[go: up one dir, main page]

CN105624191A - 一种建立cyp2d1基因敲除大鼠模型的方法 - Google Patents

一种建立cyp2d1基因敲除大鼠模型的方法 Download PDF

Info

Publication number
CN105624191A
CN105624191A CN201510980660.5A CN201510980660A CN105624191A CN 105624191 A CN105624191 A CN 105624191A CN 201510980660 A CN201510980660 A CN 201510980660A CN 105624191 A CN105624191 A CN 105624191A
Authority
CN
China
Prior art keywords
cyp2d1
rat
gene knockout
gene
sgrna3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510980660.5A
Other languages
English (en)
Inventor
魏渊
许海淼
张晓燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201510980660.5A priority Critical patent/CN105624191A/zh
Publication of CN105624191A publication Critical patent/CN105624191A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0081Cholesterol monooxygenase (cytochrome P 450scc)(1.14.15.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15006Cholesterol monooxygenase (side-chain-cleaving) (1.14.15.6), i.e. cytochrome P450scc
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种建立<i>CYP2D1</i>基因敲除大鼠模型的方法,属于转基因技术领域;本发明首先确定待敲除基因的靶位点并设计合成其引物序列;插入经酶切好的Cas9-gRNA-Bsal载体中,扩增得到带有T7?启动子序列的靶位点sgRNA;体外转录并纯化后检测活性;将有活性的sgRNA和Cas9?RNA显微注射入大鼠单细胞胚,获得Founder大鼠;筛选出<i>CYP2D1</i>基因敲除大鼠杂合子后交配得到纯合子个体,即<i>CYP2D1</i>基因敲除大鼠;本发明提供用P450基因敲除大鼠模型代替小鼠模型的制备方法,使基因敲除技术真正融入药物的非临床安全评价,有利于候选药物的早期毒性的发现。

Description

一种建立CYP2D1基因敲除大鼠模型的方法
技术领域
本发明涉及一种建立CYP2D1基因敲除大鼠模型的方法,属于转基因技术领域。
背景技术
细胞色素P450(cytochromeP450),又称混合功能氧化酶(mixed-functionoxidase)或单加氧酶(monooxygenase),主要存在于肝微粒体中,在内源性物质和包括药物、环境化合物在内的外源性物质的生物转化中起着关键的作用。P450是药物代谢的第I相酶,它的活性对药物的代谢和毒性产物的生成往往起着决定性作用。人体内约有75%的药物通过CYP代谢。人体内CYP1A2,CYP2C9,CYP2C19,CYP2D6,CYP2E1和CYP3A4与95%现有临床药物的代谢相关,而与大鼠相对应的CYP1A2,CYP2D1,CYP2C13,CYP2D2,CYP2E1和CYP3A1同工酶是当两种或两种以上药物联合应用时,由于药物之间的相互作用而使药效或不良反应加强或减轻,甚至出现未预期的不良反应。因此,对该酶系的研究一直是药物代谢和毒理学中的热点领域。
尽管P450基因敲除小鼠模型的建立和应用已经取得了初步成功,但在实际的操作过程中一直存在两个主要困难,一是在临床前药物安全性评价工作中,常规的手段包括基于大鼠肝微粒体的体外试验、基于大鼠的各类毒性试验和药代动力学试验,如何把这些大鼠的数据与基因敲除小鼠模型的实验数据加以整合,需要操作者对不同物种的P450酶系具有深入的理论认识和长期的实践经验,这一困难在相当程度上制约了P450基因敲除小鼠模型的使用和推广;二是小鼠模型受限于其物种,存在可检测组织体积小,体液容量小等特点,这对后续的药代动力学和毒理学试验提出了更高的技术要求。因此建立P450基因敲除大鼠模型,将切实解决上述两个困难。
人类CYP2D6基因位于22号常染色体上,尽管它的表达量只占人类肝脏总P450的4%,但却与大约30%常用药物的生物转化相关。CYP2D6的底物包括多种抗心律失常药、受体阻滞药、抗高血压药、镇痛药、抗精神病药以及三环类抗抑郁药等。高加索人种中大约有6%-10%属于CYP2D6慢代谢者,亚洲人种约为2%。在大鼠中,CYP2D亚家族包括6个亚型,其中已明确大鼠CYP2D1为人类CYP2D6的直系同源基因。所以,CYP2D1基因敲除大鼠模型缺乏人类CYP2D6相类似的代谢能力,将较好的模拟CYP2D6慢代谢人群,验证候选药物针对该人群的安全性。
锌指核酸酶(zincfingernuclease,ZFN)和类转录激活因子效应物核酸酶(Transcriptionactivator-likeeffectornuclease,TALEN)分别通过锌指蛋白(Zincfingerprotein,ZNP)和类转录激活因子效应物(Transcriptionactivator-likeeffector)识别DNA序列,并在特定位点对DNA进行切割,形成双链断裂(DoublestrandbreaksDSB),随后在非同源末端连接(Nonhomologousendjoining,NHEJ)修复机制下形成随机的多个碱基的插入或删除,从而实现基因敲除;或者在同源重组(Homologousrecombination,HR)修复机制以及修复模板(donor)存在的条件下,实现定点的单个碱基或者长片段的插入、删除或者突变。此外,利用TALEN和特定的转录因子或者抑制因子结合,还可以实现对内源基因特异性的转录激活或者抑制、操纵内源基因的表达。目前TALEN技术的靶位点已经覆盖了多个物种的全基因组,实现了真正意义上的全基因组操作。ZFN和TALEN技术不仅极大地提高了基因打靶的效率,而且更高效地实现了对基因组的定点操作以及基因表达控制,如定点插入、删除和替换、转录抑制或激活等,真正的在应用水平实现了对动植物基因组的精细操作,因此也将以ZFN和TALEN为代表的技术统称为基因组编辑(Genomeediting)技术。
CRISPR是指成簇的、规律的短回文重复序列(Clusteredregularlyinterspacedshortpalindromicrepeats)。CRISPR-CAS9系统主要是由三个部分组成,分别是Cas9蛋白、precursorCRISPRRNA(pre-crRNA)和trans-activatingcrRNA(tracrRNA),CRISPR-CAS9识别特定的DNA序列,进行特定位点切割造成双链DNA断裂(Double-Strandbreaks,DSB),在没有模板的条件下,发生非同源重组末端连接(Non-homologousendjoining,NHEJ),造成移码突变(frameshiftmutation),导致基因敲除(刘志国,CRISPR-CAS9系统介导基因组编辑的研究进展,畜牧兽医学报,2014-45(10):167-1583)。
