CN105606914A - IWO-ELM-based Aviation power converter fault diagnosis method - Google Patents
IWO-ELM-based Aviation power converter fault diagnosis method Download PDFInfo
- Publication number
- CN105606914A CN105606914A CN201510559194.3A CN201510559194A CN105606914A CN 105606914 A CN105606914 A CN 105606914A CN 201510559194 A CN201510559194 A CN 201510559194A CN 105606914 A CN105606914 A CN 105606914A
- Authority
- CN
- China
- Prior art keywords
- sample set
- learning machine
- training
- extreme learning
- fault diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000012549 training Methods 0.000 claims abstract description 31
- 238000012360 testing method Methods 0.000 claims abstract description 30
- 241000196324 Embryophyta Species 0.000 claims abstract description 19
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 18
- 238000005457 optimization Methods 0.000 claims abstract description 3
- 238000012847 principal component analysis method Methods 0.000 claims description 5
- 238000013433 optimization analysis Methods 0.000 claims 1
- 238000011156 evaluation Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 abstract description 3
- 238000000513 principal component analysis Methods 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 description 14
- 210000002569 neuron Anatomy 0.000 description 8
- 238000013528 artificial neural network Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种基于杂草算法(Invasive?Weed?Optimization,简称IWO)和极限学习机(Extreme?Learning?Machine,简称ELM)的航空功率变换器故障诊断方法,属于电路故障诊断领域。该方法包括如下步骤:1)采集航空功率变换器在正常模式以及故障模式下的可测节点输出信号;2)利用主成分分析(Principal?Component?Analysis,简称PCA)法提取采集信号的关键特征,构建特征样本集;3)将特征样本集分为训练样本集和测试样本集,分别用于极限学习机的训练和评估;4)将训练样本集分为训练数据和测试数据,利用训练数据训练极限学习机,并使用杂草算法对隐含层节点数、输入权重以及隐含层节点偏置进行寻优,使得极限学习机具有经过优化的分类器结构;5)测试样本集用于评估优化后的极限学习机故障诊断性能。
The invention relates to an aviation power converter fault diagnosis method based on a weed algorithm (Invasive? Weed? Optimization, referred to as IWO) and an extreme learning machine (Extreme? Learning? Machine, referred to as ELM), belonging to the field of circuit fault diagnosis. The method includes the following steps: 1) collecting the output signals of the measurable nodes of the aviation power converter in the normal mode and the fault mode; 2) extracting the key features of the collected signals by using the principal component analysis (Principal? Component? Analysis, referred to as PCA) method , to construct a feature sample set; 3) divide the feature sample set into a training sample set and a test sample set, which are used for the training and evaluation of the extreme learning machine respectively; 4) divide the training sample set into training data and test data, and use the training data Train the extreme learning machine, and use the weed algorithm to optimize the number of hidden layer nodes, input weight and hidden layer node bias, so that the extreme learning machine has an optimized classifier structure; 5) The test sample set is used for evaluation Optimized extreme learning machine fault diagnosis performance.
Description
技术领域technical field
本发明涉及一种基于IWO-ELM的航空功率变换器故障诊断方法,属于电路故障诊断领域。The invention relates to an IWO-ELM-based fault diagnosis method for an aviation power converter, belonging to the field of circuit fault diagnosis.
背景技术Background technique
随着航空技术的不断发展,目前飞机上配载的电源系统可分为如下三种类型:低压直流电源、高压直流电源和交流电源。这些电源系统的正常运转,保证了机载设备的正常工作和飞机的安全飞行。航空电源系统中的关键模块为功率变换器,一旦功率变换器发生故障,将直接影响航空电源系统的正常运行,进而对飞机的安全运行构成威胁,甚至会带来巨大的生命财产和安全损失。因此,对航空电源系统中功率变换器进行故障诊断研究,具有十分重大的意义。With the continuous development of aviation technology, the current power supply systems onboard aircraft can be divided into the following three types: low-voltage DC power supply, high-voltage DC power supply and AC power supply. The normal operation of these power systems ensures the normal operation of the airborne equipment and the safe flight of the aircraft. The key module in the aviation power system is the power converter. Once the power converter fails, it will directly affect the normal operation of the aviation power system, which will pose a threat to the safe operation of the aircraft, and even cause huge loss of life, property and safety. Therefore, it is of great significance to study the fault diagnosis of the power converter in the aviation power system.
目前,对航空电源系统中的功率变换器进行故障诊断的方法大致分为基于信号处理的方法、基于模型的方法和基于知识的方法。基于信号处理的方法不需要对对象建模,适用性比较强,形式简单且易于实现,但由于其依赖信号的检测和处理,通常会受信号噪声的影响,局限于特定信号诊断某些特定故障,未能考虑各种故障间的相互影响,当诊断对象变得庞大复杂时,通常需要增加检验手段和计算量,因而该方法不适合对航空电源系统中功率变换器进行故障诊断。基于模型的方法是通过建立对象的模型,将模型预测值与系统观测值进行比较来判别有无故障,但航空电源系统中功率变换器结构千变万化,通用性较差,不适合采用建模的方法进行故障诊断。基于知识的方法不依赖对象的数学模型,从而可以实现对难于建模的对象的故障诊断,在故障诊断领域应用中具有较大优势。因而,本发明考虑通过构建极限学习机模型这一种基于模式识别的方法对航空功率变换器进行故障诊断。At present, the methods for fault diagnosis of power converters in aviation power systems are roughly divided into signal processing-based methods, model-based methods and knowledge-based methods. The method based on signal processing does not need to model the object, has strong applicability, simple form and easy implementation, but because it relies on signal detection and processing, it is usually affected by signal noise and is limited to specific signal diagnosis of certain specific faults , failed to consider the interaction between various faults, and when the diagnostic object becomes large and complex, it usually needs to increase the inspection means and the amount of calculation, so this method is not suitable for fault diagnosis of power converters in aviation power systems. The model-based method is to establish a model of the object and compare the predicted value of the model with the observed value of the system to determine whether there is a fault. However, the structure of the power converter in the aviation power system is ever-changing and the versatility is poor, so it is not suitable for the modeling method. Perform troubleshooting. The knowledge-based method does not rely on the mathematical model of the object, so it can realize the fault diagnosis of the object that is difficult to model, and has great advantages in the field of fault diagnosis. Therefore, the present invention considers the fault diagnosis of the aviation power converter by constructing the extreme learning machine model, a method based on pattern recognition.
极限学习机是一种适用于单隐含层前馈神经网络的学习算法模型,仅需在网络训练前设置合适的隐含层节点数,并随机初始化输入权值以及隐含层节点偏置,即可通过解析运算获得隐含层输出权值。相对于以往的神经网络训练过程,极限学习机模型无需多次迭代运算,整个模型训练一次即可完成。但是极限学习机采用随机初始化输入权值以及隐含层节点偏置的方法,所建立的极限学习机模型会存在隐含层节点数过多、过拟合等现象,从而影响了极限学习机模型的预测速度和精度。杂草算法是一种从自然界杂草进化原理演化而来的随机搜索算法,通过充分利用种群中的优秀个体指导群体的进化,兼顾了种群的选择力度和多样性,能够有效克服不成熟收敛,并且具有算法结构简单、参数少和鲁棒性较好等特点。因而,使用杂草算法优化极限学习机模型,可以改善极限学习机隐含层节点数过多、过拟合等缺陷。Extreme learning machine is a learning algorithm model suitable for single hidden layer feedforward neural network. It only needs to set the appropriate number of hidden layer nodes before network training, and randomly initialize the input weight and hidden layer node bias. The output weight of the hidden layer can be obtained through analytical operation. Compared with the previous neural network training process, the extreme learning machine model does not need multiple iterative operations, and the entire model training can be completed once. However, the extreme learning machine adopts the method of randomly initializing the input weights and the bias of the hidden layer nodes. The established extreme learning machine model will have too many hidden layer nodes and overfitting, which affects the extreme learning machine model. prediction speed and accuracy. The weed algorithm is a random search algorithm evolved from the evolution principle of weeds in nature. By making full use of the excellent individuals in the population to guide the evolution of the population, taking into account the selection strength and diversity of the population, it can effectively overcome immature convergence. And it has the characteristics of simple algorithm structure, few parameters and good robustness. Therefore, using the weed algorithm to optimize the extreme learning machine model can improve the extreme learning machine's defects such as too many nodes in the hidden layer and overfitting.
发明内容Contents of the invention
为了解决上述问题,本发明提出一种基于IWO-ELM的航空功率变换器故障诊断方法,一方面解决了传统神经网络训练速度缓慢的问题,另一方面解决了极限学习机模型隐含层节点数等参数的优化问题,提高了航空功率变换器诊断正确率。In order to solve the above problems, the present invention proposes a fault diagnosis method for aviation power converters based on IWO-ELM. On the one hand, it solves the problem of slow training speed of traditional neural networks; The optimization problem of parameters, etc. improves the diagnostic accuracy of aviation power converters.
本发明为实现上述目的,实现技术方案如下:In order to achieve the above object, the present invention realizes the technical scheme as follows:
首先采集航空功率变换器在正常模式以及故障模式下的可测节点输出信号,并利用主成分分析法提取采集信号的关键特征,构建特征样本集,然后将特征样本集分为训练样本集和测试样本集,分别用于极限学习机的训练和评估。First collect the measurable node output signals of the aviation power converter in normal mode and fault mode, and use the principal component analysis method to extract the key features of the collected signals, construct a feature sample set, and then divide the feature sample set into training sample set and test The sample sets are used for the training and evaluation of the extreme learning machine respectively.
具体的操作步骤如下所示:The specific operation steps are as follows:
1)获取航空功率变换器在正常模式以及故障模式下的可测节点输出信号,利用主成分分析法提取采集信号的关键特征,构建特征样本集,并将特征样本集分为两部分:训练样本集A={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,N}和测试样本集B={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,M},其中,R代表实数空间,xi为n维样本特征向量,yi为m维样本标签,即xi={xi1,xi2,...,xin},yi={yi1,yi2,...,yim},训练样本集和测试样本集的样本个数分别为N个和M个。1) Obtain the measurable node output signals of the aeronautical power converter in normal mode and fault mode, use the principal component analysis method to extract the key features of the collected signals, construct a feature sample set, and divide the feature sample set into two parts: training samples Set A={(x i , y i )|x i ∈ R n , y i ∈ R m , i=1,..., N} and test sample set B={(x i , y i )|x i ∈ R n , y i ∈ R m , i=1,...,M}, where R represents the real number space, xi is the n-dimensional sample feature vector, y i is the m-dimensional sample label, that is, xi = {x i1 , x i2 ,..., x in }, y i ={y i1 , y i2 ,..., y im }, the number of samples in the training sample set and the test sample set are N and M respectively indivual.
然后,将训练样本集分为训练数据和测试数据两部分:训练数据A1={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,N1}和测试样本集A2={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,N2},训练数据和测试数据的样本个数分别为N1个和N2个,且N=N1+N2;Then, the training sample set is divided into two parts: training data and test data: training data A1={( xi ,y i )| xi ∈R n , y i ∈R m , i=1,...,N 1 } and test sample set A2={( xi , y i )| xi ∈ R n , y i ∈ R m , i=1,..., N 2 }, the number of samples of training data and test data N 1 and N 2 respectively, and N=N 1 +N 2 ;
2)随机给定隐含层节点数L,隐含层节点偏置bj(j=1,...,L),输入权重w,激活函数g(x),其中所选择的激活函数必须满足无穷阶次可微的条件。2) The number L of hidden layer nodes is randomly given, the hidden layer node bias b j (j=1,...,L), the input weight w, and the activation function g(x), where the selected activation function must be Satisfy the condition of infinite order differentiability.
其中,
3)根据单隐含层神经网络学习机制,即存在βjk(k=1,...,m),wj,bj使得如下公式成立:3) According to the learning mechanism of single hidden layer neural network, there exists β jk (k=1,...,m), w j , b j so that the following formula holds true:
其中,βj=[βj1βj2…βjm]1xm,βj表示第j个隐含层的输出权重矩阵,βjk表示隐含层第j个神经元与输出层第k个神经元间的连接权值;Among them, β j =[β j1 β j2 …β jm ] 1xm , β j represents the output weight matrix of the jth hidden layer, β jk represents the distance between the jth neuron of the hidden layer and the kth neuron of the output layer The connection weight of ;
4)令4) order
即可将式(1)简化为:The formula (1) can be simplified as:
H·β=Y(5)H·β=Y(5)
其中H是N1×L维的隐含层输出矩阵,β是L×m维隐含层输出权重矩阵,Y是N1×m维期望输出矩阵;Where H is the N 1 ×L-dimensional hidden layer output matrix, β is the L×m-dimensional hidden layer output weight matrix, and Y is the N 1 ×m-dimensional expected output matrix;
5)根据Moore-Penrose广义逆矩阵定义,可根据如下公式求解隐含层输出权重矩阵β:5) According to the definition of Moore-Penrose generalized inverse matrix, the hidden layer output weight matrix β can be solved according to the following formula:
β=(HT·H)-1.HT·Y(6)β=(H T ·H) -1 .H T ·Y(6)
6)利用杂草算法优化极限学习机模型中隐含层节点数,输入权重以及隐含层节点偏置的具体步骤如下:6) Using the weed algorithm to optimize the number of hidden layer nodes in the extreme learning machine model, the specific steps of input weight and hidden layer node bias are as follows:
6.1)设置杂草算法所需的最大迭代次数itermax、最小种群数Smin与最大种群数Smax、最小适应度fmin与最大适应度fmax、标准偏差的初始值σinitial和终值σfinal、非线性模型指数p,并将极限学习机随机产生的隐含层节点数,输入权重以及隐含层节点偏置作为杂草算法的初始种群,均匀分布在搜索空间中;6.1) Set the maximum number of iterations iter max required by the weed algorithm, the minimum population number S min and the maximum population number S max , the minimum fitness f min and the maximum fitness f max , the initial value σ initial and the final value σ of the standard deviation final , the nonlinear model index p, and the number of hidden layer nodes randomly generated by the extreme learning machine, the input weight and the bias of hidden layer nodes are used as the initial population of the weed algorithm, and are evenly distributed in the search space;
6.2)杂草种群的个体繁殖取决于自身的适应度值以及最小适应度值和最大适应度值,本发明选取图2中极限学习机对测试数据进行测试所得的正确率作为适应度值,此处,正确率定义为:正确分类的样本数目/测试数据总数目×100%,因而繁殖的种子个数Sk可依据如下公式计算:6.2) The individual reproduction of the weed population depends on its own fitness value, minimum fitness value and maximum fitness value. The present invention selects the correctness rate obtained by the extreme learning machine in Fig. 2 to test the test data as the fitness value. , the correct rate is defined as: the number of correctly classified samples/total number of test data × 100%, so the number of seeds S k to reproduce can be calculated according to the following formula:
其中,k为当前迭代次数(k=1,...,itermax),Sk为第k次迭代的繁殖种子数,fk为第k次迭代的适应度值;Wherein, k is the current number of iterations (k=1, ..., iter max ), S k is the number of breeding seeds of the k iteration, f k is the fitness value of the k iteration;
6.3)将步骤6.2)中产生的种子根据变方差σk以及正态分布规律随机地分布在搜索区域中,并靠近上一代个体,其中变方差计算公式如下:6.3) The seeds generated in step 6.2) are randomly distributed in the search area according to the variable variance σ k and normal distribution, and close to the previous generation of individuals, where the variable variance calculation formula is as follows:
重复进行步骤6.2)和步骤6.3),直到达到最大种群数;Repeat step 6.2) and step 6.3) until reaching the maximum number of populations;
6.4)将所有个体按照适应度值的大小进行降序排序,剔除适应度值低的个体,并重复进行步骤6.2)、步骤6.3)以及步骤6.4),直到达到最大迭代次数;6.4) Sort all individuals in descending order according to the size of fitness value, remove individuals with low fitness value, and repeat step 6.2), step 6.3) and step 6.4), until the maximum number of iterations is reached;
7)杂草算法迭代运行结束后,利用步骤6.4)中最大适应度值对应的隐含层节点数、输入权重以及隐含层节点偏置构建极限学习机模型,并用测试样本集B={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,M}检验极限学习机的故障诊断性能,主要借助于故障诊断率判别分析。此处,故障诊断率定义为:正确分类的样本数目/测试样本集总数目×100%。7) After the iterative operation of the weed algorithm is completed, use the hidden layer node number, input weight and hidden layer node bias corresponding to the maximum fitness value in step 6.4) to construct an extreme learning machine model, and use the test sample set B={( x i , y i )| xi ∈ R n , y i ∈ R m , i=1,..., M} test the fault diagnosis performance of extreme learning machine, mainly by means of fault diagnosis rate discriminant analysis. Here, the fault diagnosis rate is defined as: the number of correctly classified samples/the total number of test sample sets×100%.
本发明有益效果如下:The beneficial effects of the present invention are as follows:
极限学习机采用随机初始化输入权值以及隐含层节点偏置的方法,建立的极限学习机模型会存在隐含层节点数过多、过拟合等现象,导致故障诊断性能较差,本发明使用杂草算法优化极限学习机,可以提高极限学习机的故障诊断正确率。The extreme learning machine adopts the method of randomly initializing the input weight and the bias of hidden layer nodes, and the established extreme learning machine model will have too many hidden layer nodes, overfitting and other phenomena, resulting in poor fault diagnosis performance. The present invention Using the weed algorithm to optimize the extreme learning machine can improve the fault diagnosis accuracy of the extreme learning machine.
附图说明Description of drawings
图1极限学习机模型结构图Figure 1 Structure diagram of extreme learning machine model
图2故障诊断流程图Figure 2 Fault Diagnosis Flowchart
具体实施方式detailed description
首先采集航空功率变换器在正常模式以及故障模式下的可测节点输出信号,并利用主成分分析法提取采集信号的关键特征,构建特征样本集,然后将特征样本集分为训练样本集和测试样本集,分别用于极限学习机的训练和评估。First collect the measurable node output signals of the aviation power converter in normal mode and fault mode, and use the principal component analysis method to extract the key features of the collected signals, construct a feature sample set, and then divide the feature sample set into training sample set and test The sample sets are used for the training and evaluation of the extreme learning machine respectively.
具体的操作步骤如下所示:The specific operation steps are as follows:
1)获取航空功率变换器在正常模式以及故障模式下的可测节点输出信号,利用主成分分析法提取采集信号的关键特征,构建特征样本集,并将特征样本集分为两部分:训练样本集A={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,N}和测试样本集B={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,M},其中,R代表实数空间,xi为n维样本特征向量,yi为m维样本标签,即xi={xi1,i2,...,xin},yi={yi1yi2,...,yim},训练样本集和测试样本集的样本个数分别为N个和M个。1) Obtain the measurable node output signals of the aeronautical power converter in normal mode and fault mode, use the principal component analysis method to extract the key features of the collected signals, construct a feature sample set, and divide the feature sample set into two parts: training samples Set A={(x i , y i )|x i ∈ R n , y i ∈ R m , i=1,..., N} and test sample set B={(x i , y i )|x i ∈ R n , y i ∈ R m , i=1,...,M}, where R represents the real number space, xi is the n-dimensional sample feature vector, y i is the m-dimensional sample label, that is, xi = {x i1 , i2 , . . . , x in }, y i ={y i1 y i2 , .
然后,将训练样本集分为训练数据和测试数据两部分:训练数据A1={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,N1}和测试样本集A2={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,N2},训练数据和测试数据的样本个数分别为N1个和N2个,且N=N1+N2;Then, the training sample set is divided into two parts: training data and test data: training data A1={( xi ,y i )| xi ∈R n , y i ∈R m , i=1,...,N 1 } and test sample set A2={( xi , y i )| xi ∈ R n , y i ∈ R m , i=1,..., N 2 }, the number of samples of training data and test data N 1 and N 2 respectively, and N=N 1 +N 2 ;
2)随机给定隐含层节点数L,隐含层节点偏置bi(j=1,...,L),输入权重w,激活函数g(x),其中所选择的激活函数必须满足无穷阶次可微的条件。2) The number L of hidden layer nodes is randomly given, the hidden layer node bias b i (j=1,...,L), the input weight w, and the activation function g(x), where the selected activation function must be Satisfy the condition of infinite order differentiability.
其中,
3)根据单隐含层神经网络学习机制,即存在βjk(k=1,...,m),wj,bj使得如下公式成立:3) According to the learning mechanism of single hidden layer neural network, there exists β jk (k=1,...,m), w j , b j so that the following formula holds true:
其中,βj=[βj1βj2…βjm]1xm,βj表示第j个隐含层的输出权重矩阵,βjk表示隐含层第j个神经元与输出层第k个神经元间的连接权值;Among them, β j =[β j1 β j2 …β jm ] 1xm , β j represents the output weight matrix of the jth hidden layer, β jk represents the distance between the jth neuron of the hidden layer and the kth neuron of the output layer The connection weight of ;
4)令4) order
即可将式(1)简化为:The formula (1) can be simplified as:
H·β=Y(5)H·β=Y(5)
其中H是N1×L维的隐含层输出矩阵,β是L×m维隐含层输出权重矩阵,Y是N1×m维期望输出矩阵;Where H is the N 1 ×L-dimensional hidden layer output matrix, β is the L×m-dimensional hidden layer output weight matrix, and Y is the N 1 ×m-dimensional expected output matrix;
5)根据Moore-Penrose广义逆矩阵定义,可根据如下公式求解隐含层输出权重矩阵β:5) According to the definition of Moore-Penrose generalized inverse matrix, the hidden layer output weight matrix β can be solved according to the following formula:
β=(HT·H)-1·HT·Y(6)β=(H T H) -1 H T Y (6)
6)利用杂草算法优化极限学习机模型中隐含层节点数,输入权重以及隐含层节点偏置的具体步骤如下:6) Using the weed algorithm to optimize the number of hidden layer nodes in the extreme learning machine model, the specific steps of input weight and hidden layer node bias are as follows:
6.1)设置杂草算法所需的最大迭代次数itermax、最小种群数Smin与最大种群数Smax、最小适应度fmin与最大适应度fmax、标准偏差的初始值σinitial和终值σfinal、非线性模型指数p,并将极限学习机随机产生的隐含层节点数,输入权重以及隐含层节点偏置作为杂草算法的初始种群,均匀分布在搜索空间中;6.1) Set the maximum number of iterations iter max required by the weed algorithm, the minimum population number S min and the maximum population number S max , the minimum fitness f min and the maximum fitness f max , the initial value σ initial and the final value σ of the standard deviation final , the nonlinear model index p, and the number of hidden layer nodes randomly generated by the extreme learning machine, the input weight and the bias of hidden layer nodes are used as the initial population of the weed algorithm, and are evenly distributed in the search space;
