[go: up one dir, main page]

CN105607045B - A kind of optimizing location method of radar network under Deceiving interference - Google Patents

A kind of optimizing location method of radar network under Deceiving interference Download PDF

Info

Publication number
CN105607045B
CN105607045B CN201610014960.2A CN201610014960A CN105607045B CN 105607045 B CN105607045 B CN 105607045B CN 201610014960 A CN201610014960 A CN 201610014960A CN 105607045 B CN105607045 B CN 105607045B
Authority
CN
China
Prior art keywords
mrow
msub
radar
node
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610014960.2A
Other languages
Chinese (zh)
Other versions
CN105607045A (en
Inventor
周宇
谷亚彬
刘洁怡
张林让
赵珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610014960.2A priority Critical patent/CN105607045B/en
Publication of CN105607045A publication Critical patent/CN105607045A/en
Application granted granted Critical
Publication of CN105607045B publication Critical patent/CN105607045B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属于雷达抗干扰技术领域,公开了一种欺骗式干扰下组网雷达的优化布站方法,包括:计算组网雷达的被欺骗概率;构造最小化被欺骗概率的目标函数;计算组网雷达中各节点雷达的覆盖范围,构造最大化覆盖范围的目标函数;根据最小化被欺骗概率的目标函数和最大化覆盖范围的目标函数,建立联合优化目标函数;确定组网雷达布站的约束条件;根据组网雷达布站的约束条件和联合优化目标函数,构造欺骗式干扰下组网雷达布站的优化式;根据欺骗式干扰下组网雷达布站的优化式,得到组网雷达中各个节点雷达的布站位置,以节省雷达系统资源,实现对欺骗式干扰更加精确的有效抑制。

The invention belongs to the technical field of radar anti-jamming, and discloses a method for optimizing station deployment of networked radars under deceptive interference, including: calculating the spoofed probability of the networked radar; constructing an objective function that minimizes the spoofed probability; calculating the networking Construct the objective function of maximizing the coverage of the coverage of each node radar in the radar; establish a joint optimization objective function according to the objective function of minimizing the probability of being deceived and the objective function of maximizing the coverage; determine the constraints of networked radar station deployment conditions; according to the constraint conditions of networked radar station deployment and the joint optimization objective function, the optimal formula for networked radar station deployment under deceptive jamming is constructed; according to the optimal formula for networked radar station deployment under deceptive jamming, the network radar The station location of each node radar is used to save radar system resources and achieve more accurate and effective suppression of deceptive interference.

Description

一种欺骗式干扰下组网雷达的优化布站方法A method for optimal deployment of networked radar under deceptive jamming

技术领域technical field

本发明涉及雷达抗干扰技术领域,尤其涉及一种欺骗式干扰下组网雷达的优化布站方法,该方法采用组网雷达被欺骗概率最小化和覆盖范围最大化的联合优化准则进行布站,得到组网雷达的布站位置,从而提高组网雷达抑制欺骗式干扰的能力。The present invention relates to the field of radar anti-jamming technology, and in particular to a method for optimizing station deployment of networked radars under deceptive interference. The location of the networked radar is obtained, so as to improve the ability of the networked radar to suppress deceptive interference.

背景技术Background technique

欺骗式干扰是指在雷达接收机中干扰信号与目标回波信号难以区分,以假乱真,使雷达不能正确地检测到目标信息。欺骗式干扰的工作原理为:对接收的雷达发射信号,经过干扰调制,改变有关参数,再将调制过的信号转发回雷达,以模拟雷达目标的回波信号。使雷达难以辨别真假目标,从而达到迷惑和扰乱雷达对真目标检测和跟踪的目的。数字射频存储器技术的成熟使得高逼真度假目标的产生成为可能,在偏离目标的不同位置上给雷达产生许多假目标,使得该雷达不能区分真假目标。因此,尽管真实目标包含在显示出的许多目标之内,但若雷达没有识别真假目标的能力,则必然将所有目标都作为真实目标处理。若雷达无法有效对抗欺骗式干扰,则必需对虚假目标始终保持检测、跟踪,从而占用大量雷达系统资源,严重影响雷达的数据处理能力。Deceptive interference refers to the indistinguishability between the interference signal and the target echo signal in the radar receiver, so that the radar cannot correctly detect the target information. The working principle of deceptive jamming is: transmit signals to the received radar, after interference modulation, change the relevant parameters, and then forward the modulated signal back to the radar to simulate the echo signal of the radar target. It makes it difficult for the radar to distinguish between true and false targets, thereby achieving the purpose of confusing and disrupting the radar's detection and tracking of real targets. The maturity of digital radio frequency memory technology makes it possible to generate high-fidelity false targets. Many false targets are generated for the radar at different positions away from the target, so that the radar cannot distinguish between real and false targets. Therefore, although real targets are included in many of the displayed targets, if the radar does not have the ability to distinguish real and false targets, all targets must be treated as real targets. If the radar cannot effectively fight against deceptive jamming, it must always detect and track false targets, which will occupy a large amount of radar system resources and seriously affect the data processing capability of the radar.

由于单站雷达视角单一,很难对其进行对抗。而组网雷达在战场上可以构成全方位、立体化、多层次的战斗体系,具有全频段、多体制、多重叠系数等技术性能,因而具有很强的生存能力和抗干扰能力。就频域对抗而言,由多部多波段雷达组网,不可能用一部干扰机来干扰如此宽的频段。就空间电磁环境而言,多部雷达组网后,不仅辐射源数量增加,使信号空间的密度和分布更加复杂,而且在频率范围、信号形式、参数类型和威胁等级等方面都会给侦察系统带来困难,使得干扰质量受到很大限制。Due to the single point of view of monostatic radar, it is difficult to fight against it. The networked radar can form an all-round, three-dimensional, and multi-level combat system on the battlefield. It has technical performances such as full frequency bands, multiple systems, and multiple overlapping coefficients, so it has strong survivability and anti-interference capabilities. As far as frequency domain countermeasures are concerned, it is impossible to use a jammer to jam such a wide frequency band with a network of multiple multi-band radars. As far as the space electromagnetic environment is concerned, after multiple radars are networked, not only the number of radiation sources will increase, making the density and distribution of the signal space more complex, but also the reconnaissance system will be affected in terms of frequency range, signal form, parameter type and threat level. It is difficult to make the quality of interference is greatly limited.

组网雷达中各节点雷达的相对位置会直接影响对目标的相关性检验,进而影响组网雷达的被欺骗概率,因此,研究欺骗式干扰下组网雷达的优化布站具有重要意义。通过对组网雷达进行合理布站,可以有效地降低欺骗式干扰对组网雷达的威胁。The relative position of each node radar in the networked radar will directly affect the correlation test of the target, and then affect the spoofing probability of the networked radar. Therefore, it is of great significance to study the optimal layout of the networked radar under deceptive jamming. The threat of deceptive interference to the networked radar can be effectively reduced by rationally distributing the stations of the networked radar.

发明内容Contents of the invention

针对上述问题,本发明的目的在于提供一种欺骗式干扰下组网雷达的优化布站方法,以节省雷达系统资源,实现对欺骗式干扰更加精确的有效抑制。In view of the above problems, the object of the present invention is to provide an optimized site layout method for networked radars under deceptive jamming, so as to save radar system resources and achieve more accurate and effective suppression of deceptive jamming.

为达到上述目的,本发明的实施例采用如下技术方案予以实现。In order to achieve the above purpose, the embodiments of the present invention adopt the following technical solutions to achieve.

一种欺骗式干扰下组网雷达的优化布站方法,所述组网雷达包含多个节点雷达,所述优化布站方法包括如下步骤:A method for optimizing station deployment of networked radars under deceptive interference, wherein the networked radars include a plurality of node radars, and the method for optimizing station deployment includes the following steps:

步骤1,计算组网雷达的被欺骗概率;Step 1, calculate the probability of being deceived by the networked radar;

步骤2,根据所述组网雷达的被欺骗概率,构造组网雷达最小化被欺骗概率的目标函数;Step 2, according to the spoofed probability of the networked radar, constructing an objective function for the networked radar to minimize the spoofed probability;

步骤3,计算所述组网雷达中各节点雷达的覆盖范围,并根据所述各节点雷达的覆盖范围,构造组网雷达最大化覆盖范围的目标函数;Step 3, calculating the coverage of each node radar in the networked radar, and constructing an objective function for maximizing the coverage of the networked radar according to the coverage of each node radar;

步骤4,根据所述最小化被欺骗概率的目标函数和最大化覆盖范围的目标函数,建立联合优化目标函数;Step 4, according to the objective function of minimizing the probability of being deceived and the objective function of maximizing coverage, establish a joint optimization objective function;

步骤5,根据所述组网雷达中相邻节点雷达之间的布站间距、探测区域和组网雷达的探测范围,确定组网雷达布站的约束条件;Step 5, according to the station layout distance between adjacent node radars in the network radar, the detection area and the detection range of the network radar, determine the constraint conditions for the network radar station deployment;

步骤6,根据所述组网雷达布站的约束条件和所述联合优化目标函数,构造欺骗式干扰下组网雷达布站的优化式;Step 6, according to the constraints of the networked radar station deployment and the joint optimization objective function, construct an optimal formula for the networked radar station deployment under deceptive interference;

步骤7,根据所述欺骗式干扰下组网雷达布站的优化式,得到组网雷达中各个节点雷达的布站位置。In step 7, according to the optimal formula for deploying radar stations in the network under deceptive interference, obtain the station deployment positions of the radars of each node in the radar network.

本发明具有如下优点:(1)相比于现有数据处理阶段抑制分布式干扰的方法,本发明通过优化布站的方法抑制欺骗式干扰的不利影响,由于最优布站位置可离线得到,故本发明方法所需占用的雷达系统资源较少;(2)由于本发明不仅考虑雷达覆盖范围与组网雷达被欺骗概率,还兼顾了节点雷达的布站间距、以及探测区域等工程中必须考虑的因素,故本发明更有利于工程实践。The present invention has the following advantages: (1) Compared with the existing method for suppressing distributed interference in the data processing stage, the present invention suppresses the adverse effects of deceptive interference by optimizing station deployment, since the optimal station deployment position can be obtained offline, Therefore, the radar system resources required by the method of the present invention are less; (2) because the present invention not only considers the radar coverage area and the probability of being deceived by the networked radar, but also takes into account the station spacing of node radars and the necessary detection areas in projects such as Considering factors, so the present invention is more conducive to engineering practice.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为本发明实施例提供的一种欺骗式干扰下组网雷达的优化布站方法的流程示意图一;FIG. 1 is a schematic flow diagram 1 of an optimal station deployment method for a networked radar under deceptive interference provided by an embodiment of the present invention;

图2为本发明实施例提供的一种欺骗式干扰下组网雷达的优化布站方法的流程示意图二;Fig. 2 is a schematic flow diagram 2 of an optimal station deployment method for a networked radar under deceptive interference provided by an embodiment of the present invention;

图3为利用本发明方法得到的组网雷达在欺骗式干扰条件下选择探测区域中心X0=[0,0]T,半径R=10km,组网雷达布站结果仿真示意图。Fig. 3 is a simulation schematic diagram of networked radar station layout results obtained by using the method of the present invention under the condition of deceitful interference, selecting the detection area center X 0 =[0,0] T , radius R=10km.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

本发明实施例提供一种欺骗式干扰下组网雷达的优化布站方法,所述组网雷达包含多个节点雷达,本发明提供的优化布站方法是在一个已有的组网雷达拓扑结构下进行的优化。如图1所示,所述优化布站方法包括如下步骤:An embodiment of the present invention provides a method for optimal deployment of networked radars under deceptive interference. The networked radars include multiple node radars. The optimized station deployment method provided by the present invention is based on an existing networked radar topology optimized below. As shown in Figure 1, the method for optimizing station layout includes the following steps:

步骤1、计算组网雷达的被欺骗概率。Step 1. Calculate the spoofing probability of the networking radar.

步骤1具体包括如下子步骤:Step 1 specifically includes the following sub-steps:

(1a)建立假设检验模型。(1a) Build a hypothesis testing model.

子步骤(1a)具体包括如下子步骤:Substep (1a) specifically includes the following substeps:

(1a1)将任意两个节点雷达测量误差的马氏距离dij作为统计检验量,其中△Z=dZi-dZj为任意两个节点雷达测量误差之差,其中∑ij=E[(dZi-dZj)(dZi-dZj)T]表示第i节点雷达与第j节点雷达测量误差之差的协方差矩阵,dZi为第i节点雷达的测量误差、dZj为第j节点雷达的测量误差,i,j=1,2,…,N i≠j,i、j表示节点雷达的编号,N表示节点雷达的个数;(1a1) Take the Mahalanobis distance d ij of the radar measurement error of any two nodes as the statistical test quantity, where △Z=dZ i -dZ j is the difference between the measurement errors of any two radar nodes, where ∑ ij =E[(dZ i -dZ j )(dZ i -dZ j ) T ] means that the i-th node radar and the j-th node The covariance matrix of the difference between node radar measurement errors, dZ i is the measurement error of the i-th node radar, dZ j is the measurement error of the j-th node radar, i, j=1, 2,..., N i≠j, i, j represents the number of the node radar, and N represents the number of node radars;

(1a2)假设检验模型如下:其中,记H0表示两量测值Zi和Zj对应真实目标,H1表示两量测值Zi和Zj对应欺骗式假目标,表示自由度为2,显著性水平为1-a的卡方分布;(1a2) The hypothesis testing model is as follows: Among them, H 0 means that the two measured values Z i and Z j correspond to real targets, H 1 means that the two measured values Z i and Z j correspond to deceptive false targets, Indicates a chi-square distribution with 2 degrees of freedom and a significance level of 1-a;

(1a3)在H1成立的条件下,两节点雷达测量误差之差△Z服从均值为E,协方差矩阵为∑ij的正态分布,均值 为第i节点雷达、第j节点雷达探测到的假目标在同一直角坐标系下的坐标,i=1,2,…,N,ρi为第i节点雷达检测到目标的距离、θi为第i节点雷达检测到目标的角度,△d表示欺骗距离;(1a3) Under the condition that H 1 is established, the difference △ Z of the radar measurement errors of the two nodes obeys the mean value E, the covariance matrix is a normal distribution of ∑ ij , and the mean value is the coordinates of the false target detected by the i-th node radar and the j-th node radar in the same rectangular coordinate system, i=1,2,...,N, ρi is the distance of the target detected by the i-th node radar, θ i is the angle of the i-th node radar detected target, △d represents the deception distance;

(1a4)在H1成立的条件下,△Z的二维概率密度函数fij(x,y)为:(1a4) Under the condition that H 1 is established, the two-dimensional probability density function f ij (x, y) of △Z is:

其中表示x轴测量差异的精度,表示y轴测量差异的精度,ρ=ξ12/(σxσy)表示x轴测量差异与y轴测量差异的相关系数,ξ11,ξ12,ξ21,ξ22为矩阵∑ij对应的各个矩阵元素。in Indicates the precision with which the x-axis measures the difference, Indicates the accuracy of the y-axis measurement difference, ρ=ξ 12 /(σ x σ y ) represents the correlation coefficient between the x-axis measurement difference and the y-axis measurement difference, ξ 11 , ξ 12 , ξ 21 , ξ 22 are the corresponding matrix Σ ij individual matrix elements.

(1b)根据所述假设检验模型,计算任意两个节点雷达对假目标的误判概率。(1b) According to the hypothesis testing model, calculate the misjudgment probability of any two node radars for false targets.

示例性的,可以采用数据融合算法计算任意两个节点雷达对假目标的误判概率。Exemplarily, a data fusion algorithm may be used to calculate the misjudgment probability of any two node radars for a false target.

子步骤(1b)具体包括如下子步骤:Substep (1b) specifically includes the following substeps:

(1b1)第i节点雷达、第j节点雷达采用数据融合算法对假目标的误判概率Pij为:(1b1) The misjudgment probability P ij of the i-th node radar and the j-th node radar using the data fusion algorithm for false targets is:

其中P(H0|H1)表示在假设H1下被判为H0的概率,dij表示马氏距离且Among them, P(H 0 |H 1 ) represents the probability of being judged as H 0 under the hypothesis H 1 , d ij represents the Mahalanobis distance and

其中, in,

(1b2)将误判概率Pij的表达式转化为积分形式,并简化得到:(1b2) Transform the expression of misjudgment probability P ij into integral form, and simplify to get:

其中表示积分区间y方向上限,表示积分区间y方向下限,为积分区间x方向上的上限,表示积分区间在x方向上的上限。in Indicates the upper limit of the integration interval in the y direction, Indicates the lower limit of the integration interval in the y direction, is the upper limit of the integration interval in the x direction, Indicates the upper limit of the integration interval in the x direction.

(1c)根据所述任意两个节点雷达对假目标的误判概率,计算组网雷达的被欺骗概率。(1c) Calculate the deception probability of the networked radar according to the misjudgment probability of the false target by the radars of any two nodes.

在节点雷达数大于2的情况下,每两部节点雷达需要对假目标进行鉴别,然后对所有的判决结果采用‘取与’的原则进行融合处理,得到最终的鉴别结果。When the number of node radars is greater than 2, every two node radars need to identify false targets, and then use the principle of 'take and' to fuse all the judgment results to obtain the final identification result.

子步骤(1c)具体包括如下子步骤:Substep (1c) specifically includes the following substeps:

组网雷达的被欺骗概率其中Pf表示组网雷达的被欺骗概率,Pij表示第i节点雷达和第j节点雷达对假目标的误判概率,∏表示连乘符号。The probability of being deceived by the networked radar Among them, P f represents the probability of being deceived by the networked radar, P ij represents the misjudgment probability of the i-th node radar and the j-th node radar on the false target, and ∏ represents the multiplication symbol.

对组网雷达进行布站的目的是为了抑制欺骗式干扰对组网雷达的影响,即提高组网雷达在欺骗式干扰条件下的性能。为实现该目的,选择的优化目标函数是最大化组网雷达的探测范围与最小化组网雷达被欺骗概率的交集。具体实施步骤如下:The purpose of deploying the networked radar is to suppress the influence of deceptive jamming on the networked radar, that is, to improve the performance of the networked radar under the condition of deceptive jamming. To achieve this goal, the optimal objective function selected is the intersection of maximizing the detection range of the networked radar and minimizing the probability of being deceived by the networked radar. The specific implementation steps are as follows:

步骤2,根据所述组网雷达的被欺骗概率,构造最小化被欺骗概率的目标函数。Step 2, according to the deception probability of the networked radar, construct an objective function that minimizes the deception probability.

步骤2具体包括如下子步骤:Step 2 specifically includes the following sub-steps:

(2a)对组网雷达的探测区域Ω进行划分,得到多个子探测区域ΩD,根据不同子探测区域的危险程度,对子探测区域ΩD赋以加权系数w;(2a) Divide the detection area Ω of the networked radar to obtain multiple sub-detection areas Ω D , and assign a weighting coefficient w to the sub-detection area Ω D according to the degree of danger of different sub-detection areas;

(2b)根据组网雷达的被欺骗概率Pf,构造最小化被欺骗概率的目标函数F1为:(2b) According to the deception probability P f of the networked radar, construct the objective function F 1 that minimizes the deception probability as:

其中,优化变量为所有节点雷达在极坐标系下的位置坐标Xi=(ρii),ρi、θi分别为第i个节点雷达的位置在极坐标系中的距离和角度,i=1,2,…,N,N为组网雷达中节点雷达的个数,ΩD表示子探测区域,w表示子探测区域ΩD对应的加权系数,min表示求最小值,Σ表示求和符号。Among them, the optimization variable is the position coordinates X i = (ρ i , θ i ) of all node radars in the polar coordinate system, and ρ i and θ i are the distance and angle of the position of the i-th node radar in the polar coordinate system, respectively , i=1,2,...,N,N is the number of node radars in the networked radar, Ω D represents the sub-detection area, w represents the weighting coefficient corresponding to the sub-detection area Ω D , min represents the minimum value, Σ represents Summation symbol.

步骤3,计算所述组网雷达中各节点雷达的覆盖范围,并根据所述各节点雷达的覆盖范围,构造最大化覆盖范围的目标函数。Step 3, calculating the coverage of each node radar in the networked radar, and constructing an objective function for maximizing the coverage according to the coverage of each node radar.

步骤3具体包括如下子步骤:Step 3 specifically includes the following sub-steps:

(3a)计算各节点雷达的覆盖范围Si={X|||X-Xi||≤Rimax},其中X表示目标位置,Xi表示第i节点雷达的位置,Rimax表示第i节点雷达的最大探测距离,‖‖表示2范数;(3a) Calculate the coverage area S i ={X|||XX i ||≤R imax } of each node radar, where X represents the target position, X i represents the position of the i-th node radar, and R imax represents the i-th node radar The maximum detection distance of , ‖‖ means 2 norm;

(3b)最大化覆盖范围的目标函数F2为:(3b) The objective function F2 for maximizing coverage is:

其中,优化变量为所有节点雷达在极坐标系下的位置坐标Xi=(ρii),ρi、θi分别为第i个节点雷达的位置在极坐标系中的距离和角度,i=1,2,…,N,N为组网雷达中节点雷达的个数,Si为各节点雷达位置坐标分别为X1,X2,…,XN的情况的探测范围,max表示取最大值,∪表示取‘并集’。Among them, the optimization variable is the position coordinates X i = (ρ i , θ i ) of all node radars in the polar coordinate system, and ρ i and θ i are the distance and angle of the position of the i-th node radar in the polar coordinate system, respectively , i=1,2,...,N,N is the number of node radars in the networked radar, S i is the detection range of the situation where the position coordinates of each node radar are X 1 , X 2 ,...,X N , max means to take the maximum value, and ∪ means to take the 'union'.

步骤4,根据所述最小化被欺骗概率的目标函数和最大化覆盖范围的目标函数,建立联合优化目标函数。Step 4, according to the objective function of minimizing the probability of being deceived and the objective function of maximizing coverage, establish a joint optimization objective function.

步骤4具体包括如下子步骤:Step 4 specifically includes the following sub-steps:

(4a)根据最小化被欺骗概率的目标函数F1和最大化覆盖范围的目标函数F2,建立联合优化目标函数F为:(4a) According to the objective function F 1 that minimizes the probability of being deceived and the objective function F 2 that maximizes coverage, establish a joint optimization objective function F as:

组网雷达的优化布站问题是个多目标优化问题。对多目标优化问题,可以对每个优化函数赋以不同的权系数,将其合成一个标量目标函数,再进行优化求解。The optimal station placement problem of networked radar is a multi-objective optimization problem. For multi-objective optimization problems, different weight coefficients can be assigned to each optimization function, which can be synthesized into a scalar objective function, and then optimized for solution.

(4b)联合优化目标函数F转化为:(4b) The joint optimization objective function F is transformed into:

其中,,优化变量为所有节点雷达在极坐标系下的位置坐标Xi=(ρii),ρi、θi分别为第i个节点雷达的位置在极坐标系中的距离和角度,i=1,2,…,N,N为组网雷达中节点雷达的个数,Si为各节点雷达位置坐标分别为X1,X2,…,XN的情况的探测范围,ΩD表示子探测区域,w表示子探测区域ΩD对应的加权系数,∪表示取‘并集’,0≤λ≤1,λ的大小表征了组网雷达对被欺骗概率和覆盖范围的侧重程度。Among them, the optimization variable is the position coordinates X i = (ρ i , θ i ) of all node radars in the polar coordinate system, ρ i , θ i are the distance and Angle, i=1,2,...,N,N is the number of node radars in the networked radar, S i is the detection range of the situation where the position coordinates of each node radar are X 1 , X 2 ,...,X N , Ω D represents the sub-detection area, w represents the weighting coefficient corresponding to the sub-detection area Ω D , ∪ represents the 'union', 0≤λ≤1, and the size of λ represents the focus of the networked radar on the probability of being deceived and the coverage degree.

步骤5,根据所述组网雷达中相邻节点雷达之间的布站间距、探测区域和探测范围,确定组网雷达布站的约束条件。Step 5, according to the station deployment distance, detection area and detection range between adjacent node radars in the network radar, determine the constraint conditions for network radar station deployment.

对组网雷达进行布站,除了要考虑优化目标函数以外,需兼顾组网雷达系统对布站位置的约束条件,主要包括以下几个方面:一、为保证组网雷达多视角的优势和接收目标信号之间的非相干性,两节点雷达之间的距离不能太近;二、尽量保证对组网雷达的期望探测空域范围的覆盖。For networked radar station deployment, in addition to considering the optimization of the objective function, it is necessary to take into account the constraints of the networked radar system on the location of the station, mainly including the following aspects: The incoherence between the target signals, the distance between the two node radars should not be too close; Second, try to ensure the coverage of the expected detection airspace range of the networked radars.

步骤5具体包括如下子步骤:Step 5 specifically includes the following sub-steps:

(5a)根据组网雷达对相邻节点雷达间之间的布站间距的要求,即任意两个节点雷达之间的布站间距的约束条件d(Xi,Xj)≥△Rmin,该任意两个节点雷达之间的布站间距d(Xi,Xj)为:(5a) According to the requirements of networked radars on the station spacing between adjacent node radars, that is, the constraint condition d(X i , X j )≥△R min for the station spacing between any two node radars, The distance d(X i , X j ) between any two radar nodes is:

其中,Ri、θi分别为第i个节点雷达的距离信息和角度信息,Rj、θj分别为第j个节点雷达的距离信息和角度信息,i、j均为节点雷达的编号,i=1,2,…,N,j=1,2,…,N,i≠j,△Rmin表示两节点雷达之间距离的最小门限值;Among them, R i and θ i are the distance information and angle information of the i-th node radar respectively, R j and θ j are the distance information and angle information of the j-th node radar respectively, and i and j are the numbers of the node radar, i=1,2,…,N, j=1,2,…,N, i≠j, △R min represents the minimum threshold value of the distance between two node radars;

(5b)组网雷达对真假目标的探测区域ΩD在组网雷达的探测范围内,即(5b) The detection area Ω D of the networked radar for real and false targets is within the detection range of the networked radar, that is

其中,Ri、θi分别为第i节点雷达的距离信息和角度信息,R、θ分别为目标的距离信息和角度信息,Ψ为组网雷达布站的范围,ΩD表示组网雷达的子探测区域,表示任意,∈表示属于。Among them, R i and θ i are the distance information and angle information of the i-th node radar respectively, R and θ are the distance information and angle information of the target respectively, Ψ is the range of networked radar stations, Ω D represents the range of networked radar sub-detection area, means any, and ∈ means belongs to.

步骤6,根据所述组网雷达布站的约束条件和所述联合优化目标函数,构造欺骗式干扰下组网雷达布站的优化式。Step 6: According to the constraint conditions of the networked radar station deployment and the joint optimization objective function, an optimization formula for the networked radar station deployment under deceptive interference is constructed.

步骤6具体包括如下子步骤:Step 6 specifically includes the following sub-steps:

根据所述组网雷达布站的约束条件和所述联合优化目标函数,构造欺骗式干扰下组网雷达布站的优化式Q(X1,X2,…,XN):According to the constraints of the networked radar station deployment and the joint optimization objective function, the optimal formula Q(X 1 ,X 2 ,...,X N ) for the networked radar station deployment under deceptive interference is constructed:

其中,s.t.表示约束条件,表示任意的。Among them, st represents the constraint condition, means arbitrary.

步骤7,根据所述欺骗式干扰下组网雷达布站的优化式,得到组网雷达中各个节点雷达的布站位置。In step 7, according to the optimal formula for deploying radar stations in the network under deceptive interference, obtain the station deployment positions of the radars of each node in the radar network.

对组网雷达布站的优化式Q(X1,X2,…,XN)进行求解,得到解析解,根据经验选取合理的解作为组网雷达的最优布站位置 Solve the optimal formula Q(X 1 ,X 2 ,…,X N ) for networked radar station deployment to obtain an analytical solution, and select a reasonable solution based on experience as the optimal station deployment location for networked radar

(7a)利用迭代算法对组网雷达布站的优化式Q(X1,X2,…,XN)进行求解,得到欺骗式干扰条件下组网雷达中各个节点雷达的优化位置坐标其中,分别为迭代算法得到的第i节点雷达在极坐标系中的距离信息和角度信息;(7a) Use the iterative algorithm to solve the optimal formula Q(X 1 ,X 2 ,…,X N ) of networked radar stations, and obtain the optimal position coordinates of each node radar in the networked radar under the condition of deceptive interference in, are the distance information and angle information of the i-th node radar in the polar coordinate system obtained by the iterative algorithm, respectively;

(7b)将各个节点雷达的优化位置坐标转换到直角坐标系,得到直角坐标系下各个节点雷达的直角坐标作为组网雷达的最优布站位置,其中,各个节点雷达的x轴坐标和y轴坐标分别为: (7b) The optimal position coordinates of each node radar Convert to the Cartesian coordinate system to obtain the Cartesian coordinates of each node radar in the Cartesian coordinate system As the optimal deployment position of the networked radar, the x-axis coordinates and y-axis coordinates of each node radar are respectively:

结合图2和图3对本发明实施例提供的一种欺骗式干扰下组网雷达的布站方法的效果通过以下仿真进一步验证。2 and 3, the effect of a networked radar station deployment method under deceptive interference provided by the embodiment of the present invention is further verified by the following simulation.

1.实验场景:1. Experimental scene:

以三部节点雷达组成的组网雷达为例,进行优化布站仿真分析,不失一般性,设探测区域ΩD为圆形区域,且等半径地分成5个子区域,每个子区域的加权系数由内到外依次增加,ΩD={X|||X-X0||≤R}其中,X0表示探测区域的圆心,R为其半径。每个子区域,及其加权系数分别为:设可布站范围Ψ为长方形区域:x轴变化范围为-80km~-40km,y轴变化范围为-80km~80km,各节点雷达的参数相同,其威力范围半径Rimax=100km,测角精度0.002rad,测距精度70m;两雷达之间的最小距离限制为△Rmin=10km。Taking the networked radar composed of three node radars as an example, the simulation analysis of optimized station layout is carried out. Without loss of generality, the detection area Ω D is assumed to be a circular area, and it is divided into 5 sub-areas with equal radii. The weighting coefficient of each sub-area Increasing from inside to outside, Ω D ={X|||XX 0 ||≤R} where X 0 represents the center of the detection area, and R is its radius. Each sub-region, and its weighting coefficients are: Assume that the station deployment range Ψ is a rectangular area: the change range of the x-axis is -80km to -40km, the change range of the y-axis is -80km to 80km, the parameters of the radars of each node are the same, the power range radius R imax = 100km, and the angle measurement accuracy 0.002rad, the ranging accuracy is 70m; the minimum distance between the two radars is limited to △R min =10km.

2.实验内容与分析:2. Experimental content and analysis:

实验一:选择探测区域中心X0=[0,0]T,半径R=10km,在不同加权系数λ下,可以得到对三部雷达进行优化布站的结果,如图2所示。Experiment 1: Select the center of the detection area X 0 =[0,0] T , the radius R=10km, and under different weighting coefficients λ, the results of optimizing the site layout of the three radars can be obtained, as shown in Figure 2.

