CN105621353B - A kind of large-area nano graphic method based on multi-layered anode alumina formwork - Google Patents
A kind of large-area nano graphic method based on multi-layered anode alumina formwork Download PDFInfo
- Publication number
- CN105621353B CN105621353B CN201511033940.1A CN201511033940A CN105621353B CN 105621353 B CN105621353 B CN 105621353B CN 201511033940 A CN201511033940 A CN 201511033940A CN 105621353 B CN105621353 B CN 105621353B
- Authority
- CN
- China
- Prior art keywords
- aao
- layer
- template
- double
- aao template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims 2
- 238000009415 formwork Methods 0.000 title claims 2
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 239000002086 nanomaterial Substances 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 238000000059 patterning Methods 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 238000010894 electron beam technology Methods 0.000 claims description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 229910002601 GaN Inorganic materials 0.000 claims description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims 6
- 230000002146 bilateral effect Effects 0.000 claims 5
- 150000004702 methyl esters Chemical class 0.000 claims 2
- 238000009413 insulation Methods 0.000 claims 1
- 238000010008 shearing Methods 0.000 claims 1
- 238000002061 vacuum sublimation Methods 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 35
- 239000012528 membrane Substances 0.000 abstract description 11
- 238000006073 displacement reaction Methods 0.000 abstract description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 102
- 239000010408 film Substances 0.000 description 38
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 25
- 229910052709 silver Inorganic materials 0.000 description 25
- 239000004332 silver Substances 0.000 description 25
- 230000008021 deposition Effects 0.000 description 21
- 238000000151 deposition Methods 0.000 description 20
- 239000002105 nanoparticle Substances 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 14
- 239000004926 polymethyl methacrylate Substances 0.000 description 14
- 238000003491 array Methods 0.000 description 13
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 10
- 229920000620 organic polymer Polymers 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000002861 polymer material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000001883 metal evaporation Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000002390 adhesive tape Substances 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 239000013638 trimer Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005566 electron beam evaporation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 229920006324 polyoxymethylene Polymers 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GAILCHAIZQKEGP-UHFFFAOYSA-N ac1nuwqw Chemical group [Ag].[Ag].[Ag] GAILCHAIZQKEGP-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
- B82B3/0014—Array or network of similar nanostructural elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B1/001—Devices without movable or flexible elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
- B82B3/0019—Forming specific nanostructures without movable or flexible elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physical Vapour Deposition (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种基于多层阳极氧化铝模板的大面积纳米图形化方法,是首先将多层双通AAO模板堆叠在一起,转移到目标衬底之上;再向覆盖了多层AAO模板的衬底表面蒸镀制备纳米结构所需的材料;然后除去多层AAO模板,即得到图案化的纳米结构阵列。本发明的方法可通过对不同类型的双通AAO模板的选择,通过控制上下层AAO的结构、相对位置、上下层AAO多孔膜的孔/壁尺寸、相对位移、相对旋转角度,或者通过调整多层双通AAO模板堆叠的方式,从而获得不同的大面积(平方厘米级)的结构非常丰富的具有纳米级尺寸的复杂图案的纳米结构。而且本方法制备条件简单、成本低,不需要复杂的设备,易于操作,适用于规模化产业应用。
The invention discloses a large-area nano-patterning method based on a multi-layer anodic aluminum oxide template. Firstly, the multi-layer double-pass AAO template is stacked together and transferred to the target substrate; and then the multi-layer AAO template is covered. The materials required for the preparation of nanostructures are evaporated on the surface of the substrate; then the multi-layer AAO template is removed to obtain a patterned nanostructure array. The method of the present invention can be through the selection of different types of double-pass AAO templates, by controlling the structure, relative position, pore/wall size, relative displacement, and relative rotation angle of the upper and lower AAO porous membranes of the upper and lower layers of AAO, or by adjusting multiple Layer double-pass AAO templates are stacked in such a way that different large-area (square centimeter-scale) structures are very rich in nanostructures with complex patterns of nanoscale dimensions. Moreover, the method has simple preparation conditions, low cost, does not require complex equipment, is easy to operate, and is suitable for large-scale industrial applications.
Description
技术领域technical field
本发明属于纳米材料制备技术领域。更具体地,涉及一种基于多层阳极氧化铝模板的大面积纳米图形化方法。The invention belongs to the technical field of nanometer material preparation. More specifically, it relates to a method for large-area nanopatterning based on multilayer anodized aluminum templates.
背景技术Background technique
图形化(patterning)技术是微纳加工的重要一环。现有的图形化方法中,光刻蚀技术所需设备极为昂贵,而且受限于光波波长的限制,其分辨率很难实现100nm以下特征尺寸的图形化。而电子束刻蚀和离子束刻蚀若要实现10nm特征尺寸,成本同样十分高昂。纳米压印技术对设备的要求虽然有所降低,但是其10nm级的母板制作也十分昂贵,而且随着特征尺寸的下降,其脱模过程益发困难。Patterning technology is an important part of micro-nano processing. In the existing patterning method, the equipment required by photolithography technology is extremely expensive, and is limited by the wavelength of light, and its resolution is difficult to achieve patterning with a feature size below 100nm. E-beam etching and ion beam etching are also very expensive to achieve 10nm feature size. Although the equipment requirements of nanoimprint technology have been reduced, the production of its 10nm-level mother board is also very expensive, and as the feature size decreases, the demolding process becomes more and more difficult.
单层多孔阳极氧化铝(AAO)常用于各类沉积的掩膜板,可以制备20nm左右特征尺寸的半球形/柱状六方阵列;其制作成本较低,也易于实现大面积制备。但是,制作的图案太单一,只能制备半球形/柱状六方阵列;同时,其特征尺寸受限于多孔膜的壁厚(20nm左右),更薄的壁将使得模板强度降低到不可操作。Single-layer porous anodized aluminum oxide (AAO) is commonly used in various deposition masks, and can prepare hemispherical/columnar hexagonal arrays with a characteristic size of about 20nm; its production cost is low, and it is easy to achieve large-area preparation. However, the pattern produced is too simple, and only hemispherical/columnar hexagonal arrays can be prepared; at the same time, its feature size is limited by the wall thickness of the porous membrane (about 20nm), and thinner walls will reduce the strength of the template to be inoperable.
发明内容Contents of the invention
本发明要解决的技术问题是针对现有技术中光刻法、EBL、FIB等纳米图形化方法难以脱离超净间和复杂设备等昂贵投入的问题,提供一种微纳米的图形化方法,具体是提供一种双层AAO模板的制备调控方法及其在大面积纳米图形化方面的应用。该方法是一种无须超净间设备的低成本大面积纳米图形化方法,该方法通过叠加双层AAO多孔膜,以及调控膜与膜之间的位移和角度,能实现纳米结构形状和尺寸、间隙尺寸、对称性和周期可调;其间隙尺寸最小能够实现1nm,是一种操作简便、可拓展性强因而十分具有前景的一种新技术。The technical problem to be solved by the present invention is to provide a micro-nano patterning method for the problem that the photolithography, EBL, FIB and other nano-patterning methods in the prior art are difficult to separate from the expensive investment in ultra-clean rooms and complex equipment. It provides a method for preparing and regulating double-layer AAO templates and its application in large-area nano-patterning. This method is a low-cost large-area nanopatterning method that does not require clean room equipment. By stacking double-layer AAO porous membranes and adjusting the displacement and angle between the membranes, the nanostructure shape and size, The gap size, symmetry and period are adjustable; the minimum gap size can be 1nm, which is a new technology with easy operation and strong scalability, so it is very promising.
本发明的目的是提供一种基于双层阳极氧化铝模板的大面积纳米图形化方法。The purpose of the present invention is to provide a large-area nanopatterning method based on a double-layer anodized aluminum template.
本发明另一目的是提供所述基于多层阳极氧化铝模板的大面积纳米图形化方法在制备纳米材料和纳米结构中的应用。Another object of the present invention is to provide the application of the large-area nanopatterning method based on the multi-layer anodized aluminum template in the preparation of nanomaterials and nanostructures.
本发明的再一目的是提供根据上述方法制备得到的纳米材料或纳米结构。Another object of the present invention is to provide nanomaterials or nanostructures prepared according to the above method.
本发明上述目的通过以下技术方案实现:The above object of the present invention is achieved through the following technical solutions:
一种基于多层阳极氧化铝模板的大面积纳米图形化方法,包括如下步骤:A method for large-area nanopatterning based on a multilayer anodized aluminum template, comprising the steps of:
S1.将多层双通AAO模板堆叠在一起,转移到目标衬底之上;S1. Stack the multi-layer double-pass AAO templates and transfer them to the target substrate;
S2.向覆盖了多层AAO模板的衬底表面蒸镀制备纳米结构所需的材料;S2. Evaporating materials required for preparing nanostructures on the surface of the substrate covered with multi-layer AAO templates;
S3.除去多层AAO模板,即得到图案化的纳米结构阵列。S3. Removing the multi-layer AAO template to obtain a patterned nanostructure array.
该方法可以通过对不同类型的双通AAO模板的选择,通过控制上下层AAO的结构和相对位置,或者通过调整多层双通AAO模板堆叠的方式,从而获得不同的复杂而丰富的图案化纳米结构。By selecting different types of double-pass AAO templates, by controlling the structure and relative position of the upper and lower layers of AAO, or by adjusting the stacking method of multi-layer double-pass AAO templates, different complex and rich patterned nanostructures can be obtained. structure.
比如:当所用的双通AAO模板为孔排列长程有序的AAO模板时,最终在衬底上所获得的图形化结构是通过分别独立地调节上下层AAO的孔的大小、周期和模板厚度等结构参数,以及调控上下层AAO的相对位置来实现的。所述相对位置的调控方式包括控制两层AAO的相对旋转角度以及相对位移。通过此简单的方式即可以得到类似于万花筒一样的复杂图案。For example, when the double-pass AAO template used is an AAO template with long-range ordered holes, the patterned structure finally obtained on the substrate is obtained by independently adjusting the size, period, and template thickness of the upper and lower AAO holes, etc. Structural parameters, and adjusting the relative position of the upper and lower layer AAO to achieve. The control method of the relative position includes controlling the relative rotation angle and relative displacement of the two layers of AAO. Complex patterns similar to kaleidoscopes can be obtained in this simple way.
当所用的双通AAO模板为孔排列长程有序的AAO模板或者为孔排列短程有序的AAO模板时,控制上层AAO模板的孔壁的厚度约为10nm,便可以在衬底表面获得分布密度极高的间隙小于10nm的纳米结构,而且很大一部分间隙小于5nm。When the double-pass AAO template used is an AAO template with a long-range order of pores or an AAO template with a short-range order of pores, the distribution density can be obtained on the substrate surface by controlling the thickness of the hole wall of the upper AAO template to be about 10 nm. Extremely high nanostructures with gaps smaller than 10nm, and a large fraction with gaps smaller than 5nm.
作为一种优选的实施方案,步骤S1所述多层为两层。具体是:As a preferred embodiment, the multi-layer in step S1 is two layers. specifically is:
S1.将两层双通AAO模板堆叠在一起,转移到目标衬底之上;S1. Stack two layers of double-pass AAO templates together and transfer them to the target substrate;
S2.向覆盖了两层AAO模板的衬底表面蒸镀制备纳米结构所需的材料;S2. Evaporating materials required for preparing nanostructures on the substrate surface covered with two layers of AAO templates;
S3.除去两层AAO模板,即得到图案化的纳米结构阵列。S3. The two layers of AAO templates are removed to obtain a patterned nanostructure array.
其中,所述AAO模板的制备方法可以是传统的二步氧化法或者是纳米压印辅助的一步氧化法。Wherein, the preparation method of the AAO template may be a traditional two-step oxidation method or a nanoimprint-assisted one-step oxidation method.
另外,由于AAO模板很薄,为了提高转移的成功率,可以在AAO模板表面涂覆一层有机高分子材料支撑层作为支撑,比较典型的高分子材料是聚甲基丙烯酸甲酯。将两层带有支撑层的AAO薄膜叠在一起放置于衬底之上,然后除去高分子支撑层后即得到紧贴于衬底表面的双层AAO模板。除去高分子支撑层的方法主要是有机溶剂溶解法以及加热分解法。例如,当采用聚甲基丙烯酸甲酯时,可以将其放置在氮气保护气氛中在400℃下保温10min即可。这里,两层AAO模板的孔的直径、排列方式、周期、模板厚度可以相同也可以不相同。In addition, since the AAO template is very thin, in order to improve the success rate of transfer, a layer of organic polymer material support layer can be coated on the surface of the AAO template as a support. The typical polymer material is polymethyl methacrylate. Two layers of AAO thin films with supporting layers are stacked together and placed on the substrate, and then the polymer supporting layer is removed to obtain a double-layer AAO template that is close to the surface of the substrate. The methods for removing the polymer support layer are mainly organic solvent dissolution method and thermal decomposition method. For example, when polymethyl methacrylate is used, it can be placed in a nitrogen protective atmosphere and kept at 400° C. for 10 minutes. Here, the diameters, arrangements, periods, and template thicknesses of the holes of the two layers of AAO templates may be the same or different.
优选地,步骤S1所述转移的方法是:在AAO模板表面涂覆一层有机高分子材料支撑层作为支撑,将带有有机高分子材料支撑层的超薄双通AAO模板剪切后多层叠在一起,放置于目标衬底之上;然后通过有机溶剂或者在惰性气氛中加热的方法除去有机高分子材料支撑层,留下多层AAO紧贴于衬底表面。Preferably, the transfer method described in step S1 is: coating a layer of organic polymer material support layer on the surface of the AAO template as a support, cutting and stacking the ultra-thin double-pass AAO template with the organic polymer material support layer , placed on the target substrate; then the organic polymer support layer is removed by organic solvent or heating in an inert atmosphere, leaving multiple layers of AAO tightly attached to the substrate surface.
优选地,所述有机高分子材料支撑层为聚甲基丙烯酸甲酯或聚苯乙烯;所述有机溶剂为丙酮、二氯甲烷或氯仿中的至少一种。Preferably, the support layer of organic polymer material is polymethyl methacrylate or polystyrene; the organic solvent is at least one of acetone, methylene chloride or chloroform.
优选地,所述有机高分子材料支撑层为聚甲基丙烯酸甲酯,所述除去有机高分子材料支撑层的方法是在氮气气氛中加热到400~1000℃,保温10~60分钟。Preferably, the support layer of the organic polymer material is polymethyl methacrylate, and the method for removing the support layer of the organic polymer material is heating to 400-1000° C. in a nitrogen atmosphere and keeping the temperature for 10-60 minutes.
更优选地,所述除去有机高分子材料支撑层的方法是在氮气气氛中加热到400℃保温10分钟。More preferably, the method for removing the support layer of the organic polymer material is heating to 400° C. for 10 minutes in a nitrogen atmosphere.
优选地,步骤S1所述衬底是普通玻璃、ITO玻璃、FTO玻璃、石英玻璃、硅、蓝宝石、碳化硅或氮化镓。Preferably, the substrate in step S1 is ordinary glass, ITO glass, FTO glass, quartz glass, silicon, sapphire, silicon carbide or gallium nitride.
优选地,步骤S2所述蒸镀的方法为电子束蒸发法、真空热蒸发法或磁控溅射法。Preferably, the evaporation method in step S2 is electron beam evaporation, vacuum thermal evaporation or magnetron sputtering.
优选地,步骤S2所述所需的材料可以为金属。但不局限于金属材料,也可以为化合物半导体或绝缘体材料。Preferably, the required material in step S2 may be metal. However, it is not limited to metal materials, and may also be compound semiconductor or insulator materials.
优选地,步骤S1所述AAO模板的厚度为50~1000nm;所述的多层AAO模板的孔的直径、排列方式、周期、模板厚度可以相同也可以不相同。Preferably, the thickness of the AAO template in step S1 is 50-1000 nm; the diameter, arrangement, period and template thickness of the pores of the multi-layer AAO template can be the same or different.
另外作为一种可优选的实施方案,所采用的下层AAO可以用其它多孔模板替代,例如有机多孔膜。In addition, as a preferred embodiment, the AAO used in the lower layer can be replaced by other porous templates, such as organic porous membranes.
另外,对于上下层AAO的相对旋转角度和相对位置平移的控制,可以先制备出长程有序的AAO,然后随意两层叠加,制备出图案化纳米材料阵列之后然后再分类选用。双层AAO法制备的金属纳米阵列时,如前所述,上层AAO壁厚如果约为 10nm,则可以获得小于10nm的间隙,如果不需要小于10nm间隙,上层 AAO壁厚可以厚一些。In addition, for the control of the relative rotation angle and relative position translation of the upper and lower layers of AAO, long-range ordered AAO can be prepared first, and then two layers can be stacked at will to prepare a patterned nanomaterial array and then classified and selected. When the metal nanoarray is prepared by the double-layer AAO method, as mentioned above, if the wall thickness of the upper layer AAO is about 10nm, a gap smaller than 10nm can be obtained. If the gap smaller than 10nm is not required, the wall thickness of the upper layer AAO can be thicker.
根据上述方法制备得到的纳米结构,也都应在本发明的保护范围之内。The nanostructures prepared according to the above method should also fall within the protection scope of the present invention.
本发明的主要创新点在于利用多层(双层)AAO多孔膜的叠加,可以构筑多种多样如万花筒般丰富的纳米图案,以之作为模板可以实现丰富的纳米结构制备。尤其能够制备具备大长径和极锐尖端的纳米金属颗粒及其高密度阵列的比。而且由于上层的悬浮效应,可实现1~5 nm的极小间隙,这种间隙在上述高密度阵列中大量存在,能够获得极大的局域电场增强,获得各类优异和奇特的非线性光/电学效应。更重要的是,利用本方法,这些高密度阵列可以大面积低成本地制得,易于实现规模化应用。The main innovation of the present invention lies in the superposition of multi-layer (double-layer) AAO porous membranes to construct a variety of kaleidoscope-like nano-patterns, which can be used as templates to realize the preparation of rich nano-structures. In particular, the ratio of nano-metal particles and high-density arrays thereof with large long diameters and extremely sharp tips can be prepared. Moreover, due to the suspension effect of the upper layer, extremely small gaps of 1 to 5 nm can be realized. Such gaps exist in large numbers in the above-mentioned high-density arrays, which can obtain a great local electric field enhancement and various excellent and peculiar nonlinear optical / Electrical effects. More importantly, by using this method, these high-density arrays can be fabricated in a large area and at low cost, making it easy to realize large-scale applications.
因此,在不脱离本发明的实质内容、思路和精神的前提下,本领域技术人员所做的组合、替换和改进也都应在本发明的保护范围之内。比如可扩展至多层多孔AAO膜的制备,从而实现更多的应用,包括:填充多层AAO内部的所有空隙,从而获得一种三维的介孔金属纳米结构,这种结构可能在超材料中有所应用。再比如不一定是金属纳米结构,多层AAO可以扩展到其它方面的纳米结构。以多层AAO为骨架,在其内壁表面沉积或包覆其它纳米材料,从而形成多孔结构。比如沉积一层碳,作为超级电容器电极使用。Therefore, without departing from the essence, idea and spirit of the present invention, combinations, substitutions and improvements made by those skilled in the art should also fall within the protection scope of the present invention. For example, it can be extended to the preparation of multilayer porous AAO films to achieve more applications, including: filling all the voids inside the multilayer AAO to obtain a three-dimensional mesoporous metal nanostructure, which may be useful in metamaterials. applied. Another example is not necessarily a metal nanostructure, multilayer AAO can be extended to other nanostructures. With multi-layer AAO as the skeleton, other nanomaterials are deposited or coated on the inner wall surface to form a porous structure. For example, a layer of carbon is deposited to be used as a supercapacitor electrode.
本发明具有以下有益效果:The present invention has the following beneficial effects:
(1)本发明通过对上下层AAO多孔膜的孔/壁尺寸,相对位移,相对旋转角度的调控可以实现如万花筒般的丰富纳米图案。如果采用长程有序的 AAO,并且能够控制上下两层AAO的相对位置和相对角度,因为AAO的孔结构为纳米级尺寸,那么将可以很方便地获得大面积(平方厘米级)的结构非常丰富的具有纳米级尺寸的复杂图案,如图1~3所示,给出了几个典型的图案结构。这些图案如果采用EBL或FIB制备非常耗时,面积小,成本非常高;而AAO模板却可以方面快速低成本地进行制备。(1) The present invention can realize kaleidoscope-like rich nano-patterns by adjusting the pore/wall size, relative displacement, and relative rotation angle of the upper and lower AAO porous membranes. If AAO with long-range order is used, and the relative position and relative angle of the upper and lower layers of AAO can be controlled, because the pore structure of AAO is nanoscale, it will be very convenient to obtain large-area (square centimeter-scale) structures. The complex patterns with nanoscale dimensions, as shown in Figures 1 to 3, give several typical pattern structures. If these patterns are prepared by EBL or FIB, it is very time-consuming, the area is small, and the cost is very high; however, AAO templates can be prepared quickly and at low cost.
(2)本发明通过多层(双层)AAO多孔膜做掩膜,可通过沉积或蒸镀实现大面积高密度的异形纳米颗粒阵列。与单层膜AAO多孔膜所得到的球形颗粒不同,双层AAO多孔膜得到的颗粒长径比大大提高,尖端格外锐利,对于提高局域电场效果明显。如图4和图5所示。(2) In the present invention, a multi-layer (double-layer) AAO porous film is used as a mask, and a large-area and high-density special-shaped nanoparticle array can be realized by deposition or evaporation. Different from the spherical particles obtained by the single-layer AAO porous membrane, the aspect ratio of the particles obtained by the double-layer AAO porous membrane is greatly improved, and the tip is extremely sharp, which has an obvious effect on improving the local electric field. As shown in Figure 4 and Figure 5.
(3)本发明通过下层AAO多孔膜做支撑,可以将上层膜的孔壁比单层的做的更薄而仍然保持整个模板的可转移性。上层膜具有更薄的孔壁和悬空两大特点,可以配合电子束蒸镀或沉积,而得到大面积间隙在1~5 nm之间的纳米结构。如图4和图5 所示,纳米颗粒中间的间隙是由于金属蒸汽在像衬底沉积时,被紧贴于衬底表面的下层AAO托起的上层AAO孔壁的阻挡,部分金属蒸汽绕过悬空的AAO孔壁的底端,从而在衬底上形成了尺寸小于上层AAO孔壁厚度的极窄间隙。这样的小间隙也会产生极强的局域电场,并且不同于颗粒尖端或边缘形成的极强局域电场局限于尖端或边缘的极小空间内,这种小间隙局域电场会在整个间隙中都有分布,增大了有效作用面积。(3) The present invention uses the lower layer of AAO porous membrane as support, and can make the pore wall of the upper layer membrane thinner than that of a single layer while still maintaining the transferability of the entire template. The upper film has two characteristics of thinner pore wall and suspension, and can cooperate with electron beam evaporation or deposition to obtain nanostructures with large-area gaps between 1 and 5 nm. As shown in Figure 4 and Figure 5, the gap between the nanoparticles is due to the blocking of the upper AAO pore wall held up by the lower AAO close to the substrate surface when the metal vapor is deposited on the substrate, and part of the metal vapor bypasses The bottom end of the suspended AAO pore wall forms an extremely narrow gap on the substrate that is smaller than the thickness of the upper AAO pore wall. Such a small gap will also generate a very strong local electric field, and unlike the extremely strong local electric field formed by the tip or edge of the particle, which is confined to a very small space at the tip or edge, this small gap local electric field will spread throughout the gap There are distributions in the middle, which increases the effective area.
(4)本发明的方法制备条件简单、成本低,不需要复杂的设备,易于操作,适用于规模化产业应用。(4) The method of the present invention has simple preparation conditions, low cost, does not require complex equipment, is easy to operate, and is suitable for large-scale industrial applications.
附图说明Description of drawings
图1为通过双层AAO薄膜制备图案化纳米结构的一些非常典型的例子。(a)为双层AAO模板叠加在一起的三维示意图,图中上下两层AAO的孔径、孔间距、孔排列方式、模板厚度都是相同的,孔间距是a,而且两层模板所有的孔均正对,没有相对旋转和平移,当进行一定的相对旋转或平移时,就可以获得复杂的类似万花筒一样的图案。图案的白色区域为透过双层AAO模板漏出的衬底表面,在后续纳米材料生长时,将在这些区域形成纳米结构。对于上下两层结构相同的AAO,相对于下层AAO,将上层模板(b)不平移,(c)向右平移a/3,(d)向右平移a/2,向下平移a/√3a,(e)顺时针旋转15°,(f)顺时针旋转30°,(g)顺时针旋转45°后所获得的图案。当上层AAO孔径略小于下层孔径时,上层AAO相对于下层AAO(h)顺时针旋转30°,(i)不平移不旋转所获得的图案。(k)当上层AAO孔径约为小于下层孔径的1/3时,上层AAO相对于下层AAO不平移不旋转所获得的图案。Figure 1 shows some very typical examples of patterned nanostructures prepared by bilayer AAO thin films. (a) is a three-dimensional schematic diagram of superimposed double-layer AAO templates. In the figure, the aperture, hole spacing, hole arrangement, and template thickness of the upper and lower AAO layers are the same. The hole spacing is a, and all the holes in the two-layer template There is no relative rotation and translation. When a certain relative rotation or translation is performed, complex kaleidoscope-like patterns can be obtained. The white areas of the pattern are the substrate surface leaked through the bilayer AAO template, and nanostructures will be formed in these areas during the subsequent nanomaterial growth. For an AAO with the same upper and lower layers of structure, relative to the lower layer AAO, the upper layer template (b) is not translated, (c) is translated to the right by a/3, (d) is translated to the right by a/2, and down is translated by a/√3a , (e) 15° clockwise rotation, (f) 30° clockwise rotation, and (g) 45° clockwise rotation. When the pore size of the upper AAO is slightly smaller than that of the lower layer, the upper AAO is rotated 30° clockwise relative to the lower AAO (h), and (i) the obtained pattern is not translated or rotated. (k) When the pore diameter of the upper layer AAO is less than 1/3 of the lower layer pore size, the pattern obtained by the upper layer AAO does not translate or rotate relative to the lower layer AAO.
图2中(b)为通过双层AAO模板结合电子束蒸发法在硅片上制备的平行的银纳米颗粒对阵列的SEM图,(a)是该图案对应的双层AAO模板的SEM图;两层AAO结构相同,上层AAO相对于下层AAO平移了大概a/2的距离。(b) in Figure 2 is the SEM image of the parallel silver nanoparticle pair array prepared on the silicon wafer by the double-layer AAO template combined with the electron beam evaporation method, (a) is the SEM image of the double-layer AAO template corresponding to the pattern; The two layers of AAO have the same structure, and the upper layer of AAO is translated by about a/2 distance relative to the lower layer of AAO.
图3中(c)为通过双层AAO模板结合电子束蒸发法在硅片上制备的具有花瓣状图案的银纳米颗粒对阵列的SEM图,(a)是该图案对应的双层AAO模板的SEM图;两层AAO结构相同,上层AAO相对于下层AAO顺时针旋转了大概30°。Figure 3 (c) is the SEM image of the silver nanoparticle pair array with a petal-like pattern prepared on a silicon wafer by double-layer AAO template combined with electron beam evaporation method, and (a) is the corresponding double-layer AAO template. SEM image: The two layers of AAO have the same structure, and the upper AAO is rotated about 30° clockwise relative to the lower AAO.
图4为采用双层AAO模板法在硅片上制备的银纳米颗粒对阵列中两个典型的银颗粒对的TEM图;采用TEM测试可以更准确地测量颗粒对的间隙大小。(a,b)所示颗粒对间隙分别是5nm和1nm。Figure 4 is a TEM image of two typical silver particle pairs in a silver nanoparticle pair array prepared on a silicon wafer by the double-layer AAO template method; the gap size of the particle pairs can be more accurately measured by using TEM testing. (a,b) The particle-pair gaps shown are 5 nm and 1 nm, respectively.
图5为采用双层AAO模板法在硅片上制备的由三个银纳米颗粒组成的结构的TEM图,此处简称“三聚体”。该三聚体中三个间隙分别是7nm、4nm和3nm。Fig. 5 is a TEM image of a structure composed of three silver nanoparticles prepared on a silicon wafer by the double-layer AAO template method, here referred to as "trimer". The three gaps in this trimer are 7nm, 4nm and 3nm, respectively.
具体实施方式detailed description
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but the embodiments do not limit the present invention in any form. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
除非特别说明,本发明所用试剂和材料均为市购。Unless otherwise specified, the reagents and materials used in the present invention are commercially available.
本发明的方法可通过双层AAO薄膜制备各种不同的图案化纳米结构,如图1所示,图1为通过双层AAO薄膜制备图案化纳米结构的一些非常典型的例子。图中,(a)为双层AAO模板叠加在一起的三维示意图,图中上下两层AAO的孔径、孔间距、孔排列方式、模板厚度都是相同的,孔间距是a,而且两层模板所有的孔均正对,没有相对旋转和平移,当进行一定的相对旋转或平移时,就可以获得复杂的类似万花筒一样的图案。图案的白色区域为透过双层AAO模板漏出的衬底表面,在后续纳米材料生长时,将在这些区域形成纳米结构。对于上下两层结构相同的AAO,相对于下层AAO,将上层模板(b)不平移,(c)向右平移a/3,(d)向右平移a/2,向下平移a/√3a,(e)顺时针旋转15°,(f)顺时针旋转30°,(g)顺时针旋转45°后所获得的图案。当上层AAO孔径略小于下层孔径时,上层AAO相对于下层AAO(h)顺时针旋转30°,(i)不平移不旋转所获得的图案。(k)当上层AAO孔径约为小于下层孔径的1/3时,上层AAO相对于下层AAO不平移不旋转所获得的图案。The method of the present invention can prepare various patterned nanostructures through double-layer AAO thin films, as shown in FIG. 1 , which is some very typical examples of preparation of patterned nanostructures through double-layer AAO thin films. In the figure, (a) is a three-dimensional schematic diagram of superimposed double-layer AAO templates. In the figure, the aperture, hole spacing, hole arrangement, and template thickness of the upper and lower AAO layers are the same, and the hole spacing is a, and the two-layer template All the holes are facing right, there is no relative rotation and translation, when a certain relative rotation or translation is performed, complex patterns similar to kaleidoscopes can be obtained. The white areas of the pattern are the substrate surface leaked through the bilayer AAO template, and nanostructures will be formed in these areas during the subsequent nanomaterial growth. For an AAO with the same upper and lower layers of structure, relative to the lower layer AAO, the upper layer template (b) is not translated, (c) is translated to the right by a/3, (d) is translated to the right by a/2, and down is translated by a/√3a , (e) 15° clockwise rotation, (f) 30° clockwise rotation, and (g) 45° clockwise rotation. When the pore size of the upper AAO is slightly smaller than that of the lower layer, the upper AAO is rotated 30° clockwise relative to the lower AAO (h), and (i) the obtained pattern is not translated or rotated. (k) When the pore diameter of the upper layer AAO is less than 1/3 of the lower layer pore size, the pattern obtained by the upper layer AAO is not translated or rotated relative to the lower layer AAO.
以下以具体实施例来举例说明本发明的方法。The method of the present invention is illustrated below with specific examples.
实施例1Example 1
本实施例制备银纳米颗粒阵列,步骤如下:In this embodiment, silver nanoparticle arrays are prepared, and the steps are as follows:
S1.将两层相同的AAO多孔薄膜堆叠在一起,与洁净的硅衬底贴合。其中AAO多孔薄膜是采用纳米压印结合阳极氧化法制备的孔排列长程有序的双通多孔薄膜,孔直径、孔间距以及模板厚度分别为90nm、100nm和150nm,AAO模板表面覆盖有一层聚甲基丙烯酸甲酯薄膜作为支撑。堆叠时,使上层AAO相对于下层AAO平移大约半个孔周期的长度。S1. Stack two layers of the same AAO porous film and attach it to a clean silicon substrate. Among them, the AAO porous film is a double-pass porous film with long-range orderly pore arrangement prepared by nanoimprinting combined with anodic oxidation. The pore diameter, pore spacing and template thickness are 90nm, 100nm and 150nm respectively. The surface of the AAO template is covered with a layer of polyformaldehyde. Methyl acrylate film was used as support. When stacking, the upper AAO is translated relative to the lower AAO by approximately half the length of the aperture period.
S2.将S1中制备的覆盖有聚甲基丙烯酸甲酯薄膜/AAO薄膜的硅衬底放在有氮气保护的快速退火炉中在400℃的条件下加热10min,AAO表面的聚甲基丙烯酸甲酯即完全除去,其SEM图如图2(a)所示。S2. Put the silicon substrate covered with polymethyl methacrylate film/AAO film prepared in S1 in a nitrogen-protected rapid annealing furnace and heat it at 400°C for 10 min. The polymethyl methacrylate on the surface of AAO The ester is completely removed, and its SEM image is shown in Figure 2(a).
S3.将表面覆盖有双层多孔模板的衬底放入电子束蒸发仪的生长腔中的样品台上,放置后保证衬底平面的法线正对放置金属蒸发源的坩埚。将纯度不低于99.99%的银材料置于坩埚中,生长腔内真空度低于8×10-6Torr;沉积速率为0.1nm/s,沉积厚度为25nm;沉积结束后用胶带除去多孔模板后得到银纳米颗粒阵列,图案如图2(b)所示。所获得的是相互平行的银纳米对阵列。S3. Put the substrate covered with a double-layer porous template on the sample stage in the growth chamber of the electron beam evaporator, and after placing, ensure that the normal of the substrate plane is facing the crucible where the metal evaporation source is placed. Put the silver material with a purity of not less than 99.99% in the crucible, and the vacuum in the growth chamber is lower than 8×10 -6 Torr; the deposition rate is 0.1nm/s, and the deposition thickness is 25nm; after the deposition is completed, remove the porous template with adhesive tape Finally, the silver nanoparticle array is obtained, and the pattern is shown in Fig. 2(b). What is obtained is an array of silver nano-pairs parallel to each other.
实施例2Example 2
本实施例制备银纳米颗粒阵列,步骤如下:In this embodiment, silver nanoparticle arrays are prepared, and the steps are as follows:
S1.将两层相同的AAO多孔薄膜堆叠在一起,与洁净的硅衬底贴合。其中AAO多孔薄膜是采用纳米压印结合阳极氧化法制备的孔排列长程有序的双通多孔薄膜,孔直径、孔间距以及模板厚度分别为90nm、100nm和130nm,AAO模板表面覆盖有一层聚甲基丙烯酸甲酯薄膜作为支撑。堆叠时,使上层AAO相对于下层AAO旋转约30°。S1. Stack two layers of the same AAO porous film and attach it to a clean silicon substrate. Among them, the AAO porous film is a double-pass porous film with long-range orderly pore arrangement prepared by nanoimprinting combined with anodic oxidation. The pore diameter, pore spacing and template thickness are 90nm, 100nm and 130nm respectively. The surface of the AAO template is covered with a layer of polyformaldehyde. Methyl acrylate film was used as support. When stacking, rotate the upper AAO about 30° relative to the lower AAO.
S2.将S1中制备的覆盖有聚甲基丙烯酸甲酯薄膜/AAO薄膜的硅衬底放在丙酮中,AAO表面的聚甲基丙烯酸甲酯即完全除去,其SEM图如图3(a)所示。S2. Put the silicon substrate covered with polymethyl methacrylate film/AAO film prepared in S1 in acetone, and the polymethyl methacrylate on the surface of AAO is completely removed. The SEM image is shown in Figure 3(a) shown.
S3.将表面覆盖有双层多孔模板的衬底放入电子束蒸发仪的生长腔中的样品台上,放置后保证衬底平面的法线正对放置金属蒸发源的坩埚。将纯度不低于99.99%的银材料置于坩埚中,生长腔内真空度低于8×10-6Torr;沉积速率为0.1nm/s,沉积厚度为20nm;沉积结束后用胶带除去多孔模板后得到银纳米颗粒阵列,图案如图3(b)所示。所获得的是具有类似花瓣排列的银纳米颗粒阵列。S3. Put the substrate covered with a double-layer porous template on the sample stage in the growth chamber of the electron beam evaporator, and after placing, ensure that the normal of the substrate plane is facing the crucible where the metal evaporation source is placed. Put the silver material with a purity of not less than 99.99% in the crucible, and the vacuum in the growth chamber is lower than 8×10 -6 Torr; the deposition rate is 0.1nm/s, and the deposition thickness is 20nm; after the deposition, remove the porous template with adhesive tape Finally, the silver nanoparticle array is obtained, and the pattern is shown in Fig. 3(b). What was obtained was an array of silver nanoparticles with a petal-like arrangement.
实施例3Example 3
本实施例制备银纳米颗粒阵列,步骤如下:In this embodiment, silver nanoparticle arrays are prepared, and the steps are as follows:
S1.将两层相同的AAO多孔薄膜堆叠在一起,与洁净的石英玻璃衬底贴合。其中AAO多孔薄膜是采用纳米压印结合阳极氧化法制备的孔排列长程有序的双通多孔薄膜,孔直径、孔间距以及模板厚度分别为90nm、100nm和130nm,AAO模板表面覆盖有一层聚甲基丙烯酸甲酯薄膜作为支撑。堆叠时,使上层AAO相对于下层AAO平移大约半个孔周期的长度。S1. Stack two layers of the same AAO porous film and attach it to a clean quartz glass substrate. Among them, the AAO porous film is a double-pass porous film with long-range orderly pore arrangement prepared by nanoimprinting combined with anodic oxidation. The pore diameter, pore spacing and template thickness are 90nm, 100nm and 130nm respectively. The surface of the AAO template is covered with a layer of polyformaldehyde. Methyl acrylate film was used as support. When stacking, the upper AAO is translated relative to the lower AAO by approximately half the length of the aperture period.
S2.将S1中制备的覆盖有聚甲基丙烯酸甲酯薄膜/AAO薄膜的硅衬底放在丙酮中,AAO表面的聚甲基丙烯酸甲酯即完全除去。S2. Put the silicon substrate covered with polymethyl methacrylate film/AAO film prepared in S1 in acetone, and the polymethyl methacrylate on the surface of AAO is completely removed.
S3.将表面覆盖有双层多孔模板的衬底放入电子束蒸发仪的生长腔中的样品台上,放置后保证衬底平面的法线正对放置金属蒸发源的坩埚。将纯度不低于99.99%的银材料置于坩埚中,生长腔内真空度低于8×10-6Torr;沉积速率为0.1nm/s,沉积厚度为25nm;沉积结束后用胶带除去多孔模板后得到银纳米颗粒对阵列。每一个银纳米颗粒对中的间隙均小于10nm,约为5nm左右,如图4(a),有的间隙为1nm,如图4(b)所示。S3. Put the substrate covered with a double-layer porous template on the sample stage in the growth chamber of the electron beam evaporator, and after placing, ensure that the normal of the substrate plane is facing the crucible where the metal evaporation source is placed. Put the silver material with a purity of not less than 99.99% in the crucible, and the vacuum in the growth chamber is lower than 8×10 -6 Torr; the deposition rate is 0.1nm/s, and the deposition thickness is 25nm; after the deposition is completed, remove the porous template with adhesive tape Finally, the array of silver nanoparticle pairs is obtained. The gap between each pair of silver nanoparticles is less than 10nm, about 5nm, as shown in Figure 4(a), and some gaps are 1nm, as shown in Figure 4(b).
实施例4Example 4
本实施例制备银纳米颗粒阵列,步骤如下:In this embodiment, silver nanoparticle arrays are prepared, and the steps are as follows:
S1.将两层相同的AAO多孔薄膜堆叠在一起,与洁净的硅衬底贴合。其中AAO多孔薄膜是采用纳米压印结合阳极氧化法制备的孔排列长程有序的双通多孔薄膜,孔直径、孔间距以及模板厚度分别为90nm、100nm和130nm,AAO模板表面覆盖有一层聚甲基丙烯酸甲酯薄膜作为支撑。堆叠时,使上层AAO相对于下层AAO旋转约30°。S1. Stack two layers of the same AAO porous film and attach it to a clean silicon substrate. Among them, the AAO porous film is a double-pass porous film with long-range orderly pore arrangement prepared by nanoimprinting combined with anodic oxidation. The pore diameter, pore spacing and template thickness are 90nm, 100nm and 130nm respectively. The surface of the AAO template is covered with a layer of polyformaldehyde. Methyl acrylate film was used as support. When stacking, rotate the upper AAO about 30° relative to the lower AAO.
S2.将S1中制备的覆盖有聚甲基丙烯酸甲酯薄膜/AAO薄膜的硅衬底放在有氮气保护的快速退火炉中在400℃的条件下加热10min,AAO表面的聚甲基丙烯酸甲酯即完全除去。S2. Put the silicon substrate covered with polymethyl methacrylate film/AAO film prepared in S1 in a nitrogen-protected rapid annealing furnace and heat it at 400°C for 10 min. The polymethyl methacrylate on the surface of AAO The ester is completely removed.
S3.将表面覆盖有双层多孔模板的衬底放入电子束蒸发仪的生长腔中的样品台上,放置后保证衬底平面的法线正对放置金属蒸发源的坩埚。将纯度不低于99.99%的银材料置于坩埚中,生长腔内真空度低于8×10-6Torr;沉积速率为0.1nm/s,沉积厚度为25nm;沉积结束后用胶带除去多孔模板后得到银纳米颗粒阵列。所形成的阵列中存在很多由三个颗粒组成的结构,简称“三聚体”。银三聚体结构中有三个极窄间隙,如图5所示,为一个典型的三聚体的TEM图,间隙均在10nm以下。S3. Put the substrate covered with a double-layer porous template on the sample stage in the growth chamber of the electron beam evaporator, and after placing, ensure that the normal of the substrate plane is facing the crucible where the metal evaporation source is placed. Put the silver material with a purity of not less than 99.99% in the crucible, and the vacuum in the growth chamber is lower than 8×10 -6 Torr; the deposition rate is 0.1nm/s, and the deposition thickness is 25nm; after the deposition is completed, remove the porous template with adhesive tape Finally, silver nanoparticle arrays are obtained. In the resulting array, there are many structures composed of three particles, referred to as "trimers". There are three extremely narrow gaps in the silver trimer structure, as shown in Figure 5, which is a TEM image of a typical trimer, and the gaps are all below 10nm.
实施例5Example 5
本实施例制备银纳米颗粒阵列,步骤如下:In this embodiment, silver nanoparticle arrays are prepared, and the steps are as follows:
S1.将两层相同的AAO多孔薄膜堆叠在一起,与洁净的硅衬底贴合。其中AAO多孔薄膜是采用传统的两步氧化法制备的孔排列短程有序的双通多孔薄膜,孔直径、孔间距以及模板厚度分别为90nm、100nm和200nm,AAO模板表面覆盖有一层聚甲基丙烯酸甲酯薄膜作为支撑。S1. Stack two layers of the same AAO porous film and attach it to a clean silicon substrate. Among them, the AAO porous film is a double-pass porous film with short-range and orderly pore arrangement prepared by the traditional two-step oxidation method. The pore diameter, pore spacing and template thickness are 90nm, 100nm and 200nm respectively. The surface of the AAO template is covered with a layer of polymethyl Methyl acrylate film was used as support.
S2.将S1中制备的覆盖有聚甲基丙烯酸甲酯薄膜/AAO薄膜的硅衬底放在有氮气保护的快速退火炉中在400℃的条件下加热10min,AAO表面的聚甲基丙烯酸甲酯即完全除去。S2. Put the silicon substrate covered with polymethyl methacrylate film/AAO film prepared in S1 in a nitrogen-protected rapid annealing furnace and heat it at 400°C for 10 min. The polymethyl methacrylate on the surface of AAO The ester is completely removed.
S3.将表面覆盖有双层多孔模板的衬底放入电子束蒸发仪的生长腔中的样品台上,放置后保证衬底平面的法线正对放置金属蒸发源的坩埚。将纯度不低于99.99%的银材料置于坩埚中,生长腔内真空度低于8×10-6Torr;沉积速率为0.1nm/s,沉积厚度为20nm;沉积结束后用胶带除去多孔模板后得到银纳米颗粒阵列。由于上下两层AAO孔排列为短程有序,所以所形成的的银纳米颗粒阵列的图案为类似图1b-h中所示结构的组合,每种图案分布区域为几个平方微米到几十平方微米。图案的排列并不影响银纳米对以及银三聚体中间隙的大小,所获得的银纳米结构内部间隙均在10nm以下,有的窄至1nm。S3. Put the substrate covered with a double-layer porous template on the sample stage in the growth chamber of the electron beam evaporator, and after placing, ensure that the normal of the substrate plane is facing the crucible where the metal evaporation source is placed. Put the silver material with a purity of not less than 99.99% in the crucible, and the vacuum in the growth chamber is lower than 8×10 -6 Torr; the deposition rate is 0.1nm/s, and the deposition thickness is 20nm; after the deposition, remove the porous template with adhesive tape Finally, silver nanoparticle arrays are obtained. Since the upper and lower layers of AAO holes are arranged in short-range order, the pattern of the formed silver nanoparticle array is a combination similar to the structure shown in Figure 1b-h, and the distribution area of each pattern is several square microns to tens of square meters Microns. The arrangement of the patterns does not affect the size of the gaps in the silver nano-pairs and silver trimers, and the internal gaps of the obtained silver nanostructures are all below 10 nm, and some are as narrow as 1 nm.
实施例6Example 6
本实施例制备银纳米颗粒阵列,步骤如下:In this embodiment, silver nanoparticle arrays are prepared, and the steps are as follows:
S1.将两层相同的AAO多孔薄膜堆叠在一起,与洁净的ITO玻璃衬底贴合。其中AAO多孔薄膜是采用纳米压印结合阳极氧化法制备的孔排列长程有序的双通多孔薄膜,孔直径、孔间距以及模板厚度分别为80nm、100nm和300nm,AAO模板表面覆盖有一层聚苯乙烯作为支撑。堆叠时,使上层AAO相对于下层AAO平移大约半个孔周期的长度。S1. Stack two layers of the same AAO porous film and bond it to a clean ITO glass substrate. Among them, the AAO porous film is a double-pass porous film with long-range orderly pore arrangement prepared by nanoimprinting combined with anodic oxidation. The pore diameter, pore spacing and template thickness are 80nm, 100nm and 300nm respectively. Vinyl for support. When stacking, the upper AAO is translated relative to the lower AAO by approximately half the length of the aperture period.
S2.将S1中制备的覆盖有聚苯乙烯薄膜/AAO薄膜的硅衬底放在丙酮中,AAO表面的聚苯乙烯即完全除去。S2. Put the silicon substrate covered with polystyrene film/AAO film prepared in S1 in acetone, and the polystyrene on the surface of AAO is completely removed.
S3.将表面覆盖有双层多孔模板的衬底放入电子束蒸发仪的生长腔中的样品台上,放置后保证衬底平面的法线正对放置金属蒸发源的坩埚。将纯度不低于99.99%的金材料置于坩埚中,生长腔内真空度低于8×10-6Torr;沉积速率为0.1nm/s,沉积厚度为25nm;沉积结束后用胶带除去多孔模板后得到金纳米颗粒阵列。S3. Put the substrate covered with a double-layer porous template on the sample stage in the growth chamber of the electron beam evaporator, and after placing, ensure that the normal of the substrate plane is facing the crucible where the metal evaporation source is placed. Put the gold material with a purity of not less than 99.99% in the crucible, and the vacuum in the growth chamber is lower than 8×10 -6 Torr; the deposition rate is 0.1nm/s, and the deposition thickness is 25nm; after the deposition, remove the porous template with tape A gold nanoparticle array is obtained.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511033940.1A CN105621353B (en) | 2015-12-31 | 2015-12-31 | A kind of large-area nano graphic method based on multi-layered anode alumina formwork |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511033940.1A CN105621353B (en) | 2015-12-31 | 2015-12-31 | A kind of large-area nano graphic method based on multi-layered anode alumina formwork |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105621353A CN105621353A (en) | 2016-06-01 |
CN105621353B true CN105621353B (en) | 2017-04-05 |
Family
ID=56036762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511033940.1A Expired - Fee Related CN105621353B (en) | 2015-12-31 | 2015-12-31 | A kind of large-area nano graphic method based on multi-layered anode alumina formwork |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105621353B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107604409B (en) * | 2017-09-20 | 2019-05-17 | 深圳拓扑精膜科技有限公司 | A kind of transfer method of ultra-thin anode aluminum oxide film |
CN108417475B (en) * | 2018-01-27 | 2020-07-03 | 安徽师范大学 | Preparation method of metal nanostructure array based on interface induced growth |
CN109504994B (en) * | 2018-12-13 | 2020-08-21 | 上海科技大学 | A new type of anodic aluminum oxide template and preparation method of nano-array |
CN111574216B (en) * | 2020-05-29 | 2021-07-23 | 河南大学 | Li1.4Al0.4Ti1.6(PO4)3 solid electrolyte compatible with lithium metal anode and preparation method thereof |
CN115046983A (en) * | 2022-06-10 | 2022-09-13 | 集美大学 | Method for SERS detection of malachite green |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100619590B1 (en) * | 2004-10-21 | 2006-09-13 | 학교법인고려중앙학원 | Nanostructure Filled with Nanoparticles |
CN101306795A (en) * | 2008-06-13 | 2008-11-19 | 中国科学院光电技术研究所 | An Artificial Composite Structure Material in Optical Band Using AAO Template |
CN101774536A (en) * | 2009-12-28 | 2010-07-14 | 厦门大学 | Preparation method of honeycomb nanoparticle array structure with two-dimensional hexagonal lattice arrangement |
CN101928914A (en) * | 2010-09-02 | 2010-12-29 | 南京大学 | A method for preparing large-area two-dimensional metamaterials |
CN102321905A (en) * | 2011-10-10 | 2012-01-18 | 吉林大学 | Method for preparing multilevel-structure alumina by pattern prefabrication through micro-nano ball arrangement |
CN102320557A (en) * | 2011-09-08 | 2012-01-18 | 中国科学院研究生院 | Method for preparing metal nanometer particles with hexagonal network in lattice distribution on substrate |
WO2012093847A2 (en) * | 2011-01-07 | 2012-07-12 | 건국대학교 산학협력단 | Polycrystalline cuprous oxide nanowire array production method using low-temperature electrochemical growth |
CN102662212A (en) * | 2012-05-31 | 2012-09-12 | 中国科学院上海微系统与信息技术研究所 | Photonic crystal and preparation method thereof |
KR101345588B1 (en) * | 2012-07-17 | 2013-12-31 | 한양대학교 에리카산학협력단 | Phosphorus or boron-doped multilayer au-nio-au nanowire and preparation method thereof |
KR20150021095A (en) * | 2015-01-28 | 2015-02-27 | 롬태크 주식회사 | Harmful material elimination apparatus using nanostructure |
CN104803348A (en) * | 2015-04-20 | 2015-07-29 | 中国科学院光电技术研究所 | Method for preparing high-aspect-ratio polymer nano-pillar array by using sacrificial template |
-
2015
- 2015-12-31 CN CN201511033940.1A patent/CN105621353B/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100619590B1 (en) * | 2004-10-21 | 2006-09-13 | 학교법인고려중앙학원 | Nanostructure Filled with Nanoparticles |
CN101306795A (en) * | 2008-06-13 | 2008-11-19 | 中国科学院光电技术研究所 | An Artificial Composite Structure Material in Optical Band Using AAO Template |
CN101774536A (en) * | 2009-12-28 | 2010-07-14 | 厦门大学 | Preparation method of honeycomb nanoparticle array structure with two-dimensional hexagonal lattice arrangement |
CN101928914A (en) * | 2010-09-02 | 2010-12-29 | 南京大学 | A method for preparing large-area two-dimensional metamaterials |
WO2012093847A2 (en) * | 2011-01-07 | 2012-07-12 | 건국대학교 산학협력단 | Polycrystalline cuprous oxide nanowire array production method using low-temperature electrochemical growth |
CN102320557A (en) * | 2011-09-08 | 2012-01-18 | 中国科学院研究生院 | Method for preparing metal nanometer particles with hexagonal network in lattice distribution on substrate |
CN102321905A (en) * | 2011-10-10 | 2012-01-18 | 吉林大学 | Method for preparing multilevel-structure alumina by pattern prefabrication through micro-nano ball arrangement |
CN102662212A (en) * | 2012-05-31 | 2012-09-12 | 中国科学院上海微系统与信息技术研究所 | Photonic crystal and preparation method thereof |
KR101345588B1 (en) * | 2012-07-17 | 2013-12-31 | 한양대학교 에리카산학협력단 | Phosphorus or boron-doped multilayer au-nio-au nanowire and preparation method thereof |
KR20150021095A (en) * | 2015-01-28 | 2015-02-27 | 롬태크 주식회사 | Harmful material elimination apparatus using nanostructure |
CN104803348A (en) * | 2015-04-20 | 2015-07-29 | 中国科学院光电技术研究所 | Method for preparing high-aspect-ratio polymer nano-pillar array by using sacrificial template |
Non-Patent Citations (8)
Title |
---|
Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning.;Ahmed Al-Haddad, Zhibing Zhan, Chengliang Wang, et al.;《ACS Nano》;20150714;第9卷(第8期);第8584-8591页 * |
Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks.;Yong Lei, Weiping Cai, Gerhard Wilde.;《Progress in Materials Science》;20060928;第52卷(第4期);第465-539页 * |
Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.;Qun Fu, Zhibing Zhan, Jinxia Dou, et al.;《ACS Appl Mater Interfaces》;20150529;第7卷(第24期);第13322-13328页 * |
Nanopatterned Magnetic Metal via Colloidal Lithography with Reactive Ion Etching.;Dae-Geun Choi, Sarah Kim, Se-Gyu Jang, et al.;《Chem. Mater.》;20040928;第16卷;第4208-4211页 * |
Patterning Microsphere Surfaces by Templateing Colloidal Crystals.;Gang Zhang, Dayang Wang and Helmuth Mohwald.;《NANO Letters》;20041204;第5卷(第1期);第143-146页 * |
Surface patterning using templates: concept, properties and device applications.;Yong Lei, Shikuan Yang, Minghong Wu and Gerhard Wilde.;《Chem Soc Rev》;20101028;第40卷;第1247-1258页 * |
Synthesis of germanium nanodots on silicon using an anodic alumina membrane mask.;Z. Chen, Y. Lei, H.G. Chew, et al.;《Journal of Crystal Growth》;20040604;第268卷(第3-4期);第560-563页 * |
Ultrathin Alumina Membranes for Surface Nanopatterning in Fabricating Quantum-Sized Nanodots.;Minghong Wu, Liaoyong Wen, Yong Lei et al.;《Small》;20091221;第6卷(第5期);第695-699页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105621353A (en) | 2016-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105621353B (en) | A kind of large-area nano graphic method based on multi-layered anode alumina formwork | |
Mark et al. | Hybrid nanocolloids with programmed three-dimensional shape and material composition | |
US9816176B2 (en) | Preparation method for multi-layer metal oxide porous film nano gas-sensitive material | |
Larsen et al. | The fabrication of three-dimensional plasmonic chiral structures by dynamic shadowing growth | |
CN102148429A (en) | Manufacturing method of nano-optical antenna array | |
CN113666418A (en) | Two-dimensional atomic crystal multilayer corner WS2Nano material and preparation method thereof | |
TWI457474B (en) | A method of fabrication to one-dimension metal nanometer structure | |
CN108622848A (en) | A kind of three-dimensional composite nanostructure of large area and preparation method thereof | |
CN110205587A (en) | A kind of method of template annealing preparation large area regular array gold nano grain array | |
Choi et al. | Graphite Pellicle: Physical Shield for Next‐Generation EUV Lithography Technology | |
US12103844B2 (en) | Method of fabricating nanostructures using macro pre-patterns | |
KR101356800B1 (en) | Three Dimensional Multicomponent Nanostructure Having Continuous Patternized Structure and Method for Preparing the Same | |
Hattori et al. | ZnO nanobox luminescent source fabricated by three-dimensional nanotemplate pulsed-laser deposition | |
CN103803618B (en) | A kind of preparation method of porous anodic aluminium oxide 3-D nano, structure | |
Chung et al. | Fabrication of thin-film spherical anodic alumina oxide templates using a superimposed nano-micro structure | |
CN104401964A (en) | Preparation method of fullerene nano structure | |
CN107180897A (en) | A kind of nano photoelectric device preparation method that mask is sieved based on nanometer | |
Wang et al. | Large-area fabrication of periodic Fe nanorings with controllable aspect ratios in porousalumina templates | |
Asoh et al. | Pt–Pd-embedded silicon microwell arrays | |
KR101621692B1 (en) | A manufacturing method of 3 dimensional open-structure network porous metal thin film and 3 dimensional open-structure network porous metal thin film thereof | |
Guo et al. | Fabrication of a regular tripod Ni–P nanorod array and an AAO template with regularbranched nanopores using a current-controlled branching method | |
CN101798059B (en) | Production method of silicon-based nanopore | |
Li et al. | Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography | |
CN103745917B (en) | A kind of electric field controls prepares the method for nanostructure on monocrystalline silicon substrate surface | |
CN106115617B (en) | A kind of polymer nanocomposite column array without method for preparing template |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170405 Termination date: 20171231 |
|
CF01 | Termination of patent right due to non-payment of annual fee |