6.2)杂草种群的个体繁殖取决于自身的适应度值以及最小适应度值和最大适应度值,本发明选取图2中极限学习机对测试数据进行测试所得的正确率作为适应度值,此处,正确率定义为:正确分类的样本数目/测试数据总数目×100%,因而繁殖的种子个数Sk可依据如下公式计算:6.2) The individual reproduction of the weed population depends on its own fitness value, minimum fitness value and maximum fitness value. The present invention selects the correctness rate obtained by the extreme learning machine in Fig. 2 to test the test data as the fitness value. , the correct rate is defined as: the number of correctly classified samples/total number of test data × 100%, so the number of seeds S k to reproduce can be calculated according to the following formula:
其中,k为当前迭代次数(k=1,...,itermax),Sk为第k次迭代的繁殖种子数,fk为第k次迭代的适应度值;Wherein, k is the current number of iterations (k=1, ..., iter max ), S k is the number of breeding seeds of the k iteration, f k is the fitness value of the k iteration;
6.3)将步骤6.2)中产生的种子根据变方差σk以及正态分布规律随机地分布在搜索区域中,并靠近上一代个体,其中变方差计算公式如下:6.3) The seeds generated in step 6.2) are randomly distributed in the search area according to the variable variance σ k and normal distribution, and close to the previous generation of individuals, where the variable variance calculation formula is as follows:
重复进行步骤6.2)和步骤6.3),直到达到最大种群数;Repeat step 6.2) and step 6.3) until reaching the maximum number of populations;
6.4)将所有个体按照适应度值的大小进行降序排序,剔除适应度值低的个体,并重复进行步骤6.2)、步骤6.3)以及步骤6.4),直到达到最大迭代次数;6.4) Sort all individuals in descending order according to the size of fitness value, remove individuals with low fitness value, and repeat step 6.2), step 6.3) and step 6.4), until the maximum number of iterations is reached;
7)杂草算法迭代运行结束后,利用步骤6.4)中最大适应度值对应的隐含层节点数、输入权重以及隐含层节点偏置构建极限学习机模型,并用测试样本集B={(xi,yi)|xi∈Rn,yi∈Rm,i=1,...,M}检验极限学习机的故障诊断性能,主要借助于故障诊断率判别分析。此处,故障诊断率定义为:正确分类的样本数目/测试样本集总数目×100%。7) After the iterative operation of the weed algorithm is completed, use the hidden layer node number, input weight and hidden layer node bias corresponding to the maximum fitness value in step 6.4) to construct an extreme learning machine model, and use the test sample set B={( x i , y i )| xi ∈ R n , y i ∈ R m , i=1,..., M} test the fault diagnosis performance of extreme learning machine, mainly by means of fault diagnosis rate discriminant analysis. Here, the fault diagnosis rate is defined as: the number of correctly classified samples/the total number of test sample sets×100%.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510559194.3A CN105606914A (en) | 2015-09-06 | 2015-09-06 | IWO-ELM-based Aviation power converter fault diagnosis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510559194.3A CN105606914A (en) | 2015-09-06 | 2015-09-06 | IWO-ELM-based Aviation power converter fault diagnosis method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105606914A true CN105606914A (en) | 2016-05-25 |
Family
ID=55987002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510559194.3A Pending CN105606914A (en) | 2015-09-06 | 2015-09-06 | IWO-ELM-based Aviation power converter fault diagnosis method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105606914A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106228184A (en) * | 2016-07-19 | 2016-12-14 | 东北大学 | A kind of based on the blast furnace fault detection system and the method that optimize extreme learning machine |
CN106292330A (en) * | 2016-07-13 | 2017-01-04 | 北京航空航天大学 | Aircraft embedded real-time diagnosis reasoning algorithm test method |
CN106646185A (en) * | 2016-09-26 | 2017-05-10 | 南京航空航天大学 | Fault diagnosis method for power electronic circuit based on KCSVDP (K-Component Singular Value Decomposition Packet) and removal-comparison method |
CN106707221A (en) * | 2017-01-05 | 2017-05-24 | 云南电网有限责任公司电力科学研究院 | Fault diagnosis method and system for sensor in electric energy metering device |
CN107168292A (en) * | 2017-06-21 | 2017-09-15 | 武汉理工大学 | Submarine navigation device circuit failure diagnosis method based on ELM algorithms |
CN107192951A (en) * | 2017-07-31 | 2017-09-22 | 湖南科技大学 | A kind of micro- method for diagnosing faults of wind-driven generator three-phase rotor current |
CN109389253A (en) * | 2018-11-09 | 2019-02-26 | 国网四川省电力公司电力科学研究院 | A kind of frequency predication method after Power System Disturbances based on credible integrated study |
CN109932644A (en) * | 2019-02-28 | 2019-06-25 | 天津大学 | Circuit breaker fault diagnosis method based on hybrid intelligent algorithm |