从图2中可以看到,采用本发明方法得到的最优布站位置:在λ=0得到的第1个节点雷达的布站位置为(-80,-40)km,第2个节点雷达的布站位置为(-40,80)km,第3个节点雷达的布站位置为(-40,-80)km;λ=0.5时得到的第1个节点雷达的布站位置为(-40,80)km,第2个节点雷达的布站位置为(-40,-50)km,第3个节点雷达的布站位置为(-40,-80)km;λ=1时得到的第1个节点雷达的布站位置为(-40,-80)km,第2个节点雷达的布站位置为(-40,-50)km,第3个节点雷达的布站位置为(-40,-80)km;从布站结果可以看出在三种情况下均满足约束条件,间接说明了优化结果的正确性。As can be seen from Fig. 2, the optimal site deployment position obtained by the method of the present invention: the site layout position of the first node radar obtained at λ=0 is (-80,-40) km, the second node radar The deployment position of the radar of the third node is (-40,80) km, the deployment position of the third node radar is (-40,-80) km; when λ=0.5, the deployment position of the first node radar is (- 40,80)km, the location of the second node radar is (-40,-50)km, and the location of the third node radar is (-40,-80)km; obtained when λ=1 The location of the first node radar is (-40,-80)km, the location of the second node radar is (-40,-50)km, and the location of the third node radar is (- 40,-80)km; from the station layout results, it can be seen that the constraint conditions are met in the three cases, which indirectly shows the correctness of the optimization results.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (10)