与ZFN/TALEN相比,CRISPR/Cas更易于操作,效率更高,更容易得到纯合子突变体,而且可以在不同的位点同时引入多个突变。从质粒构建上来看,CRISPR-CAS9技术设计简单,操作简便,节约成本。CRISPR-CAS9系统设计过程中只需改变勒基因SgRNA的20个碱基组成的向导序列即可,一步简单的分子克隆即可完成。CRISPR/Cas9技术的发展十分迅猛,已经广泛应用在动物的细胞水平、植物、微生物以及人类医学等各方面。但是CRISPR-CAS9系统目前也面临着脱靶率高、特异性差的难题,这无疑是CRISPR/Cas9系统应用于基础研究和临床治疗的最大的挑战。
发明内容
本发明旨在提供一种CRISPR/cas9基因敲除的CYP2D1大鼠模型。
另一个方面,本发明提供了一种基于CRISPR/cas9基因敲除技术建立CYP2D1基因大鼠动物模型的方法,包括以下步骤:
(1)确定CYP2D1大鼠待敲除基因的特异性靶位点sgRNA1,sgRNA2,sgRNA3:使用GeneKnock-OutwithCas9软件(南京徇齐生物技术有限公司提供),确定在CYP2D1基因(GeneID:266684)的靶位点exon4内挑选3个特异性的sgRNA靶序列,这两个靶序列分别为:sgRNA1(SEQ.ID.NO.1):CAGCATGGCCTTGGGATTGA,sgRNA2(SEQ.ID.NO.2):AGACCCTTACCTCATCAGGA;sgRNA3(SEQ.ID.NO.3):CTAGTTTCACCATCCTGATG。CYP2D1基因长度为586bp。
(2)根据步骤(1)sgRNA靶序列,设计3对引物(南京金斯瑞生物有限公司):Rat_CYP2D1_c9_1-O1(SEQ.ID.NO.4):caccCAGCATGGCCTTGGGATTGA
和Rat_CYP2D1_c9_1-O2(SEQ.ID.NO.5):aaacTCAATCCCAAGGCCATGCTG;Rat_CYP2D1_c9_2-O1(SEQ.ID.NO.6):caccAGACCCTTACCTCATCAGGA
和Rat_CYP2D1_c9_2-O2(SEQ.ID.NO.7):aaacTCCTGATGAGGTAAGGGTCT;Rat_CYP2D1_c9_3-O1(SEQ.ID.NO.8):caccCTAGTTTCACCATCCTGATG
和Rat_CYP2D1_c9_3-O2(SEQ.ID.NO.9):aaacCATCAGGATGGTGAAACTAG,
(3)将步骤(2)中合成的3对引物以逐步降温(94℃-55℃)的方法退火成双链,插入经Bsal酶切好的Cas9-gRNA-Bsal载体中。载体DNA测出浓度为1000ng/μL,测序验证插入片段正确,将正确的克隆用作转录模板。
(4)将步骤(3)正确的克隆作为PCR模板,通过PCR得到带有T7启动子序列的sgRNA1,sgRNA2,sgRNA3。用T7QuickHighYieldRNASynthesisKit试剂盒体外转录带有T7启动子的sgRNA1,sgRNA2,sgRNA3。酚氯仿萃取和酒精沉降法纯化转录产物。
(5)Cas9载体体外转录为Cas9mRNA并进行纯化:使用T7UltraKit(Ambion,AM1345)试剂盒,将pST1374-cas9载体经Agel线性化后,在体外转录成Cas9mRNA。用RNeasyMiniKit(Qiagen,74104)试剂盒纯化Cas9mRNA。
(6)将步骤(5)构建好的cas9mRNA与步骤(4)构建好的sgRNA1,sgRNA2和sgRNA3,分别在斑马鱼受精卵中检测活性,结果显示sgRNA3活性较高。
(7)将步骤(6)有活性的sgRNA3和Cas9mRNA直接显微注射入大鼠单细胞胚,获得Founder大鼠。
(8)将步骤(7)获得的Founder大鼠为F0代大鼠与SD大鼠交配得到的F1代,通过PCR扩增与DNA测序技术筛选得到F1代CYP2D1基因敲除大鼠杂合子个体,将F1代杂合子大鼠按雌雄2:1比例合笼交配获得F2代纯合子个体,即为构建的CYP2D1基因敲除大鼠模型。
本发明的主要优点在于:
细胞色素P450基因敲除小鼠模型虽然是药物代谢研究和临床前安全性评价的重要工具,但是有两个主要不足限制了该类模型的应用:一是基于小鼠模型的数据难以与常规的大鼠实验数据(包括基于大鼠肝微粒体的体外试验、基于大鼠的各类毒性试验和药代动力学试验)进行比较和整合;二是小鼠可检测组织体积小,体液容量小,提高了后续药代动力学和毒理实验的难度。本发明提出针对这两个困难的解决办法:首次将最新的CRISPR/cas9基因敲除技术引入细胞色素P450领域,建立了最早的CYP2D1基因敲除大鼠模型,项目的成功实施是细胞色素P450基因敲除小鼠模型的全新升级,实现P450基因敲除技术与常规药物研发过程的无缝对接。
大鼠CYP2D1作为人类CYP2D6的同工酶,参与许多外源性及内源性化合物的代谢,因此,构建CYP2D1基因敲除大鼠模型项目的成功实施是细胞色素P450基因敲除小鼠模型的全新升级,同时也将使基因敲除技术真正融入药物的非临床安全评价,重新审视药物的使用模式。
附图说明
图1:菌落PCR鉴定图(1-1,1-2:目的条带为sgRNA1;2-1,2-2:目的条带为sgRNA2;3-1,3-2:目的条带为sgRNA3)。
图2:sgRNA转录产物,电泳鉴定转录产物图(1-1:sgRNA1,1-2:对照;2-1:sgRNA,2-2:对照;3-1:sgRNA3,3-2:对照)。
图3:PCR条带图(1:marker;2:雄性SD大鼠;3:雌性SD大鼠;4:雄性CYP2D1基因敲除大鼠;5:雌性CYP2D1基因敲除大鼠)。
图4:大鼠基因序列图(A:SD大鼠序列;B:杂合子CYP2D1基因敲除大鼠序列;C:纯合子CYP2D1基因敲除大鼠序列。
具体实施方式
实施例1:
一、使用GeneKnock-OutwithCas9软件(南京徇齐生物技术有限公司提供),确定在CYP2D1基因(GeneID:29277)的靶位点exon4内挑选3个特异性的sgRNA靶序列,这三个靶序列分别为sgRNA1:CAGCATGGCCTTGGGATTGA;sgRNA2:AGACCCTTACCTCATCAGGA;sgRNA3:CTAGTTTCACCATCCTGATG。CYP2D1基因长度为586bp。
二、构建可表达sgRNA的Cas9质粒
(1)在南京金斯瑞生物科技有限公司合成3对特异性的sgRNA靶序列引物:
Rat_CYP2D1_c9_1-O1:caccCAGCATGGCCTTGGGATTGA
和Rat_CYP2D1_c9_1-O2:aaacTCAATCCCAAGGCCATGCTG
Rat_CYP2D1_c9_2-O1:caccAGACCCTTACCTCATCAGGA
和Rat_CYP2D1_c9_2-O2:aaacTCCTGATGAGGTAAGGGTCT;
Rat_CYP2D1_c9_3-O1:caccCTAGTTTCACCATCCTGATG
和Rat_CYP2D1_c9_3-O2:aaacCATCAGGATGGTGAAACTAG,
(2)取sgRNA1的上下游引物(100μM)5μL混合、取sgRNA2的上下游引物(100μM)5μL混合、同时取sgRNA3的上下游引物(100μM)5μL混合,分别放入沸水,20min取出(94℃~55℃),退火成双链,分别插入经Bsal酶切好的Cas9-gRNA-Bsal载体中(南京徇齐生物技术有限公司),转化,LB固体培养基涂板。次日,分别将连接sgRNA1,sgRNA2和sgRNA3的平板取出,随机各挑2个白色菌落,放入含有20μLLB培养基的EP管中,做菌落PCR,图1(1-1,1-2,2-1,2-2,3-1,3-2)表示的是含有目的条带的菌落PCR鉴定图。
其中,菌落PCR反应体系:U6Forward0.5μL,每对oligo的Reverse0.5μL,2XMIX10μL,模板1μL,加H2O至20μL。PCR反应条件:95℃2min,95℃30sec,50℃30sec,72℃30sec,72℃3min,32个循环。PCR完成后,将PCR产物进行琼脂糖凝胶验证(2%),目的条带大小约100bp,将验证正确的克隆菌液,放入LB液体培养基过夜扩大培养,提取过夜培养的菌液质粒,质粒DNA测出浓度为1100ng/mL,经测序验证(上海生工生物工程有限公司)插入片段大小正确,将正确的sgRNA1,sgRNA2和sgRNA3质粒DNA用作扩增模板。
通过PCR扩增得到带有T7启动子序列的sgRNA1,sgRNA2和sgRNA3,用T7QuickHighYieldRNASynthesisKit试剂盒体外转录sgRNA1,sgRNA2和sgRNA3,图2为sgRNA1,sgRNA2和sgRNA3的转录产物。
T7启动子引物为:
Rat_CYP2D1_c9_1-T7-O1(SEQ.ID.NO.10):
caccTAATACGACTCACTATAGGGCAGCATGGCCTTGGGATTGA
Rat_CYP2D1_c9_2-T7-O1(SEQ.ID.NO.11):
caccTAATACGACTCACTATAGGGAGACCCTTACCTCATCAGGA
Rat_CYP2D1_c9_3-T7-O1(SEQ.ID.NO.12):
caccTAATACGACTCACTATAGGGCTAGTTTCACCATCCTGATG
扩增带有T7启动子序列的sgRNA1,sgRNA2和gRNA3反应体系如下:
Taq0.5μL
Mg2+4μL
dNTP1μL
Buffer(Mg2+free)5μL
Forward2μL
Reverse2μL
模版(sgRNA1、sgRNA2、sgRNA3质粒DNA)5~10ng
H2O(RNAfree)to50μL
PCR反应条件:98℃2min,98℃30sec,55℃30sec,72℃30sec,72℃5min,循环30次。
体外转录体系:
Nucleasefreewater1μL
NTPbufferMIX5μL
PCR模板(带有T7启动子序列的sgRNA1、sgRNA2、sgRNA3)8μL
T7RNAPolymerase1μL
Total15μL
将反应后的转录产物混匀,离心,封口膜封好,37℃,过夜。
(3)纯化转录产物
酚氯仿萃取和酒精沉降法纯化转录产物sgRNA1,sgRNA2,sgRNA3,用RNA-freewater补充体系到180μL,再加20μL3M醋酸钠,pH=5.2,混匀,各加200μL的酚氯彷,混匀,13000g,离心,10min,吸取上清;加上清的2倍体积的100%酒精,放于-80℃冰箱,30min,取出,4℃离心,13500g,10min,去上清。各加500μL70%酒精,13500g,7min;去上清,注意不要吸走沉淀;常温干燥30min加30μLRNA-freewater,溶解,测转录产物sgRNA1,sgRNA2和sgRNA3浓度均为1100ng/μL。
(4)转录Cas9载体
使用T7UltraKit(Ambion,AM1345)试剂盒,将pST1374-cas9载体(南京徇齐生物技术有限公司)经Agel线性化后,在体外转录成Cas9mRNA。用RNeasyMiniKit(Qiagen,74104)试剂盒纯化Cas9mRNA。
三、将构建出的Cas9mRNA和sgRNA1为一组,Cas9mRNA和sgRNA2为一组,Cas9mRNA与sgRNA3为一组,分别显微注射到15枚斑马鱼受精卵(南京徇齐生物技术有限公司)中检测sgRNA1,sgRNA2和sgRNA3活性,(其中用量分别为cas9mRNA:50ng/μL,sgRNA1:100ng/μL,sgRNA2:100ng/μL,sgRNA3:100ng/μL,);sgRNA1组取10个斑马鱼受精卵进行检测,结果鱼卵中检测突变率为0%,sgRNA2组取8个斑马鱼受精卵进行检测,结果鱼卵中检测突变率为12.5%,sgRNA3组取8个斑马鱼受精卵进行检测,结果鱼卵中检测突变率为25%,结果显示sgRNA-3活性较高。
表1.sgRNA1,sgRNA2,sgRNA3活性比较
四、将检测得到的有活性的sgRNA3和Cas9mRNA混合直接显微注射入10只受体(SD母鼠,南京徇齐生物技术有限公司)的单细胞胚中,其中用量为:cas9mRNA:50ng/μL,sgRNA3:30ng/μL;总共注射260枚胚胎,结果存活200枚。由此获得Founder大鼠F0代1只(缺失7bp),将F0代大鼠与SD大鼠杂交共获得一只F1代雄性CYP2D1基因敲除大鼠杂合子(缺失7bp)与两只雌性CYP2D1基因敲除大鼠杂合子。(鉴定方法同实施例2的步骤2-3所述)。
表2:胚胎注射结果
实施例2:
一、CYP2D1基因敲除大鼠的繁殖:
将1只F1代雄性CYP2D1基因敲除大鼠杂合子(缺失7bp)和2只雌性CYP2D1基因敲除大鼠杂合子(缺失7bp)合笼进行繁殖。三个月后得到子代(F2代)14只,对子代进行鉴定,鉴定结果显示获得子代纯合子雌雄各一只。将得到的子代纯合子为亲代合笼,扩大纯合子种群数量。
二、CYP2D1基因组DNA提取与鉴定
子代大鼠在出生7~14d时,用剪脚趾标记法标记,收集剪下的组织,加入裂解液和蛋白酶K(sigma),混匀。恒温电热振荡箱中55℃过夜。加入酚∶氯仿∶异戊醇(体积比25∶24∶1),混匀。12000r/min,离心5min,吸上清液至另一EP管中。加入与上清液等体积异丙醇,沉淀DNA,离心15min。倒掉上清液,加入75%乙醇。倒掉乙醇,干燥。加入50μLTE缓冲液溶解。
将得到的DNA作为模板进行PCR反应:引物序列由上海生工生物工程有限公司提供,上游引物(SEQ.ID.NO.13):5′-GCAGAGGCGATTCTCTGTGT-3′,下游引物(SEQ.ID.NO.14):5′-CTTTCCGTCTCTCAGGCACA-3′。目的基因片段长度为586bp。PCR反应条件:95℃2min,94℃30sec,58℃30sec,72℃35sec,72℃5min,10℃Hold,重复35个循环。2%琼脂糖凝胶电泳获得PCR条带。纯化PCR产物,送上海生工生物工程有限公司测序。
三、CYP2D1基因敲除大鼠的鉴定
根据PCR条带图3,在586bp处均有亮带表明含有CYP2D1基因;测序结果图4A显示为SD大鼠的CYP2D1基因序列,测序结果图4C显示,CYP2D1基因敲除大鼠测序图为单峰,在260bp左右处成功缺失7bp(ACCTCAT)(遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成,缺失7bp后,遗传密码子重新组合,CYP2D1基因不能正常表达),表明已成功敲除CYP2D1基因,获得CYP2D1基因敲除纯合子大鼠,模型构建成功。
SEQUENCELISTING
<110>江苏大学
<120>一种建立CYP2D1基因敲除大鼠模型的方法
<130>一种建立CYP2D1基因敲除大鼠模型的方法
<160>14
<170>PatentInversion3.3
<210>1
<211>20
<212>DNA
<213>大鼠(Rattusnorvegicus)
<400>1
cagcatggccttgggattga20
<210>2
<211>20
<212>DNA
<213>大鼠(Rattusnorvegicus)
<400>2
agacccttacctcatcagga20
<210>3
<211>20
<212>DNA
<213>大鼠(Rattusnorvegicus)
<400>3
ctagtttcaccatcctgatg20
<210>4
<211>24
<212>DNA
<213>人工序列
<400>4
cacccagcatggccttgggattga24
<210>5
<211>24
<212>DNA
<213>人工序列
<400>5
aaactcaatcccaaggccatgctg24
<210>6
<211>24
<212>DNA
<213>人工序列
<400>6
caccagacccttacctcatcagga24
<210>7
<211>24
<212>DNA
<213>人工序列
<400>7
aaactcctgatgaggtaagggtct24
<210>8
<211>24
<212>DNA
<213>人工序列
<400>8
caccctagtttcaccatcctgatg24
<210>9
<211>24
<212>DNA
<213>人工序列
<400>9
aaaccatcaggatggtgaaactag24
<210>10
<211>44
<212>DNA
<213>人工序列
<400>10
cacctaatacgactcactatagggcagcatggccttgggattga44
<210>11
<211>44
<212>DNA
<213>人工序列
<400>11
cacctaatacgactcactatagggagacccttacctcatcagga44
<210>12
<211>44
<212>DNA
<213>人工序列
<400>12
cacctaatacgactcactatagggctagtttcaccatcctgatg44
<210>13
<211>20
<212>DNA
<213>人工序列
<400>13
gcagaggcgattctctgtgt20
<210>14
<211>20
<212>DNA
<213>人工序列
<400>14
ctttccgtctctcaggcaca20

Claims (10)

1.一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,所述方法是基于CRISPR/cas9基因敲除技术。
2.根据权利要求1所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,所述方法是敲除P450基因家族中的CYP2D1基因建立的大鼠模型。
3.根据权利要求1所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,按以下步骤进行:
(1)确定CYP2D1大鼠待敲除基因的特异性靶位点sgRNA1,sgRNA2,sgRNA3;
(2)根据步骤(1)确定的特异性靶位点sgRNA1,sgRNA2,sgRNA3序列,设计特异性引物;
(3)将步骤(2)中合成的3对引物以逐步降温的方法退火成双链,插入经Bsal酶切好的Cas9-gRNA-Bsal载体中;将经验证正确的克隆片段用作扩增模板;
(4)将步骤(3)中经验证正确的克隆片段作为扩增模板,通过PCR得到带有T7启动子序列的sgRNA1,sgRNA2,sgRNA3;体外转录带有T7启动子的sgRNA1,sgRNA2,sgRNA3后纯化转录产物;
(5)Cas9载体体外转录为Cas9mRNA并进行纯化;
(6)将步骤(5)得到的cas9mRNA与步骤(4)得到的sgRNA1,sgRNA2和sgRNA3,分别注射入斑马鱼受精卵中检测活性;
(7)将步骤(6)验证有活性的sgRNA和Cas9mRNA混合直接显微注射入大鼠单细胞胚,获得Founder大鼠;
(8)将步骤(7)获得的Founder大鼠与SD大鼠交配,筛选得到CYP2D1基因敲除杂合子大鼠,再将杂合子大鼠合笼交配获得纯合子个体,即为构建的CYP2D1基因敲除大鼠模型。
4.根据权利要求3所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,步骤(1)中所述的3个特异性的靶位点序列分别为:
sgRNA1:CAGCATGGCCTTGGGATTGA,
sgRNA2:AGACCCTTACCTCATCAGGA;
sgRNA3:CTAGTTTCACCATCCTGATG。
5.根据权利要求3所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,步骤(2)中所述的3个特异性的靶位点序列引物分别为:Rat_CYP2D1_c9_1-O1:caccCAGCATGGCCTTGGGATTGA
和Rat_CYP2D1_c9_1-O2:aaacTCAATCCCAAGGCCATGCTG;Rat_CYP2D1_c9_2-O1:caccAGACCCTTACCTCATCAGGA
和Rat_CYP2D1_c9_2-O2:aaacTCCTGATGAGGTAAGGGTCT;Rat_CYP2D1_c9_3-O1:caccCTAGTTTCACCATCCTGATG
和Rat_CYP2D1_c9_3-O2:aaacCATCAGGATGGTGAAACTAG。
6.根据权利要求3所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,步骤(4)中所述的PCR扩增得到带有T7启动子序列的sgRNA1、sgRNA2和sgRNA3中,T7启动子扩增引物为:
Rat_CYP2D1_c9_1-T7-O1:
caccTAATACGACTCACTATAGGGCAGCATGGCCTTGGGATTGA
Rat_CYP2D1_c9_2-T7-O1:
caccTAATACGACTCACTATAGGGAGACCCTTACCTCATCAGGA
Rat_CYP2D1_c9_3-T7-O1:
caccTAATACGACTCACTATAGGGCTAGTTTCACCATCCTGATG。
7.根据权利要求3所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,步骤(6)中所述注射入斑马鱼受精卵中cas9mRNA、sgRNA1、sgRNA2和sgRNA3的用量分比为:50ng/μL、100ng/μL、100ng/μL、100ng/μL。
8.根据权利要求3所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,步骤(7)中所述有活性的sgRNA为sgRNA3;注射入大鼠单细胞胚的cas9mRNA和sgRNA3的用量分别为:50ng/μL、30ng/μL。
9.根据权利要求3所述的一种建立CYP2D1基因敲除大鼠模型的方法,其特征在于,步骤(8)中所述杂合子间交配为雄性杂合子(CYP2C11+/-)与雌性杂合子(CYP2C11+/-)以1:2配对。
10.一种CYP2D1基因敲除大鼠模型,其特征在于,所述模型是基于CRISPR/cas9基因敲除技术,敲除P450基因家族中的CYP2D1基因建立的大鼠模型。
CN201510980660.5A 2015-12-24 2015-12-24 一种建立cyp2d1基因敲除大鼠模型的方法 Pending CN105624191A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510980660.5A CN105624191A (zh) 2015-12-24 2015-12-24 一种建立cyp2d1基因敲除大鼠模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510980660.5A CN105624191A (zh) 2015-12-24 2015-12-24 一种建立cyp2d1基因敲除大鼠模型的方法

Publications (1)

Publication Number Publication Date
CN105624191A true CN105624191A (zh) 2016-06-01

Family

ID=56039534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510980660.5A Pending CN105624191A (zh) 2015-12-24 2015-12-24 一种建立cyp2d1基因敲除大鼠模型的方法

Country Status (1)

Country Link
CN (1) CN105624191A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191057A (zh) * 2016-07-06 2016-12-07 中山大学 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用
CN106282231A (zh) * 2016-09-06 2017-01-04 陕西慧康生物科技有限责任公司 粘多糖贮积症ii型动物模型的构建方法及应用
CN107858373A (zh) * 2017-11-16 2018-03-30 山东省千佛山医院 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法
CN111418553A (zh) * 2020-04-16 2020-07-17 段为钢 一种高尿酸血症大鼠模型及其构建方法
CN114868707A (zh) * 2022-06-02 2022-08-09 浙江大学 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045731A1 (de) * 2010-10-04 2012-04-12 Medicyte Gmbh Geeignete hepatozyten für in-vitro genotoxizitätstests
CN102653756A (zh) * 2011-03-04 2012-09-05 南京大学 一种定向改造动物基因组特定基因的方法及其应用
CN104593418A (zh) * 2015-02-06 2015-05-06 中国医学科学院医学实验动物研究所 一种人源化大鼠药物评价动物模型建立的方法
CN105164264A (zh) * 2012-12-12 2015-12-16 布罗德研究所有限公司 用于序列操纵和治疗应用的系统、方法和组合物的递送、工程化和优化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045731A1 (de) * 2010-10-04 2012-04-12 Medicyte Gmbh Geeignete hepatozyten für in-vitro genotoxizitätstests
CN102653756A (zh) * 2011-03-04 2012-09-05 南京大学 一种定向改造动物基因组特定基因的方法及其应用
CN105164264A (zh) * 2012-12-12 2015-12-16 布罗德研究所有限公司 用于序列操纵和治疗应用的系统、方法和组合物的递送、工程化和优化
CN104593418A (zh) * 2015-02-06 2015-05-06 中国医学科学院医学实验动物研究所 一种人源化大鼠药物评价动物模型建立的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郝福荣等: "大鼠肝脏微粒体中3种细胞色素P-450同工酶活性研究", 《复旦学报(医学版)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191057A (zh) * 2016-07-06 2016-12-07 中山大学 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用
CN106191057B (zh) * 2016-07-06 2018-12-25 中山大学 一种用于敲除人CYP2E1基因的sgRNA序列、CYP2E1基因缺失细胞株的构建方法及其应用
CN106282231A (zh) * 2016-09-06 2017-01-04 陕西慧康生物科技有限责任公司 粘多糖贮积症ii型动物模型的构建方法及应用
CN106282231B (zh) * 2016-09-06 2020-01-03 陕西慧康生物科技有限责任公司 粘多糖贮积症ii型动物模型的构建方法及应用
CN107858373A (zh) * 2017-11-16 2018-03-30 山东省千佛山医院 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法
CN107858373B (zh) * 2017-11-16 2020-03-17 山东省千佛山医院 内皮细胞条件性敲除ccr5基因小鼠模型的构建方法
CN111418553A (zh) * 2020-04-16 2020-07-17 段为钢 一种高尿酸血症大鼠模型及其构建方法
CN114868707A (zh) * 2022-06-02 2022-08-09 浙江大学 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用
CN114868707B (zh) * 2022-06-02 2023-02-07 浙江大学 一种代谢性脑病和心律失常疾病的斑马鱼模型及其应用

Similar Documents

Publication Publication Date Title
CN107217075B (zh) 一种构建epo基因敲除斑马鱼动物模型的方法及引物、质粒与制备方法
Blitz et al. Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system
Zhou et al. Programmable base editing of the sheep genome revealed no genome-wide off-target mutations
CN105624191A (zh) 一种建立cyp2d1基因敲除大鼠模型的方法
Li et al. Base pair editing in goat: nonsense codon introgression into FGF 5 results in longer hair
Fang et al. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9
CN106282231B (zh) 粘多糖贮积症ii型动物模型的构建方法及应用
CN106047930A (zh) 一种PS1基因条件性敲除flox大鼠的制备方法
CN111019971A (zh) 在rosa26位点条件性过表达hpv e6基因小鼠模型的构建方法
CN112725379B (zh) 人源化cd40基因改造动物模型的构建方法及应用
CN105624196A (zh) 一种建立cyp2c11基因敲除大鼠模型的方法
CN116019063B (zh) 一种小鼠条件性诱导Hmox1基因敲除模型的构建方法及应用
CN113736787A (zh) 靶向小鼠Atp7b基因的gRNA及构建Wilson疾病小鼠模型的方法
Li et al. Generation of golden goldfish Carassius auratus via tyrosinase gene targeting by CRISPR/Cas9
Liu et al. A modified TALEN-based strategy for rapidly and efficiently generating knockout mice for kidney development studies
Sadr et al. CRISPR-Cas9 as a potential cancer therapy agent: An update
Tanihara et al. Pigs with an INS point mutation derived from zygotes electroporated with CRISPR/Cas9 and ssODN
CN114150023A (zh) 内皮细胞特异性pfn1基因敲除小鼠模型的构建方法
Robertson et al. Expanding the RNA-guided endonuclease toolkit for mouse genome editing
Cao et al. Generation of C-to-G transversion in mouse embryos via CG editors
CN114410630B (zh) 一种tbc1d8b基因敲除小鼠动物模型的构建方法及其应用
CN113564204B (zh) 细胞色素p450酶人源化大鼠模型及其构建方法和应用
CN112458086B (zh) Hspg2基因敲入小鼠动物模型的构建方法和应用
CN113439711A (zh) 一种改造的巨噬细胞及其应用
CN114480497A (zh) 一种ep400基因敲除斑马鱼心力衰竭模型的构建及其应用的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601