CN110113815A (en) * | 2019-04-02 | 2019-08-09 | 云南师范大学 | A kind of improved wireless sensor network locating method based on IWO |
CN110596506A (en) * | 2019-10-30 | 2019-12-20 | 福州大学 | Converter Fault Diagnosis Method Based on Time Convolutional Network |
CN112051468A (en) * | 2020-09-08 | 2020-12-08 | 南京航空航天大学 | A method for assessing the state of health of aerostatic converters under complex operating conditions |
CN114298079A (en) * | 2021-07-20 | 2022-04-08 | 齐丰科技股份有限公司 | Transformer substation high-voltage circuit breaker fault diagnosis method based on coil current signals |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102944769A (en) * | 2012-10-18 | 2013-02-27 | 上海市电力公司 | Fault diagnosis method of power transformer based on extreme learning machine |
CN103679199A (en) * | 2013-12-11 | 2014-03-26 | 中国石油大学(华东) | Noisy independent component analysis method based on invasiveness weed algorithm |
CN104408302A (en) * | 2014-11-19 | 2015-03-11 | 北京航空航天大学 | Bearing variable-condition fault diagnosis method based on LMD-SVD (Local Mean Decomposition-Singular Value Decomposition) and extreme learning machine |
CN104503420A (en) * | 2014-09-19 | 2015-04-08 | 北京化工大学 | Non-linear process industry fault prediction method based on novel FDE-ELM and EFSM |
CN104537415A (en) * | 2014-12-02 | 2015-04-22 | 北京化工大学 | Non-linear process industrial fault prediction and identification method based on compressed sensing and DROS-ELM |
-
2015
- 2015-09-06 CN CN201510559194.3A patent/CN105606914A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102944769A (en) * | 2012-10-18 | 2013-02-27 | 上海市电力公司 | Fault diagnosis method of power transformer based on extreme learning machine |
CN103679199A (en) * | 2013-12-11 | 2014-03-26 | 中国石油大学(华东) | Noisy independent component analysis method based on invasiveness weed algorithm |
CN104503420A (en) * | 2014-09-19 | 2015-04-08 | 北京化工大学 | Non-linear process industry fault prediction method based on novel FDE-ELM and EFSM |
CN104408302A (en) * | 2014-11-19 | 2015-03-11 | 北京航空航天大学 | Bearing variable-condition fault diagnosis method based on LMD-SVD (Local Mean Decomposition-Singular Value Decomposition) and extreme learning machine |
CN104537415A (en) * | 2014-12-02 | 2015-04-22 | 北京化工大学 | Non-linear process industrial fault prediction and identification method based on compressed sensing and DROS-ELM |
Non-Patent Citations (2)
Title |
---|
孙毅刚等: "基于极限学习机的航空发动机传感器故障诊断", 《传感器与微系统》 * |
朱承等: "杂草算法优化极限学习机的电力逆变器优化控制", 《电气应用》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106292330A (en) * | 2016-07-13 | 2017-01-04 | 北京航空航天大学 | Aircraft embedded real-time diagnosis reasoning algorithm test method |
CN106292330B (en) * | 2016-07-13 | 2019-08-23 | 北京航空航天大学 | The embedded real-time diagnosis reasoning algorithm test method of aircraft |
CN106228184B (en) * | 2016-07-19 | 2019-08-06 | 东北大学 | A Blast Furnace Fault Detection Method Based on Optimal Extreme Learning Machine |
CN106228184A (en) * | 2016-07-19 | 2016-12-14 | 东北大学 | A kind of based on the blast furnace fault detection system and the method that optimize extreme learning machine |
CN106646185A (en) * | 2016-09-26 | 2017-05-10 | 南京航空航天大学 | Fault diagnosis method for power electronic circuit based on KCSVDP (K-Component Singular Value Decomposition Packet) and removal-comparison method |
CN106707221A (en) * | 2017-01-05 | 2017-05-24 | 云南电网有限责任公司电力科学研究院 | Fault diagnosis method and system for sensor in electric energy metering device |
CN106707221B (en) * | 2017-01-05 | 2019-09-06 | 云南电网有限责任公司电力科学研究院 | A sensor fault diagnosis method and system in an electric energy metering device |
CN107168292A (en) * | 2017-06-21 | 2017-09-15 | 武汉理工大学 | Submarine navigation device circuit failure diagnosis method based on ELM algorithms |
CN107168292B (en) * | 2017-06-21 | 2019-10-25 | 武汉理工大学 | Circuit Fault Diagnosis Method of Underwater Vehicle Based on ELM Algorithm |
CN107192951A (en) * | 2017-07-31 | 2017-09-22 | 湖南科技大学 | A kind of micro- method for diagnosing faults of wind-driven generator three-phase rotor current |
CN109389253A (en) * | 2018-11-09 | 2019-02-26 | 国网四川省电力公司电力科学研究院 | A kind of frequency predication method after Power System Disturbances based on credible integrated study |
CN109932644A (en) * | 2019-02-28 | 2019-06-25 | 天津大学 | Circuit breaker fault diagnosis method based on hybrid intelligent algorithm |
CN110113815A (en) * | 2019-04-02 | 2019-08-09 | 云南师范大学 | A kind of improved wireless sensor network locating method based on IWO |
CN110113815B (en) * | 2019-04-02 | 2021-10-08 | 云南师范大学 | An Improved Wireless Sensor Network Location Method Based on IWO |
CN110596506A (en) * | 2019-10-30 | 2019-12-20 | 福州大学 | Converter Fault Diagnosis Method Based on Time Convolutional Network |
CN112051468A (en) * | 2020-09-08 | 2020-12-08 | 南京航空航天大学 | A method for assessing the state of health of aerostatic converters under complex operating conditions |
CN114298079A (en) * | 2021-07-20 | 2022-04-08 | 齐丰科技股份有限公司 | Transformer substation high-voltage circuit breaker fault diagnosis method based on coil current signals |
CN114298079B (en) * | 2021-07-20 | 2024-08-06 | 齐丰科技股份有限公司 | Transformer substation high-voltage circuit breaker fault diagnosis method based on coil current signals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105606914A (en) | IWO-ELM-based Aviation power converter fault diagnosis method | |
US11287470B2 (en) | Vector-valued regularized kernel function approximation based fault diagnosis method for analog circuit | |
CN105046279B (en) | A kind of analog circuit fault method for classifying modes | |
CN108197648B (en) | Hydroelectric generating set fault diagnosis method and system based on LSTM deep learning model | |
CN102520341B (en) | Analog circuit fault diagnosis method based on Bayes-KFCM (Kernelized Fuzzy C-Means) algorithm | |
CN112200244B (en) | Intelligent detection method for anomaly of aerospace engine based on hierarchical countermeasure training | |
CN104268381B (en) | A kind of satellite failure diagnostic method based on AdaBoost algorithms | |
WO2015158198A1 (en) | Fault recognition method and system based on neural network self-learning | |
Huang et al. | Machine fault detection for intelligent self-driving networks | |
CN104134010B (en) | Satellite fault diagnosis method for discrete type data based on Naive Bayes | |
CN107315892A (en) | A kind of Method for Bearing Fault Diagnosis based on extreme learning machine | |
CN104155574A (en) | Power distribution network fault classification method based on adaptive neuro-fuzzy inference system | |
CN108536123A (en) | The method for diagnosing faults of the train control on board equipment of the long neural network of memory network combination in short-term | |
CN111680875B (en) | Unmanned aerial vehicle state risk fuzzy comprehensive evaluation method based on probability baseline model | |
CN111965476B (en) | A Low Voltage Diagnosis Method Based on Graph Convolutional Neural Network | |
CN103995237A (en) | Satellite power supply system online fault diagnosis method | |
CN113255546B (en) | Diagnosis method for aircraft system sensor fault | |
CN111737911A (en) | A Bearing Recession Trend Prediction Method Based on Deep Belief Network and Extreme Learning Machine | |
CN110020637B (en) | Analog circuit intermittent fault diagnosis method based on multi-granularity cascade forest | |
CN112147432A (en) | BiLSTM module based on attention mechanism, transformer state diagnosis method and system | |
CN102520342A (en) | Analog circuit test node selecting method based on dynamic feedback neural network modeling | |
CN110852365A (en) | ZPW-2000A type non-insulated rail circuit fault diagnosis method | |
CN113869145A (en) | Circuit Fault Diagnosis Method and System for Lightweight Gradient Boosting Machine and Sparrow Search | |
CN111815806A (en) | A preprocessing method of flying parameter data based on outlier elimination and feature extraction | |
CN110082082A (en) | A kind of GIS state identification method based on vibration signal Principal Component Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160525 |
|
WD01 | Invention patent application deemed withdrawn after publication |