1. An optimized station distribution method for a networking radar under deceptive interference is characterized in that the networking radar comprises a plurality of node radars, and the optimized station distribution method comprises the following steps:
step 1, calculating the deception probability of the networking radar;
step 2, constructing a target function of the networking radar for minimizing the deception probability according to the deception probability of the networking radar;
step 3, calculating the coverage area of each node radar in the networking radar, and constructing a target function of the networking radar for maximizing the coverage area according to the coverage area of each node radar;
step 4, establishing a joint optimization objective function according to the objective function of the minimized deception probability and the objective function of the maximized coverage range;
step 5, determining constraint conditions of networking radar station arrangement according to the station arrangement distance between adjacent node radars in the networking radar, the detection area and the detection range of the networking radar;
step 6, constructing an optimization formula of the networking radar station arrangement under deceptive interference according to the constraint condition of the networking radar station arrangement and the joint optimization objective function;
and 7, obtaining the station distribution position of each node radar in the networking radar according to the optimized formula of the networking radar station distribution under the deceptive jamming.
2. The station distribution optimizing method for the networking radar under deceptive jamming according to claim 1, wherein the step 1 specifically includes the following substeps:
(1a) establishing a hypothesis testing model;
(1b) calculating the misjudgment probability of any two node radars to a false target according to the hypothesis test model;
(1c) and multiplying the false judgment probabilities of the random two node radars to the false target to obtain the deceived probability of the networking radar.
3. The station distribution optimizing method for the networking radar under deceptive interference according to claim 2, wherein the sub-step (1a) specifically comprises the following sub-steps:
(1a1) mahalanobis distance d of radar measurement errors of any two nodesijAs a statistical test quantity, the quantity of,wherein Δ Z ═ dZi-dZjThe difference between the errors is measured for any two node radars, where ∑ij=E[(dZi-dZj)(dZi-dZj)T]Covariance matrix, dZ, representing the difference between the measurement errors of the i-th and j-th node radarsiFor the measurement error, dZ, of the i-th node radarjThe measurement error of the jth node radar is represented by i, j being 1,2, …, Ni being not equal to j, i and j representing the number of the node radar, and N representing the number of the node radar;
(1a2) the hypothesis testing model is as follows:wherein, note H0Representing two measured values ZiAnd ZjCorresponding to the true target, H1Representing two measured values ZiAnd ZjIn response to a spoofed decoy,chi-square distribution with a degree of freedom of 2 and a significance level of 1-a;
(1a3) at H1Under the condition of being established, the mean value of the difference delta Z between the radar measurement errors of the two nodes is E, and the covariance matrix is sigmaijNormal distribution, mean value of The coordinates of the false targets detected by the ith node radar and the jth node radar under the same rectangular coordinate system,ρidistance, θ, to target detected for ith node radariFor the angle of the target detected by the ith node radar, delta d represents the deception distance;
(1a4) at H1When true, the two-dimensional probability density function f of Delta Zij(x, y) is:
<mrow> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msub> <mi>&amp;pi;&amp;sigma;</mi> <mi>x</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> <msqrt> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;rho;</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> </mfrac> <mi>exp</mi> <mo>{</mo> <mfrac> <mrow> <mo>-</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;rho;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>x</mi> <mn>2</mn> </msubsup> </mfrac> <mo>-</mo> <mn>2</mn> <mi>&amp;rho;</mi> <mfrac> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>x</mi> </msub> <mo>)</mo> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msubsup> <mi>&amp;sigma;</mi> <mi>y</mi> <mn>2</mn> </msubsup> </mfrac> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow>
whereinIndicating the accuracy of the x-axis measurement difference,indicating the accuracy of the y-axis measurement difference, p ξ12/(σxσy) Representing the correlation coefficient of the x-axis measurement difference with the y-axis measurement difference, ξ11,ξ12,ξ21,ξ22Is a matrix sigmaijCorresponding respective matrix elements.
4. The station distribution optimizing method for the networking radar under deceptive interference according to claim 3, wherein the sub-step (1b) comprises the following sub-steps:
(1b1) misjudgment probability P of the ith node radar and the jth node radar to the false target by adopting a data fusion algorithmijComprises the following steps:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>|</mo> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>&amp;delta;</mi> <mo>|</mo> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>K</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>x</mi> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mfrac> <mi>x</mi> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mi>&amp;delta;</mi> <mo>|</mo> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
wherein P (H)0|H1) Is shown in hypothesis H1The lower quilt is judged to be H0Probability of (d)ijRepresents the Mahalanobis distance and
<mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>&amp;Delta;Z</mi> <mi>T</mi> </msup> <msup> <mi>&amp;Sigma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>&amp;Delta;</mi> <mi>Z</mi> <mo>=</mo> <msup> <mi>K</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>x</mi> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <mi>&amp;rho;</mi> <mo>(</mo> <mfrac> <mi>x</mi> <msub> <mi>&amp;sigma;</mi> <mi>x</mi> </msub> </mfrac> <mo>)</mo> <mo>(</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mfrac> <mo>)</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow>
wherein,
(1b2) probability of false positive PijThe expression of (c) is converted to integral form and simplified to yield:
<mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>|</mo> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <msqrt> <mi>&amp;delta;</mi> </msqrt> <mo>/</mo> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mrow> <mrow> <msqrt> <mi>&amp;delta;</mi> </msqrt> <mo>/</mo> <msub> <mi>&amp;sigma;</mi> <mi>y</mi> </msub> </mrow> </msubsup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <msub> <mi>g</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> </mrow>
whereinRepresents the upper limit of the integration interval in the y direction,represents the lower limit of the integration interval in the y direction,is the upper limit in the direction of the integration interval x,represents the upper limit of the integration interval in the x direction;
(1b3) spoofing probability of networking radarWherein P isfRepresenting the probability of being spoofed, P, of a networked radarijIndicating an ith node mineAnd the misjudgment probability of the radar of the reach and j node on the false target is represented by pi, which is a continuous multiplication symbol.
5. The station distribution optimizing method for the networking radar under deceptive jamming according to claim 1, wherein the step 2 specifically comprises the following substeps:
(2a) dividing a detection region omega of the networking radar to obtain a plurality of sub-detection regions omegaDAccording to the danger degree of different sub-detection areas, the sub-detection area omegaDAssigning a weighting coefficient w;
(2b) spoofed probability P based on networking radarfConstructing an objective function F that minimizes the probability of being spoofed1Comprises the following steps:
<mrow> <msub> <mi>F</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> </mrow> </munder> <munder> <mo>&amp;Sigma;</mo> <msub> <mi>&amp;Omega;</mi> <mi>D</mi> </msub> </munder> <mi>w</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mi>f</mi> </msub> </mrow>
wherein, the optimization variable is the position coordinate X of all node radars under the polar coordinate systemi=(ρi,θi),ρi、θiAre respectively the ith node thunderThe distance and angle of the position reached in the polar coordinate system are 1,2, …, N, N is the number of node radars in the networking radar, omegaDDenotes a sub-detection region, w denotes a sub-detection region ΩDAnd corresponding weighting coefficients, min represents the minimum value, and Σ represents the summation sign.
6. The station distribution optimizing method for the networking radar under deceptive jamming according to claim 1, wherein the step 3 specifically comprises the following sub-steps:
(3a) calculating the coverage area S of each node radari={X|||X-Xi||≤RimaxWhere X denotes the target position, XiIndicating the location of the i-th node radar, RimaxThe maximum detection distance of the ith node radar is represented, and | | represents a 2-norm;
(3b) maximizing the coverage of the objective function F2Comprises the following steps:
<mrow> <msub> <mi>F</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> </mrow> </munder> <munderover> <mrow> <mi></mi> <mo>&amp;cup;</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>S</mi> <mi>i</mi> </msub> </mrow>
wherein, the optimization variable is the position coordinate X of all node radars under the polar coordinate systemi=(ρi,θi),ρi、θiRespectively the distance and angle of the position of the ith node radar in a polar coordinate system, i is 1,2, …, N, N is the number of the node radars in the networking radar, SiThe radar position coordinates of each node are respectively X1,X2,…,XNMax denotes taking the maximum value, and ∪ denotes taking the 'union'.
7. The station distribution optimizing method for the networking radar under deceptive jamming according to claim 1, wherein the step 4 specifically includes the following sub-steps:
(4a) according to an objective function F which minimizes the probability of being spoofed1And an objective function F to maximize coverage2Establishing a joint optimization objective function F as follows:
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <mi>min</mi> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>N</mi> </mrow> </munder> <munder> <mi>&amp;Sigma;</mi> <msub> <mi>&amp;Omega;</mi> <mi>D</mi> </msub> </munder> <mi>w</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>P</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> </mrow> </munder> <munderover> <mrow> <mi></mi> <mo>&amp;cup;</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>S</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
(4b) joint optimization objective function F translates into:
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mi>min</mi> <msub> <mi>X</mi> <mi>i</mi> </msub> </munder> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <munder> <mo>&amp;Sigma;</mo> <msub> <mi>&amp;Omega;</mi> <mi>D</mi> </msub> </munder> <mi>w</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>p</mi> <mi>f</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;lambda;</mi> </mrow> <mo>)</mo> <munderover> <mrow> <mi></mi> <mo>&amp;cup;</mo> </mrow> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>S</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
wherein, the optimization variable is the position coordinate X of all node radars under the polar coordinate systemi=(ρi,θi),ρi、θiRespectively the distance and angle of the position of the ith node radar in a polar coordinate system, i is 1,2, …, N, N is the number of the node radars in the networking radar, SiThe radar position coordinates of each node are respectively X1,X2,…,XNThe detection range of the case of (2), omegaDDenotes a sub-detection region, w denotes a sub-detection region ΩDThe corresponding weighting coefficient, ∪, is represented by taking 'union', 0 ≦ λ ≦ 1, and the size of λ represents the network radar pair spoofed probability and the degree of the coverage area emphasis.
8. The station distribution optimizing method for the networked radar under deceptive jamming according to claim 6, wherein the step 5 specifically includes the following sub-steps:
(5a) according to the requirement of the networking radar on the station arrangement distance between the adjacent node radars, namely the constraint condition d (X) of the station arrangement distance between any two node radarsi,Xj)≥ΔRminThe random ofStationing distance d (X) between two node radarsi,Xj) Comprises the following steps:
<mrow> <mi>d</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mi>j</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>,</mo> </mrow>
wherein R isi、θiRespectively distance information and angle information, R, of the ith node radarj、θjDistance information and angle information of the jth node radar are respectively shown, i and j are serial numbers of the node radars, i is 1,2, …, N, j is 1,2, …, N, i is not equal to j, and delta RminA minimum threshold value representing a distance between two node radars;
(5b) detection area omega of networking radar for true and false targetsDIn the detection range of networked radar, i.e.
<mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>X</mi> <mo>|</mo> <mo>|</mo> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mi>R</mi> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>R</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>&amp;le;</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>X</mi> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>D</mi> </msub> <mo>,</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>&amp;Psi;</mi> </mrow>
Wherein R isi、θiRespectively are distance information and angle information of an ith node radar, R and theta are respectively distance information and angle information of a target, psi is a range of a networking radar station arrangement, and omega isDRepresenting the sub-detection zones of the networked radar,denotes arbitrary, and e denotes belonging.
9. The station distribution optimizing method for the networked radar under deceptive jamming according to claim 8, wherein the step 6 specifically includes:
according to the groupConstructing an optimized Q (X) formula of the networking radar station distribution under deceptive interference according to the constraint conditions of the networking radar station distribution and the joint optimization objective function1,X2,…,XN):
<mrow> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> </munder> <mi>F</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>X</mi> <mi>N</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>X</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;Delta;R</mi> <mi>min</mi> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>N</mi> <mo>,</mo> <mi>i</mi> <mo>&amp;NotEqual;</mo> <mi>j</mi> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>X</mi> <mo>|</mo> <mo>|</mo> <mo>&amp;le;</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mo>&amp;ForAll;</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <msub> <mi>&amp;Omega;</mi> <mi>D</mi> </msub> <mo>,</mo> <mi>X</mi> <mo>&amp;Element;</mo> <mi>&amp;Psi;</mi> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
10. The station distribution optimizing method for the networking radar under deceptive jamming according to claim 1, wherein the step 7 specifically includes:
(7a) optimized Q (X) for arranging station of networking radar under deceptive jamming1,X2,…,XN) Solving is carried out to obtain the optimized position coordinates of each node radar in the networking radar under deceptive jammingWherein,respectively obtaining distance information and angle information of the ith node radar in a polar coordinate system;
(7b) optimizing the position coordinates of each node radarConverting the radar nodes into a rectangular coordinate system to obtain rectangular coordinates of each node radar in the rectangular coordinate systemThe x-axis coordinate and the y-axis coordinate of each node radar are respectively as follows:
CN201610014960.2A 2016-01-11 2016-01-11 A kind of optimizing location method of radar network under Deceiving interference Active CN105607045B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610014960.2A CN105607045B (en) 2016-01-11 2016-01-11 A kind of optimizing location method of radar network under Deceiving interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610014960.2A CN105607045B (en) 2016-01-11 2016-01-11 A kind of optimizing location method of radar network under Deceiving interference

