09-19 西安空间无线电技术研究所 Signal processing method of satellite-bone sliding spotlight synthetic aperture radar
CN102879778A (en) * 2012-07-26 2013-01-16 北京理工大学 Improved subaperture processing method of highly squinted-looking airborne SAR (synthetic aperture radar)
CN103235305A (en) * 2013-03-29 2013-08-07 中国人民解放军国防科学技术大学 Spaceborne ultrahigh-resolution sliding bunching SAR (synthetic aperture radar) imaging method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN YANG ET AL.: "A Subaperture Imaging Algorithm to Highly Squinted TOPS SAR Based on SPECAN and Deramping", 《10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR PROCEEDINGS OF EUSAR 2014》 *
马兵强等: "滑动聚束FMCW-SAR的子孔径成像算法", 《系统工程与电子技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802136A (en) * 2017-01-16 2017-06-06 暨南大学 One kind is based on Legendre's Fourier polynomial cylinder interference joining method and system
CN106802136B (en) * 2017-01-16 2019-07-23 暨南大学 One kind is based on the polynomial cylinder interference joining method of Legendre's Fourier and system
CN109425859A (en) * 2017-08-31 2019-03-05 北京航空航天大学 A kind of sequential image imaging method and device
CN109425859B (en) * 2017-08-31 2021-06-11 北京航空航天大学 Sequential image imaging method and device
CN110988877A (en) * 2019-11-25 2020-04-10 西安空间无线电技术研究所 Satellite-borne high-resolution SAR high squint Doppler deconvolution method
CN110988877B (en) * 2019-11-25 2022-03-04 西安空间无线电技术研究所 A Spaceborne High-Resolution SAR Large Squint Doppler Dewinding Method

Also Published As

Publication number Publication date
CN105629231B (en) 2018-08-28

Similar Documents

Publication Publication Date Title
CN103744068B (en) The moving-target detection formation method of dual pathways Continuous Wave with frequency modulation SAR system
Olivadese et al. Passive isar with dvb-t signals
EP2802896B1 (en) Sar autofocus for ground penetration radar
CN104898119B (en) A kind of moving target parameter estimation method based on correlation function
CN106872974A (en) High-precision motion target imaging method based on hypersonic platform Two-channels radar
CN104007440A (en) Imaging method for acceleratedly factorized back-projection bunching synthetic aperture radar
DE102015218538A1 (en) Radar apparatus and method for estimating distance and speed of objects
CN113589285B (en) SAR real-time imaging method for aircraft
CN106610492A (en) SAR imaging method for time-frequency domain mixing correction range migration based on RD algorithm
Yang et al. A novel three-step image formation scheme for unified focusing on spaceborne SAR data
Feng et al. Deceptive jamming suppression for SAR based on time-varying initial phase
CN108226891A (en) A kind of scanning radar echo computational methods
CN103323854B (en) Doppler beam sharpening imaging method and device
CN105629231B (en) A kind of sub-aperture stitching method and system of SAR
CN102788978B (en) Squint spaceborne/airborne hybrid bistatic synthetic aperture radar imaging method
CN102901966B (en) Moving-target instantaneous distance Doppler imaging method based on detuning and keystone processing
CN102928839B (en) Full-aperture imaging method for multi-channel wave beam-pointing synthetic aperture radar (SAR)
CN111007512B (en) Vehicle-mounted radar imaging method and device and electronic equipment
CN103576151B (en) Azimuth multi-channel SAR imaging method and system based on compressed sensing
CN106707278A (en) Sparse representation-based doppler beam sharpened imaging method and device
CN103217677A (en) Single-channel SAR (synthetic aperture radar) moving target detecting method based on joint detection amount
CN105353374A (en) Single-frequency radar imaging method for spinning target
CN105572666A (en) Single frequency radar imaging method for spinning target
CN104049254A (en) Self-focusing method and device for high-resolution scanning synthetic aperture radar
CN103630893A (en) Method for imaging observation data in sparse microwave imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant