[go: up one dir, main page]

CN105624157A - Drought-induced pollen specific promoter and use thereof - Google Patents

Drought-induced pollen specific promoter and use thereof Download PDF

Info

Publication number
CN105624157A
CN105624157A CN201410618726.1A CN201410618726A CN105624157A CN 105624157 A CN105624157 A CN 105624157A CN 201410618726 A CN201410618726 A CN 201410618726A CN 105624157 A CN105624157 A CN 105624157A
Authority
CN
China
Prior art keywords
promoter
drought
rice
expression
development
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410618726.1A
Other languages
Chinese (zh)
Inventor
葛晓春
马红
黄蔚
姚玲娅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201410618726.1A priority Critical patent/CN105624157A/en
Publication of CN105624157A publication Critical patent/CN105624157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于分子生物学、基因工程技术领域,具体涉及一种水稻花粉特异性启动子及其应用。本发明是水稻<i>OsCLO7</i>基因的启动子序列如SEQIDNO.1所示。该启动子活性受花药发育过程及干旱胁迫影响。定量PCR检测结果显示:<i>OsCLO7</i>主要在水稻穗中表达,更明确地是在穗组织的雄蕊中表达;随着发育过程推进表达增强;幼穗发育前期受干旱胁迫诱导表达。该启动子驱动的GUS报告基因在水稻减数分裂后不同发育时期的花药中表达,更明确地是在花药的花粉粒中表达;穗发育前期GUS活性受干旱诱导,且仅限于花粉粒。本发明中的启动子可被用于构建驱动外源基因在花粉粒中特异性表达的转基因载体,在农业生产上均具有重要的应用价值。

The invention belongs to the technical fields of molecular biology and genetic engineering, and specifically relates to a rice pollen-specific promoter and application thereof. In the present invention, the promoter sequence of rice <i>OsCLO7</i> gene is shown in SEQ ID NO.1. The promoter activity was affected by anther development and drought stress. Quantitative PCR results showed that: <i>OsCLO7</i> was mainly expressed in rice panicle, more specifically in the stamen of panicle tissue; the expression increased with the progress of development; the expression was induced by drought stress in the early stage of young panicle development . The GUS reporter gene driven by this promoter was expressed in rice anthers at different developmental stages after meiosis, more specifically in the pollen grains of anthers; GUS activity was induced by drought in the early stage of panicle development and was limited to pollen grains. The promoter in the present invention can be used to construct a transgene carrier that drives the specific expression of foreign genes in pollen grains, and has important application value in agricultural production.

Description

一种干旱诱导的花粉特异性启动子及其应用A drought-induced pollen-specific promoter and its application

技术领域 technical field

本发明属于分子生物学和基因工程技术领域,具体涉及一种干旱诱导的花粉特异性启动子及其应用。 The invention belongs to the technical fields of molecular biology and genetic engineering, and in particular relates to a drought-induced pollen-specific promoter and application thereof.

背景技术 Background technique

启动子是基因的一个组成部分,通常位于5端起始密码子上游区域。该区域含有转录调控因子、RNA聚合酶特异性识别和结合的DNA序列,控制基因表达(转录)的起始时间和表达的程度。启动子(Promoters)就像“开关”,决定基因的活动。植物基因的启动子按其基因的表达方式分为组成型启动子(constitutivepromoter)、诱导型启动子(induciblepromoter)和组织特异型启动子(tissue-specificpromoter)。 The promoter is a part of the gene, usually located in the upstream region of the start codon at the 5 ' end. This region contains transcriptional regulatory factors, DNA sequences that RNA polymerase specifically recognizes and binds to, and controls the initiation time and degree of gene expression (transcription). Promoters are like "switches" that determine the activity of genes. The promoters of plant genes are divided into constitutive promoters, inducible promoters and tissue-specific promoters according to their gene expression methods.

组成型启动子是指能在植物所有或大部分组织中高效启动外源基因表达的启动子,而组织特异性启动子所驱动的基因只在植物生长的某个或某些过程中的特定的器官或组织中表达。例如,叶片特异性启动子、雄蕊特异性启动子等等。发掘这些启动子,对其活性进行鉴定,不仅有助于阐明基因在植物生长发育中的作用,而且可以借助这些启动子,驱动目的基因在特定组织中的有效表达,从而应用于科学研究和农业生产实践。 Constitutive promoters refer to promoters that can efficiently promote the expression of exogenous genes in all or most of the plant tissues, while tissue-specific promoters drive genes that are only specific in one or some processes of plant growth. expressed in organs or tissues. For example, leaf-specific promoters, stamen-specific promoters, and the like. Discovering these promoters and identifying their activities will not only help elucidate the role of genes in plant growth and development, but also drive the effective expression of target genes in specific tissues with the help of these promoters, which can be applied in scientific research and agriculture Production Practice.

诱导型启动子,是指在某些特定条件例如物理、化学、生物信号存在时,启动子可以驱动下游的基因增强表达,转录水平大大提高。植物由于长期暴露在大自然环境中,时刻受到来自环境胁迫的影响,相应地在进化过程中产生大量基因的表达受环境胁迫因子,比如高温、干旱、病虫害的诱导,调控体内信号通路和分子活动,抵御逆境。随着温室效应加剧、工农业用水剧增,干旱已成为威胁农业生产的主要因素。作物生殖生长阶段特别是雄蕊的发育最容易受环境胁迫的影响,造成的减产也最为严重。因此,发掘雄蕊发育特异的干旱胁迫响应基因,应用其启动子驱动目的基因的表达,对于研究植物生殖抗旱及植物遗传工程都有重要意义。 An inducible promoter means that when certain conditions such as physical, chemical, and biological signals exist, the promoter can drive the enhanced expression of downstream genes, and the transcription level is greatly increased. Due to long-term exposure to the natural environment, plants are always affected by environmental stress. Correspondingly, the expression of a large number of genes in the evolution process is induced by environmental stress factors, such as high temperature, drought, and pests, and regulates signaling pathways and molecular activities in the body. , against adversity. With the intensification of the greenhouse effect and the sharp increase of industrial and agricultural water use, drought has become the main factor threatening agricultural production. The reproductive growth stage of crops, especially the development of stamens, is most susceptible to environmental stress, resulting in the most severe yield reduction. Therefore, discovering the drought stress-responsive genes specific to stamen development and using their promoters to drive the expression of target genes is of great significance for the study of plant reproduction and drought resistance and plant genetic engineering.

本发明中涉及的OsCLO7基因是水稻油体钙蛋白(caleosins,CLOs)基因家族8个成员中的一员,该基因随幼穗发育进程在花粉粒中表达上升,同时受干旱胁迫诱导。本发明提供了OsCLO7基因启动子的驱动活性,该启动子可以驱动基因在水稻花粉粒中特异性表达,在干旱胁迫下活性增强,可以预见,它在科研或者生产实践上均具有较强应用价值。 The OsCLO 7 gene involved in the present invention is one of the eight members of the rice caleosins (CLOs) gene family. The expression of the gene in pollen grains increases with the development of young spikes and is induced by drought stress. The invention provides the driving activity of the OsCLO7 gene promoter, the promoter can drive the specific expression of the gene in rice pollen grains, and its activity is enhanced under drought stress, and it can be predicted that it has strong application value in scientific research or production practice .

发明内容 Contents of the invention

本发明的目的是提供一种组织特异型启动子及其应用,尤其提供一种受干旱胁迫诱导的诱导型启动子及其应用。 The purpose of the present invention is to provide a tissue-specific promoter and its application, especially to provide an inducible promoter induced by drought stress and its application.

本发明包括启动子序列的克隆、植物转基因载体的构建、该启动子在不同组织中驱动基因表达的活性分析,以及该启动子对干旱胁迫的响应分析。该启动子属于一种组织特异性启动子,且响应干旱胁迫,因此在水稻生殖抗旱研究领域及植物转基因技术领域具有重要价值。 The invention includes the cloning of the promoter sequence, the construction of the plant transgenic vector, the activity analysis of the promoter driving gene expression in different tissues, and the analysis of the response of the promoter to drought stress. The promoter belongs to a tissue-specific promoter and responds to drought stress, so it is of great value in the field of research on rice reproduction and drought resistance and in the field of plant transgenic technology.

本发明提供的启动子,是从水稻的OsCLO7基因(Os06g0254600)起始密码子上游克隆到的一段约2224bp大小的DNA序列,其核苷酸序列为SEQIDNO.1所示。 The promoter provided by the present invention is a DNA sequence with a size of about 2224bp cloned from the upstream of the initiation codon of rice OsCLO 7 gene (Os06g0254600), and its nucleotide sequence is shown in SEQ ID NO.1.

本发明还包括,利用所述启动子(SEQIDNO.1顺序)构建的基因工程载体; The present invention also includes a genetic engineering vector constructed using the promoter (SEQ ID NO.1 sequence);

本发明还包括,利用所述启动子(SEQIDNO.1顺序)作为花粉粒特异型启动子在基因工程中的应用,该启动子能够驱动目的基因在雄蕊发育9-12期的花粉中特异性表达。 The present invention also includes the application of the promoter (SEQ ID NO.1 sequence) as a pollen grain-specific promoter in genetic engineering, and the promoter can drive the specific expression of the target gene in the pollen of the 9-12 stage of stamen development .

本发明还包括,利用所述启动子(SEQIDNO.1顺序)作为雄蕊发育早期花药中干旱诱导型启动子的应用,该启动子能在干旱胁迫下驱动目的基因表达于发育中的花粉粒中。 The present invention also includes the use of the promoter (SEQ ID NO.1 sequence) as a drought-inducible promoter in anthers in the early stage of stamen development, and the promoter can drive the expression of a target gene in developing pollen grains under drought stress.

本发明中的启动子可被用于构建驱动外源基因在花粉粒中特异性表达的转基因载体,在科研和农业生产上均具有重要的应用价值。 The promoter in the present invention can be used to construct a transgenic carrier that drives the specific expression of foreign genes in pollen grains, and has important application value in both scientific research and agricultural production.

该启动子的获得,是来源于对OsCLO7基因的表达特征的研究及该基因的抗旱性研究。首先,从水稻幼穗发育过程的干旱胁迫响应芯片数据中获得该基因的表达特征,OsCLO7是水稻8个油体钙蛋白中唯一既受发育调控表达又受干旱胁迫诱导表达的基因(参见图1);应用定量PCR检测该基因的表达,分析各组织的表达谱,发现其只在雄蕊中特异性表达(参见图2)。比较各组织干旱后的OsCLO7表达情况,发现其在幼穗发育早期,特别是减数分裂时期受干旱诱导表达,减数分裂以后本底表达已很高,不再受干旱胁迫诱导(参见图3)。 The acquisition of the promoter is derived from the research on the expression characteristics of the OsCLO7 gene and the research on the drought resistance of the gene. First, the expression characteristics of this gene were obtained from the drought stress response microarray data during rice panicle development. OsCLO7 is the only gene among the eight rice calpains that is both developmentally regulated and drought stress-induced (see Figure 1 ); Quantitative PCR was used to detect the expression of this gene, and the expression profile of each tissue was analyzed, and it was found that it was only specifically expressed in stamens (see Figure 2). Comparing the expression of OsCLO7 in various tissues after drought, it was found that its expression was induced by drought in the early stage of young panicle development, especially during the meiosis period, and the background expression was already very high after meiosis, and it was no longer induced by drought stress (see Figure 3 ).

将该启动子构建在含有报告基因GUS(β-glucuronidase,编码葡萄糖醛酸酶)的载体中(参见图4),通过农杆菌介导的水稻转基因技术获得转基因阳性株。取水稻各组织检测GUS活性,发现它所驱动的GUS报告基因只在水稻穗发育后期的花药中高表达,更特异地是在花粉粒中表达(参见图5)。因此,OsCLO7基因启动子可以驱动外源基因在特定的组织中表达,从而达到定向地转基因的目的。 The promoter was constructed in a vector containing the reporter gene GUS ( β-glucuronidase , encoding glucuronidase) (see Figure 4), and transgenic positive strains were obtained through Agrobacterium-mediated rice transgenic technology. The GUS activity was detected in various rice tissues, and it was found that the GUS reporter gene driven by it was only highly expressed in the anthers at the later stage of rice panicle development, and more specifically expressed in pollen grains (see Figure 5). Therefore, the OsCLO7 gene promoter can drive the expression of foreign genes in specific tissues, so as to achieve the purpose of directional transgene.

将转基因植物进行各个时期的干旱处理,检测GUS活性,结果和预期一致,只在花药中有活性,而且干旱后的花药中显示了更强的表达。穗发育早期对照材料中几乎检测不到花药的GUS活性,而在干旱的对应时期材料中花药GUS活性较强,花粉粒成熟期对照和处理的花药都有很强的GUS活性(参见图6)。 The transgenic plants were subjected to various periods of drought treatment, and the GUS activity was detected, and the results were consistent with expectations, only in the anthers, and the expression was stronger in the anthers after drought. The GUS activity of anthers was hardly detected in the control materials at the early stage of panicle development, but the GUS activity of anthers was stronger in the materials at the corresponding period of drought, and the control and treated anthers at the pollen grain maturity stage had strong GUS activities (see Figure 6) .

附图说明 Description of drawings

图1芯片数据分析水稻油体钙蛋白基因在幼穗中干旱胁迫下的表达。水稻油体钙蛋白基因家族共有8个成员,OsCLO1OsCLO7。2~3mm,3~4mm,4~5mm,5~7mm为颖花的长度。C为对照,D为干旱处理。OsCLO7是CLO家族中唯一的干旱胁迫后在各时期花中表达明显上调的基因。 Figure 1 Microarray data analysis of the expression of rice calpain gene under drought stress in young panicles. There are 8 members in the rice calpain gene family, OsCLO1 to OsCLO7 . 2~3mm, 3~4mm, 4~5mm, 5~7mm are the length of florets. C is the control, D is the drought treatment. OsCLO7 was the only gene in the CLO family whose expression was significantly up-regulated in flowers at different stages after drought stress.

图2OsCLO7的组织表达表达谱。 Figure 2 Tissue expression profile of OsCLO7 .

图3OsCLO7的干旱响应表达谱。 Figure 3 The drought-response expression profile of OsCLO7 .

图4OsCLO7基因启动子的载体构建示意图。 Figure 4 Schematic diagram of the vector construction of the OsCLO7 gene promoter.

图5水稻各组织GUS活性分析。其中,a为一周的水稻苗(bar=1cm);b-d分别为成熟期的根茎叶(bar=1mm);e,f,g,h,i分别为第6(bar=0.5mm)、8、10、12、14期的颖花(bar=2mm);j,k,l分别为12期的雌蕊、花药和花粉粒(bar=0.1mm);m为授粉4天的幼胚(bar=1mm)。GUS活性主要出现于晚期花粉粒中。 Fig. 5 Analysis of GUS activity in rice tissues. Among them, a is the rice seedling of one week (bar=1cm); b-d are the roots, stems and leaves of mature stage (bar=1mm); e, f, g, h, i are the 6th (bar=0.5mm), 8th, Spikelets at stages 10, 12, and 14 (bar=2mm); j, k, and l are pistils, anthers, and pollen grains at stages 12 (bar=0.1mm); m is an immature embryo pollinated for 4 days (bar=1mm ). GUS activity mainly appeared in late pollen grains.

图6穗发育时期进行干旱处理后花药的GUS活性比较(bar=0.1mm)。干旱胁迫后GUS信号在花粉粒发育的早期就会出现,且信号强度有所升高。 Fig. 6 Comparison of GUS activity in anthers after drought treatment during panicle development (bar=0.1mm). After drought stress, the GUS signal appeared in the early stage of pollen grain development, and the signal intensity increased.

具体实施方式 detailed description

下面结合具体实施例进一步阐明本发明。应理解这些实施例仅用于说明本发明而不限制本发明的范围。下面实施例中未注明具体条件的实验方法通常按照常规条件,即Sambrook等著的《分子克隆》实验手册中所叙述的条件,或按照制造厂商所建议的条件。 The present invention is further illustrated below in conjunction with specific examples. It should be understood that these examples are only for illustrating the present invention and do not limit the scope of the present invention. The experimental methods without specific conditions indicated in the following examples are usually in accordance with conventional conditions, that is, the conditions described in the "Molecular Cloning" experimental manual by Sambrook et al., or in accordance with the conditions suggested by the manufacturer.

实施例1水稻种植和干旱处理Embodiment 1 rice cultivation and drought treatment

以水稻日本晴为材料,种植于人工控制的温室和室外自然环境的盆中。干旱处理在温室进行。干旱处理方式:水稻在正常条件下生长至生殖发育期,然后在生殖发育期停止浇水,待土壤相对含水量降至15-20%后,保持一周,取样用于基因的表达分析、GUS染色。 The rice Nipponbare is used as the material, and it is planted in artificially controlled greenhouses and pots in outdoor natural environments. The drought treatment was carried out in the greenhouse. Drought treatment method: grow rice under normal conditions until the reproductive development period, then stop watering during the reproductive development period, and keep it for a week after the relative soil moisture content drops to 15-20%, and take samples for gene expression analysis and GUS staining .

实施例2基因芯片分析干旱条件下水稻幼穗发育过程基因的表达Example 2 Gene chip analysis of gene expression in the rice panicle development process under drought conditions

水稻日本晴种子催芽后,移栽到温室塑料盆的土中生长,50天后密切观察并检查水稻的生长状态,在从营养期刚刚转入生殖生长时进行干旱处理:倒去盆中多余水分,停止浇水,待土壤水分降低到30%左右时,每天补充少量水维持该水分含量一个礼拜,取不同大小(2~3mm,3~4mm,4~5mm,5~7mm)的水稻花,分别收集并编号,以正常生长条件下的水稻作为对照,做三次重复。芯片分析由安捷伦公司完成。 After the rice Nipponbare seeds germinated, they were transplanted to the soil in the plastic pots of the greenhouse to grow. After 50 days, the growth status of the rice was closely observed and checked, and the drought treatment was carried out when the vegetative period was just transferred to the reproductive growth: pour out the excess water in the pot, stop Watering, when the soil moisture drops to about 30%, add a small amount of water every day to maintain the moisture content for a week, take rice flowers of different sizes (2~3mm, 3~4mm, 4~5mm, 5~7mm) and collect them separately And numbered, with rice under normal growth conditions as a control, do three repetitions. Chip analysis was done by Agilent.

实施例3qRT-PCR检测Embodiment 3qRT-PCR detection

取不同组织及不同穗发育时期的水稻样品,按RNA提取试剂盒提供的试剂及方法(RNAisoplus,TaKaRa)提取RNA,进行反转录(PrimeScriptRTregentKitWithgDNAEraser,TaKaRa)。本实施例采用基于探针的定量PCR方法,是由于OsCLO家族成员同源性较高,针对不同基因设计Taqman特异性探针,可以更好地区分OsCLO家族的同源基因。探针及引物序列如SEQIDNO.2-SEQIDNO.4所示: Rice samples from different tissues and different panicle development stages were taken, RNA was extracted according to the reagents and methods provided by the RNA extraction kit (RNAisoplus, TaKaRa), and reverse transcription was performed (PrimeScriptRTregentKitWithgDNAEraser, TaKaRa). In this example, the probe-based quantitative PCR method is adopted because the members of the OsCLO family have high homology. Designing Taqman-specific probes for different genes can better distinguish the homologous genes of the OsCLO family. The probe and primer sequences are shown in SEQ ID NO.2-SEQ ID NO.4:

探针序列:FAM-ACCTTGCCGCCAGTGT–MGB(SEQIDNO.2); Probe sequence: FAM-ACCTTGCCGCCAGTGT-MGB (SEQ ID NO.2);

上游引物:GTTGTGACTTCGCATTTGCTAGA(SEQIDNO.3); Upstream primer: GTTGTGACTTCGCATTTGCTAGA (SEQ ID NO.3);

下游引物:CGATAAGTGAGGTAATGGTGCATC(SEQIDNO.4)。 Downstream primer: CGATAAGTGAGGTAATGGTGCATC (SEQ ID NO. 4).

PCR反应体系: PCR reaction system:

2XPremixExTaq5μl 2XPremixExTaq5μl

Primer-F0.2μl Primer-F0.2μl

Primer-R0.2μl Primer-R 0.2μl

Probe0.4μl Probe0.4μl

RT反应液2μl RT reaction solution 2μl

DyeI0.2μl DyeI0.2μl

ddH2O4μl ddH2O4μl

PCR反应程序: PCR reaction program:

(1)95℃预变性30s; (1) Pre-denaturation at 95°C for 30s;

(2)95℃变性5s,60℃退火延伸30s,循环40次; (2) Denaturation at 95°C for 5s, annealing at 60°C for 30s, cycle 40 times;

实施例4转基因载体构建Example 4 Transgenic vector construction

提取水稻基因组DNA,通过PCR技术扩增OsCLO7启动子,所用的引物如SEQIDNO.1所示序列的下划线部分,即:上游引物:CTTCAGTTGTCTTTGCCTCC(SEQIDNO.5),下游引物:AGAGCAATTCTGCGAGACG(SEQIDNO.6)。上游引物引入SalI酶切位点,下游引入SmaI酶切位点。将扩增到的产物连入PCR-Blunt中间载体,测序无误后连入经改造过的转基因终载体pCAMBIA1300中,转化农杆菌EHA105,通过菌落PCR确证阳性克隆中启动子片段的存在。 The rice genomic DNA was extracted, and the OsCLO7 promoter was amplified by PCR technology. The primers used were the underlined part of the sequence shown in SEQ ID NO.1, namely: upstream primer: CTTCAGTTGTCTTTGCCTCC (SEQ ID NO.5), downstream primer: AGAGCAATTCTGCGAGACG (SEQ ID NO.6). The upstream primer introduces the Sal I restriction site, and the downstream introduces the Sma I restriction site. The amplified product was connected into the PCR-Blunt intermediate vector, and after the sequencing was correct, it was connected into the modified transgenic final vector pCAMBIA1300, transformed into Agrobacterium EHA105, and the presence of the promoter fragment in the positive clone was confirmed by colony PCR.

实施例5水稻遗传转化Embodiment 5 rice genetic transformation

A.诱导愈伤组织 A. Induction of callus

选取成熟饱满的种子,去掉内外颖,用70%乙醇浸泡2min,然后于含2%有效氯的次氯酸钠溶液中浸泡30min,用灭菌水洗7-8次,吸水纸上吹干,置于N6D培养基上,28℃,16h光培养约30天,取散落的愈伤继代10天。 Select mature and plump seeds, remove the glume, soak in 70% ethanol for 2 minutes, then soak in sodium hypochlorite solution containing 2% available chlorine for 30 minutes, wash with sterilized water for 7-8 times, dry on absorbent paper, and place in N6D for cultivation Base, 28 ℃, 16h light culture for about 30 days, take the scattered callus subculture for 10 days.

B.农杆菌EHA105的培养 B. Cultivation of Agrobacterium EHA105

将上一部分实验中得到的含有正确质粒的农杆菌菌液涂布于YEB三抗平板(链霉素、利福平和卡那霉素抗性)上,28℃暗培养约36小时,收集菌落于液体共培养基中,调节其OD为0.2左右。 Spread the Agrobacterium liquid containing the correct plasmid obtained in the previous part of the experiment on the YEB three-antibody plate (streptomycin, rifampicin and kanamycin resistance), culture in the dark at 28°C for about 36 hours, and collect the colonies in In the liquid co-culture medium, adjust its OD to about 0.2.

C.侵染与共培养 C. Infection and co-cultivation

收集继代的愈伤于准备好的共培养菌液中,静置30min。倒掉菌液,愈伤在吸水纸上吸干,接至共培养培养基上,20℃暗培养2-3天。 Collect the subcultured callus in the prepared co-culture solution and let it stand for 30 minutes. Pour off the bacterial liquid, blot dry the callus on absorbent paper, connect it to the co-cultivation medium, and culture it in the dark at 20°C for 2-3 days.

D.筛选 D. filter

将愈伤转移至筛选培养基(N6D+50mg/L潮霉素B+250mg/L头孢霉素)上,28℃光培养。每15~20天可以更换一次培养基,筛选时间不得少于45天。 The callus was transferred to the selection medium (N6D+50mg/L hygromycin B+250mg/L cephalosporin) and light cultured at 28°C. The medium can be replaced every 15-20 days, and the screening time should not be less than 45 days.

E.分化 E. differentiation

将经过筛选新长出来的愈伤转移至分化培养基(MS+2mg/L6-BA+0.2mg/LNAA+2mg/LKT+0.2mg/LIAA+50mg/L潮霉素+250mg/L头孢霉素),28℃16小时光培养。在进行分化培养前,可以先将愈伤暗培养几天以作为预分化。定期更换培养基。 Transfer the newly grown callus through selection to differentiation medium (MS+2mg/L6-BA+0.2mg/LNAA+2mg/LKT+0.2mg/LIAA+50mg/L hygromycin+250mg/L cephalosporin ), 16 hours light culture at 28°C. Before the differentiation culture, the callus can be cultured in the dark for several days as pre-differentiation. Change medium regularly.

F.生根 F. root

将分化出来的转基因苗(>1cm高),剥除多余的愈伤组织,并剪去根(留约0.5cm),移至1/2MS培养基中生根。28℃光培养16小时。 The differentiated transgenic seedlings (>1cm high) were stripped of excess callus, and the roots were cut off (leaving about 0.5cm), and moved to 1/2MS medium to take root. Incubate in light at 28°C for 16 hours.

G.炼苗与移栽 G. Hardening and transplanting

生根结束后,可以除去生根培养基后,将苗泡于水中数日进行炼苗,然后移栽入土中生长。 After the rooting is finished, the rooting medium can be removed, and the seedlings are soaked in water for several days to harden the seedlings, and then transplanted into the soil to grow.

实施例6GUS组织染色Example 6 GUS tissue staining

取T1代阳性转基因水稻的不同组织,浸于GUS染液[0.2mol∕LNa2HPO4/NaH2PO4,0.1mol∕LK3Fe(CN)6/K4Fe(CN)6,0.1%X-Gluc,0.1%TritonX-100]中,抽气后于37℃染色6小时,无水乙醇脱色处理两天,期间换液数次,最后用70%乙醇浸泡保存。在体视显微镜(LeicaS8APO)下观察并拍照。 Take different tissues of T1 generation positive transgenic rice and soak in GUS staining solution [0.2mol/L Na 2 HPO 4 /NaH 2 PO 4 , 0.1mol/L K 3 Fe(CN) 6 /K 4 Fe(CN) 6 , 0.1% X-Gluc, 0.1% TritonX-100], stained at 37°C for 6 hours after aspirating, decolorized with absolute ethanol for two days, changed the medium several times during the period, and finally soaked in 70% ethanol for storage. Observed and photographed under a stereomicroscope (Leica S8APO).

其中,SEQIDNO.1说明: Among them, SEQ ID NO.1 description:

(i)序列特征:长2224bp,线性核苷酸 (i) Sequence features: 2224bp long, linear nucleotides

(ii)分子类型:核酸 (ii) Molecule type: Nucleic acid

(iii)序列及序列标记:下划线为上下游引物序列 (iii) Sequence and sequence markers: the underlines are the sequences of upstream and downstream primers

(iv)加黑ATG为OsCLO7基因起始密码子 (iv) Blackened ATG is the start codon of OsCLO7 gene

1CTTCAGTTGTCTTTGCCTCCTGTCTTGAGGTCCTGTTGAGATCCCATGGC50 1 CTTCAGTTGTCTTTGCCTCC TGTCTTGAGGTCCTGTTGAGATCCCATGGC50

51AAAATTTTTTACTATGTCACATCGAATGTTTGACACATGCATGAAGTATT100 51AAAATTTTTTACTATGTCACATCGAATGTTTGACACATGCATGAAGTATT100

101AAATATAAACGAAAAAAAAACTAATTACACAGATTGCGTGTAAATTGCGA150 101AAATATAAACGAAAAAAAAAACTAATTACACAGATTGCGTGTAAATTGCGA150

151GATGAATATTTAAGTCTAATTGCTTCATGATCTGACAATGTAGTGCTATA200 151GATGAATATTAAGTCTAATTGCTTCATGATCTGACAATGTAGTGCTATA200

201GTAAATATTTGCTAATGACGGATTAATTAGACTTAATAAATTCGTCTCGC250 201GTAAATATTTGCTAATGACGGATTAATTAGACTTAATAAATTCGTCTCGC250

251AGTTTATAGGCGGATTCTGTAATTTATTTTGTTATTAGTCTATGTTTAAT300 251AGTTTATAGGCGGATTCTGTAATTTTATTTTGTTATTAGTCTATGTTTAAT300

301ACTTCAAATATGTGTCCGTATATCCGATGTGACACGCTAAAATTTTACAC350 301ACTTCAAATATGTGTCCGTATATCCGATGTGACACGCTAAAATTTTACAC350

351CCATAATCTAATTAAACACATCCTAAATCTAGTGAAGATATATACATACC400 351CCATAATCTAATTAAACACATCCTAAATCTAGTGAAGATATATACATACC400

401CGGCAGCTATATATATAGTTGAAAGAGAGGTCATCACACATAATATAATA450 401CGGCAGCTATATATAGTTGAAAGAGAGGTCATCACACATAATATATA450

451AAGTCCAAGACATGGTTTTCTCATTGCATGCATGATGCATAGACAGCATA500 451AAGTCCAAGACATGGTTTTTCATTGCATGCATGATGCATAGACAGCATA500

501GTTCAATATATGTGAAATGCATATGGTGAAAAAAAAATTGCCAGTAAAGA550 501GTTCAATATATGTGAAATGCATATGGTGAAAAAAAAATTGCCAGTAAAGA550

551TGCACGGTATATCCTATTGATATCTACTAGTAGTTTTTAGAACCACTCGG600 551TGCACGGTATATCCTATTGATATCTACTAGTAGTTTTTAGAACCACTCGG600

601TGATATATGTGAGTTGCTAAAAAGTTCAGCAATATATGGGCACTATATTT650 601TGATATATGTGAGTTGCTAAAAAGTTCAGCAATATATGGGCACTATATTT650

651AAAACCTAACGGGTGGACTTAATTATATACACTCATGACTTCACCACCAC700 651AAAACCTAACGGGTGGACTTAATTATATACACTCATGACTTCACCACCAC700

701ACCACATGTCCACACCACATGTGATTTCCCTACTTCGGGAATATTTATCA750 701ACCACATGTCCACACCACATGTGATTTCCCTACTTCGGGAATATTTTATCA750

751GCTTGTATAACGACACTTATTGTTCCAAAAAAATACACTAATTAATATCC800 751GCTTGTATAACGACACTTATTGTTCCAAAAAAATACACTAATTAATATCC800

801ACTAAACAAAAGAAATGAAAATTACACATTGAGTCTTCTTCAACTTTGTA850 801ACTAAACAAAAAGAAATGAAAATTACACATTGAGTCTTCTTCAACTTTGTA850

851TGGTTTAGTTTCTGCCAAGCTTGCAGAAGAATCGTCATAGAGTTTTTAGA900 851TGGTTTAGTTTCTGCCAAGCTTGCAGAAGAATCGTCATAGAGTTTTTAGA900

901CATGCGCATATTTGGCTCAACATATTCTGTATTTCCATTTCGTAATCCAA950 901CATGCGCATATTTGGCTCAACATATTCTGTATTTCCATTTCGTAATCCAA950

951TATATTCTCTTTATGAGTAGATCTAGAAATGCCAATTTACTTTTCCATGA1000 951TATATTCTCTTTATGAGTAGATCTAGAAATGCCAATTTACTTTTTCCATGA1000

1001TGTCATTATCTAAAAAACACATTTCCATGATGTAACAAGTTCTGCATAAA1050 1001TGTCATTATCTAAAAAACACATTTCCATGATGTAACAAGTTCTGCATAAA1050

1051TGAAGATTAGATTTTACTAAGGCCGAGTTGGGAGCACATTTTCAGCGCAC1100 1051TGAAGATTAGATTTTACTAAGGCCGAGTTGGGAGCACATTTTCAGCGCAC1100

1101GTAAAATAGAGTGGTCCATTAGCGCGTGATTAATTAAGCATTAGCTATTT1150 1101GTAAAATAGAGTGGTCCATTAGCGCGTGATTAATTAAGCATTAGCTATTT1150

1151TTTTTAAAAAAATGGATCAATATGATTTTTTAAGCAACTTTCGTATAGAT1200 1151TTTTTAAAAAAAATGGATCAATATGATTTTTTAAGCAACTTTCGTATAGAT1200

1201TTGTAAAAAAACGCACCGTTTAACGATTTAAAAAGCATACATGGAACACG1250 1201TTGTAAAAAAAACGCACCGTTTAACGATTTAAAAAGCATACATGGAACACG1250

1251AGGAAGATGAGTTGGGAAAGTTAGTGAAATAACTCATAGCCATGTATTAC1300 1251AGGAAGATGAGTTGGGAAAGTTAGTGAAATAACTCATAGCCATGTATTAC1300

1301ATATCAATCATAAATATATAAATATCTTGTTCATCAATGTATCATCGTAC1350 1301ATATCAATCATAAATATATAAATATCTTGTTCATCAATGTATCATCGTAC1350

1351CTACCACCGAGAGGACCTCCTCCTCATTGTTAGGCCTTGTTTTGTTGGAG1400 1351CTACCACCGAGAGGACCTCCTCCTCATTGTTAGGCCTTGTTTTGTTGGAG1400

1401GATATTTTTGGATTTAGTTGTCACATCGTATATACGGACACATATTTAAA1450 1401GATATTTTTTGGATTTAGTTGTCACATCGTATATACGGACACATATTTAAA1450

1451GTATTAAATATAGTCTAATAACAAAATAAATTACAGATTCCGCCAGGAAA1500 1451GTATTAAATATAGTCTAATAACAAAATAAATTACAGATTCCGCCAGGAAA1500

1501TTACGAGACGAATTTATCAAGCCTAATTAATCCGTCGCTAGCAATTGTTT1550 1501TTACGAGACGAATTTATCAAGCCTAATTAATCCGTCGCTAGCAATTGTTT1550

1551ACTGTAGCACCACATTGTCAAATCATGGCATAATTAGATTTAAAAGATTT1600 1551ACTGTAGCACCACATTGTCAAATCATGGCATAATTAGATTTAAAAGATTT1600

1601ATCTTGTAATTTATACGTAATCTGTGTAATTGTTTTTTCCTACATTTAAT1650 1601ATCTTGTAATTTATACGTAATCTGTGTAATTGTTTTTTTCCTACATTTAAT1650

1651ACTCCATGCATGTGTCTAACAGGGCCTTAGTTCAATCGGATCCTGTTGGG1700 1651ACTCCATGCATGTGTCTAACAGGGCCTTAGTTCAATCGGATCCTGTTGGG1700

1701TGGCTATGGCAACTGCAACGCGTTAGCCTCCGTTAAATCAGATCTTGCAC1750 1701TGGCTATGGCAACTGCAACGCGTTAGCCTCCGTTAAATCAGATCTTGCAC1750

1751AACTGCTGTTCATGAGAGTACGATTCAAAATGAATACTACTTCCTCCGTT1800 1751AACTGCTGTTCATGAGAGTACGATTCAAAATGAATACTACTTCCTCCGTT1800

1801TTACAATGTAAGCCATTCTAACATTTCCTATATTCACATTGATGTTAATG1850 1801TTACAATGTAAGCCATTCTAACATTTCCTATATTCACATTGATGTTAATG1850

1851AATCTAGATAGATATATATGTATATATTAATTAACATCAATATGAATATG1900 1851AATCTAGATAGATATATATGTATATATTAATTAACATCAATATGAATATG1900

1901AAAAATGCTAGAATGACTTACATTGTGAAACGGAGGGAGTATAACACATG1950 1901AAAAATGCTAGAATGACTTACATTGTGAAACGGAGGGAGTATAACACATG1950

1951TTAGAGCCGTTACTATCTATTTACATGTGGCTCAAATCTGACCACCTACT2000 1951TTAGAGCCGTTACTATCTATTTACATGTGGCTCAAATCTGACCACCTACT2000

2001TGCTCGATCCAACACTGTACTACCCATCATAACATCCGACTGCTTAACGG2050 2001TGCTCGATCCAACACTGTACTACCCATCATAACATCCGACTGCTTAACGG2050

2051GCGGTAGCTATAGCAATCGCACCCGATCCAGAGTCTTGTTAGTTCTTTTT2100 2051GCGGTAGCTATAGCAATCGCACCCGATCCAGAGTCTTGTTAGTTCTTTTT2100

2101TTTTTGAAACCTAAAAGTCTTGTTAGTTCTTTTTTTTTGAAACATAAAAG2150 2101TTTTTGAAACCTAAAAGTCTTGTTAGTTCTTTTTTTTTGAAACATAAAAG2150

2151TCTTGTTAGTTCTTCCCTAGCTAGCTATTTAAGCTGGTATATGCGATTCC2200 2151TCTTGTTAGTTTCTTCCCTAGCTAGCTATTTAAGCTGGTATATGCGATTCC2200

2201ATTTGAGAGCAATTCTGCGAGACG atg2227。 2201ATTTG AGAGCAATTCTGCGAGACG atg 2227.

SEQUENCELISTING SEQUENCELISTING

<110>复旦大学 <110> Fudan University

<120>一种干旱诱导的花粉特异性启动子及其应用 <120> A drought-induced pollen-specific promoter and its application

<130>001 <130>001

<160>6 <160>6

<170>PatentInversion3.3 <170>PatentInversion3.3

<210>1 <210>1

<211>2227 <211>2227

<212>DNA <212> DNA

<213> <213>

<400>1 <400>1

cttcagttgtctttgcctcctgtcttgaggtcctgttgagatcccatggcaaaatttttt60 cttcagttgtctttgcctcctgtcttgaggtcctgttgagatcccatggcaaaatttttt60

actatgtcacatcgaatgtttgacacatgcatgaagtattaaatataaacgaaaaaaaaa120 actatgtcacatcgaatgtttgacacatgcatgaagtattaaatataaacgaaaaaaaaa120

ctaattacacagattgcgtgtaaattgcgagatgaatatttaagtctaattgcttcatga180 ctaattacacagattgcgtgtaaattgcgagatgaatatttaagtctaattgcttcatga180

tctgacaatgtagtgctatagtaaatatttgctaatgacggattaattagacttaataaa240 tctgacaatgtagtgctatagtaaatatttgctaatgacggattaattagacttaataaa240

ttcgtctcgcagtttataggcggattctgtaatttattttgttattagtctatgtttaat300 ttcgtctcgcagtttataggcggattctgtaatttattttgttattagtctatgtttaat300

acttcaaatatgtgtccgtatatccgatgtgacacgctaaaattttacacccataatcta360 acttcaaatatgtgtccgtatatccgatgtgacacgctaaaattttacacccataatcta360

attaaacacatcctaaatctagtgaagatatatacatacccggcagctatatatatagtt420 attaaacacatcctaaatctagtgaagatatatacataccccggcagctatatatatagtt420

gaaagagaggtcatcacacataatataataaagtccaagacatggttttctcattgcatg480 gaaagagagggtcatcacacataatataataaagtccaagacatggttttctcattgcatg480

catgatgcatagacagcatagttcaatatatgtgaaatgcatatggtgaaaaaaaaattg540 catgatgcatagacagcatagttcaatatatgtgaaatgcatatggtgaaaaaaaaattg540

ccagtaaagatgcacggtatatcctattgatatctactagtagtttttagaaccactcgg600 ccagtaaagatgcacggtatatcctattgatatctactagtagtttttagaaccactcgg600

tgatatatgtgagttgctaaaaagttcagcaatatatgggcactatatttaaaacctaac660 tgatatatgtgagttgctaaaaagttcagcaatatatgggcactatatttaaaacctaac660

gggtggacttaattatatacactcatgacttcaccaccacaccacatgtccacaccacat720 gggtggacttaattatatacactcatgacttcaccaccaccacatgtccacaccacat720

gtgatttccctacttcgggaatatttatcagcttgtataacgacacttattgttccaaaa780 gtgatttccctacttcgggaatatttcagcttgtataacgacacttattgttccaaaa780

aaatacactaattaatatccactaaacaaaagaaatgaaaattacacattgagtcttctt840 aaatacactaattaatatccactaaacaaaagaaatgaaaattacacattgagtcttctt840

caactttgtatggtttagtttctgccaagcttgcagaagaatcgtcatagagtttttaga900 caactttgtatggtttagtttctgccaagcttgcagaagaatcgtcatagagtttttaga900

catgcgcatatttggctcaacatattctgtatttccatttcgtaatccaatatattctct960 catgcgcatatttggctcaacatattctgtatttccatttcgtaatccaatatattctct960

ttatgagtagatctagaaatgccaatttacttttccatgatgtcattatctaaaaaacac1020 ttatgagtagatctagaaatgccaatttacttttccatgatgtcattatctaaaaaacac1020

atttccatgatgtaacaagttctgcataaatgaagattagattttactaaggccgagttg1080 attccatgatgtaacaagttctgcataaatgaagattagattttactaaggccgagttg1080

ggagcacattttcagcgcacgtaaaatagagtggtccattagcgcgtgattaattaagca1140 ggagcacattttcagcgcacgtaaaatagagtggtccattagcgcgtgattaattaagca1140

ttagctattttttttaaaaaaatggatcaatatgattttttaagcaactttcgtatagat1200 ttagctattttttttaaaaaaatggatcaatatgattttttaagcaactttcgtatagat1200

ttgtaaaaaaacgcaccgtttaacgatttaaaaagcatacatggaacacgaggaagatga1260 ttgtaaaaaaacgcaccgtttaacgatttaaaaagcatacatggaacacgaggaagatga1260

gttgggaaagttagtgaaataactcatagccatgtattacatatcaatcataaatatata1320 gttgggaaagttagtgaaataactcatagccatgtattacatatcaatcataaatatata1320

aatatcttgttcatcaatgtatcatcgtacctaccaccgagaggacctcctcctcattgt1380 aatatcttgttcatcaatgtatcatcgtacctacccaccgagaggacctcctcctcattgt1380

taggccttgttttgttggaggatatttttggatttagttgtcacatcgtatatacggaca1440 taggccttgttttgttggaggatatttttggatttagttgtcacatcgtatatacggaca1440

catatttaaagtattaaatatagtctaataacaaaataaattacagattccgccaggaaa1500 catatttaaagtattaaatatagtctaataacaaaataaattacagattccgccaggaaa1500

ttacgagacgaatttatcaagcctaattaatccgtcgctagcaattgtttactgtagcac1560 ttacgagacgaatttatcaagcctaattaatccgtcgctagcaattgtttactgtagcac1560

cacattgtcaaatcatggcataattagatttaaaagatttatcttgtaatttatacgtaa1620 cacattgtcaaatcatggcataattagatttaaaagattttcttgtaatttatacgtaa1620

tctgtgtaattgttttttcctacatttaatactccatgcatgtgtctaacagggccttag1680 tctgtgtaattgttttttcctacatttaatactccatgcatgtgtctaacagggccttag1680

ttcaatcggatcctgttgggtggctatggcaactgcaacgcgttagcctccgttaaatca1740 ttcaatcggatcctgttgggtggctatggcaactgcaacgcgttagcctccgttaaatca1740

gatcttgcacaactgctgttcatgagagtacgattcaaaatgaatactacttcctccgtt1800 gatcttgcacaactgctgttcatgagagtacgattcaaaatgaatactacttcctccgtt1800

ttacaatgtaagccattctaacatttcctatattcacattgatgttaatgaatctagata1860 ttacaatgtaagccattctaacatttcctatattcacattgatgttaatgaatctagata1860

gatatatatgtatatattaattaacatcaatatgaatatgaaaaatgctagaatgactta1920 gatatatatgtatatattaattaacatcaatatgaatatgaaaaatgctagaatgactta1920

cattgtgaaacggagggagtataacacatgttagagccgttactatctatttacatgtgg1980 cattgtgaaacggagggagtataacacatgttagagccgttactatctatttacatgtgg1980

ctcaaatctgaccacctacttgctcgatccaacactgtactacccatcataacatccgac2040 ctcaaatctgaccacctacttgctcgatccaacactgtactacccatcataacatccgac2040

tgcttaacgggcggtagctatagcaatcgcacccgatccagagtcttgttagttcttttt2100 tgcttaacgggcggtagctatagcaatcgcacccgatccagagtcttgttagttcttttt2100

tttttgaaacctaaaagtcttgttagttctttttttttgaaacataaaagtcttgttagt2160 tttttgaaacctaaaagtcttgttagttctttttttttgaaacataaaagtcttgttagt2160

tcttccctagctagctatttaagctggtatatgcgattccatttgagagcaattctgcga2220 tcttccctagctagctatttaagctggtatatgcgattccatttgagagcaattctgcga2220

gacgatg2227 gacgatg2227

<210>2 <210>2

<211>16 <211>16

<212>DNA <212> DNA

<213> <213>

<400>2 <400>2

accttgccgccagtgt16 accttgccgccagtgt16

<210>3 <210>3

<211>23 <211>23

<212>DNA <212> DNA

<213> <213>

<400>3 <400>3

gttgtgacttcgcatttgctaga23 gttgtgacttcgcatttgctaga23

<210>4 <210>4

<211>24 <211>24

<212>DNA <212> DNA

<213> <213>

<400>4 <400>4

cgataagtgaggtaatggtgcatc24 cgataagtgaggtaatggtgcatc24

<210>5 <210>5

<211>20 <211>20

<212>DNA <212> DNA

<213> <213>

<400>5 <400>5

cttcagttgtctttgcctcc20 cttcagttgtctttgcctcc20

<210>6 <210>6

<211>19 <211>19

<212>DNA <212> DNA

<213> <213>

<400>6 <400>6

agagcaattctgcgagacg19 agagcaattctgcgagacg19

Claims (4)

1. pollen specific promoter one kind drought-induced, it is characterised in that from Oryza sativa L.OsCLOThe DNA sequence of the about 2224bp size that 7 gene start codon upstreams are cloned into, its nucleotides sequence is classified as shown in SEQIDNO.1.
2. the engineering carrier that the promoter utilized described in claim 1 builds.
3. promoter as claimed in claim 1 is as the application in genetic engineering of the pollen grain specific promoter, and this promoter can drive genes of interest specific expressed in the pollen of stamen development 9-12 phase.
4. promoter as claimed in claim 1 is as the application of drought-inducible promoter in stamen development early stage flower pesticide, and this promoter can drive destination gene expression in developmental pollen grain under drought stress.
CN201410618726.1A 2014-11-06 2014-11-06 Drought-induced pollen specific promoter and use thereof Pending CN105624157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410618726.1A CN105624157A (en) 2014-11-06 2014-11-06 Drought-induced pollen specific promoter and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410618726.1A CN105624157A (en) 2014-11-06 2014-11-06 Drought-induced pollen specific promoter and use thereof

Publications (1)

Publication Number Publication Date
CN105624157A true CN105624157A (en) 2016-06-01

Family

ID=56039502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410618726.1A Pending CN105624157A (en) 2014-11-06 2014-11-06 Drought-induced pollen specific promoter and use thereof

Country Status (1)

Country Link
CN (1) CN105624157A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652480A (en) * 2007-03-23 2010-02-17 巴斯福植物科学有限公司 Transgenic plant with increased stress tolerance and yield
CN103820445A (en) * 2014-01-15 2014-05-28 深圳市作物分子设计育种研究院 Identification and application of plant anther specific expression promoter
CN103898115A (en) * 2014-04-01 2014-07-02 复旦大学 Rice high-expression promoter related to development stage and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652480A (en) * 2007-03-23 2010-02-17 巴斯福植物科学有限公司 Transgenic plant with increased stress tolerance and yield
CN103820445A (en) * 2014-01-15 2014-05-28 深圳市作物分子设计育种研究院 Identification and application of plant anther specific expression promoter
CN103898115A (en) * 2014-04-01 2014-07-02 复旦大学 Rice high-expression promoter related to development stage and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DA-HUANG CHEN ET AL.: "The same oleosin isoforms are present in oil bodies of rice embryo and aleurone layer while caleosin exists only in those of the embryo", 《PLANT PHYSIOLOGY AND BIOCHEMISTRY》 *
丁勇 等: "油菜油体钙蛋白基因BnClo1的克隆和表达", 《作物学报》 *
魏巍 等: "一个水稻花发育特异性启动子的克隆与活性分析", 《复旦学报(自然科学版)》 *
魏征 等: "水稻油体钙蛋白家族的进化及对干旱胁迫的响应性分析", 《科学通报》 *

Similar Documents

Publication Publication Date Title
Mehrnia et al. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis
Checker et al. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress
US20100269222A1 (en) Root active promoters, and uses thereof
CN105504034B (en) The application of MYB37 albumen and its encoding gene in regulating and controlling plant drought resistance
CN109879947B (en) Moso bamboo transcription factor PheDof 2 gene and its application
CN106754925A (en) A kind of abscisic acid rapid induction promoter and its application
CN106967720B (en) Cloning and application of stress-induced promoter SlWRKY31P
CN110627887B (en) Application of SlTLFP8 protein and related biomaterials in regulating tomato drought resistance
CN101845437B (en) Promoter with properties of inducing and organizing specific expression
CN104945492B (en) Plant stress tolerance correlative protein TaAREB3 and its encoding gene and application
CN110904106A (en) Application of Chunlan miR159b in enhancing plant cold sensitivity
CN103789312A (en) Corn endosperm tissue specificity promoter and application thereof
US7314757B2 (en) Drought inducible promoters and uses thereof
CN115960947A (en) Application of soybean gene GmNPR1 in promoting leguminous plant nodule generation
CN113717977A (en) Brassica napus tissue-specific P8 promoter and application thereof in preparation of transgenic rape
CN102363777B (en) Method for cloning promoter of specific expression gene EXP18D of paddy rice root
CN106191059A (en) Application in Herba Capsellae peroxidase gene promoter and improvement plant cold resistance thereof
KR101508747B1 (en) Scutellum specific expression promoter from rice and use thereof
CN105732785B (en) Application of protein GhDHN1 in regulating plant stress resistance
CN105624157A (en) Drought-induced pollen specific promoter and use thereof
CN104651358B (en) Separated tissue-specific promoter and its application from corn
CN118440985B (en) Application of soybean GmWRKY123 gene in promoting root nodule production of leguminous plants under salt stress
CN105238787A (en) Application of anther epidermal layer specific promoter induced by drought
Moody Molecular aspects of vitis CBF gene activation
CN106282199B (en) Gene of dwarf plant and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160601