Publications (2)

Publication Number Publication Date
CN105607045A CN105607045A (en) 2016-05-25
CN105607045B true CN105607045B (en) 2018-06-05

Family

ID=55987123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610014960.2A Active CN105607045B (en) 2016-01-11 2016-01-11 A kind of optimizing location method of radar network under Deceiving interference

Country Status (1)

Country Link
CN (1) CN105607045B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154235B (en) * 2016-07-29 2018-06-05 西安电子科技大学 Main lobe Deceiving interference suppressing method based on frequency diversity MIMO radar
CN106526554B (en) * 2016-11-11 2018-10-26 中国人民解放军海军航空大学 The long base-line radar net false track recognizer differentiated based on the delay of three thresholdings
CN106443598B (en) * 2016-12-08 2019-01-25 中国人民解放军海军航空大学 A Radar Network Collaborative Track Deception Jamming Identification Method Based on Convolutional Neural Networks
CN106680783B (en) * 2016-12-29 2019-04-19 西安电子科技大学 A method of countering deceptive false targets based on site error fusion algorithm
CN107220409B (en) * 2017-05-02 2021-05-28 哈尔滨工程大学 A Networked Radar Station Deployment Method Based on Particle Mechanism Immune Crowd Search
CN107271970B (en) * 2017-09-04 2019-05-21 电子科技大学 A kind of radar co-interfere method based on distributed platform
CN107390190B (en) * 2017-09-19 2019-08-09 电子科技大学 A Multi-target Passive Cooperative Jamming Method Based on Distributed Formation
CN108828574B (en) * 2018-04-26 2022-02-08 电子科技大学 Inter-class separation enhancer space true and false target feature extraction method
CN108983165B (en) * 2018-08-17 2022-03-18 西安电子科技大学 Anti-spoofing jamming method for multi-station radar system based on sub-station selection
CN110391866A (en) * 2019-07-31 2019-10-29 重庆惟觉科技有限公司 A kind of military affairs electromagnetic interference training system and its building, application method
CN111475964B (en) * 2020-04-26 2023-05-19 电子科技大学 A Monopulse Radar Deception Jamming Method Based on Multivariate Vector Synthesis
CN111815031A (en) * 2020-06-16 2020-10-23 智慧航海(青岛)智能系统工程有限公司 Radar station distribution optimization method based on detection capability of shore-based radar system
WO2022204684A1 (en) 2021-03-23 2022-09-29 Raytheon Company Decentralized control of beam generating devices
US11984964B2 (en) 2021-05-10 2024-05-14 Raytheon Company Decentralized control via adaptive importance encoding
CN113960536B (en) * 2021-10-22 2024-05-14 西安电子科技大学 Multi-station radar multi-target detection method based on interference elimination
CN114779186B (en) * 2022-03-19 2024-07-26 西安电子科技大学 Power optimization-based anti-deception jamming method for multi-station radar system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064066A (en) * 2012-12-27 2013-04-24 东南大学 Deployment method for launching radar and receiving radar in dual-radio radar network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170069B1 (en) * 2011-06-20 2015-10-27 Bae Systems Information And Electronic Systems Integration Inc. Aimpoint offset countermeasures for area protection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064066A (en) * 2012-12-27 2013-04-24 东南大学 Deployment method for launching radar and receiving radar in dual-radio radar network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Based on Target Echo Model Netted Radar Coverage Fusion Performance Optimization;Haitao Jia et.al;《International Journal of Digital Content Technology and its Applications》;20130331;第7卷(第5期);全文 *
一种新的组网雷达优化布站方法;孙国伟等;《计算机仿真》;20130930;第30卷(第9期);全文 *

Also Published As

Publication number Publication date
CN105607045A (en) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105607045B (en) A kind of optimizing location method of radar network under Deceiving interference
CN105430664B (en) It is a kind of to be fitted the method and apparatus that path loss is propagated in prediction based on classification
CN103018722B (en) Method for countering deception false target by utilizing netted radar system
Strohmeier et al. A k-NN-based localization approach for crowdsourced air traffic communication networks
CN104635203B (en) Radio interference source direction-finding and positioning method based on particle filter algorithm
CN105654232A (en) Coastal monitoring and defense decision-making system and method based on multi-dimensional space fusion
CN112558076B (en) Volume scanning mode calculation method based on networking weather radar coverage area and application
CN110988923B (en) Satellite navigation interference source passive positioning method based on multi-platform cooperation
CN110673090B (en) Passive multi-station multi-target positioning method based on DBSCAN
Tobias et al. A probability hypothesis density-based multitarget tracker using multiple bistatic range and velocity measurements
CN110765586B (en) Radar networking optimization station arrangement method based on improved particle swarm algorithm
CN105259540A (en) Optimization method for confronting active deception jamming by multi-station radar
CN106680783B (en) A method of countering deceptive false targets based on site error fusion algorithm
Anderson et al. Track association for over-the-horizon radar with a statistical ionospheric model
CN103728615B (en) Phased array secondary radar multi-target detection method and system
Formaggio et al. GNSS spoofing detection techniques by cellular network cross-check in smartphones
CN111487597B (en) Universal electronic reconnaissance interception simulation method based on time-space-frequency energy data
CN113484838B (en) A multistatic radar active false target identification method and system
CN118091550A (en) Multi-interference-source sensing method and device based on distributed radar and electronic equipment
Yang et al. Consensus-based distributed target tracking in the presence of active false targets
Kim Fast non‐line‐of‐sight receivers conjecturing method in TDOA localisation using obstacle information
Zhou et al. Robust multi-UAV placement optimization for AOA-based cooperative localization
CN109459723B (en) A pure orientation passive localization method based on meta-heuristic algorithm
Cho et al. Automated and optimized sensor deployment using building models and electromagnetic simulation
CN106093891A (en) Radar fence anti-crowding measure false target jamming profile method based on doppler velocity inspection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant