CN105591032A - Perovskite light absorption composite layer, perovskite solar cell and preparation methods thereof - Google Patents
Perovskite light absorption composite layer, perovskite solar cell and preparation methods thereof Download PDFInfo
- Publication number
- CN105591032A CN105591032A CN201610076596.2A CN201610076596A CN105591032A CN 105591032 A CN105591032 A CN 105591032A CN 201610076596 A CN201610076596 A CN 201610076596A CN 105591032 A CN105591032 A CN 105591032A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- layer
- light absorption
- solar cell
- composite bed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 60
- 230000031700 light absorption Effects 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000011521 glass Substances 0.000 claims abstract description 21
- 238000010521 absorption reaction Methods 0.000 claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims abstract 8
- 238000000034 method Methods 0.000 claims description 29
- 238000000151 deposition Methods 0.000 claims description 10
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical group C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 230000008021 deposition Effects 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000004528 spin coating Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 230000008020 evaporation Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 239000012459 cleaning agent Substances 0.000 claims description 2
- 230000027756 respiratory electron transport chain Effects 0.000 claims 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims 4
- 238000005137 deposition process Methods 0.000 claims 4
- 230000005611 electricity Effects 0.000 claims 2
- 238000001802 infusion Methods 0.000 claims 2
- 239000007788 liquid Substances 0.000 claims 2
- 239000010410 layer Substances 0.000 abstract description 155
- 239000002356 single layer Substances 0.000 abstract description 24
- 238000004519 manufacturing process Methods 0.000 abstract description 13
- 238000006243 chemical reaction Methods 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 abstract description 3
- 238000010923 batch production Methods 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 10
- 230000005525 hole transport Effects 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 125000001905 inorganic group Chemical group 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000002892 organic cations Chemical group 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/87—Light-trapping means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于太阳电池制备技术领域,具体涉及一种含有有机-无机杂化的钙钛矿材料的太阳电池及其制备方法。The invention belongs to the technical field of solar cell preparation, and in particular relates to a solar cell containing an organic-inorganic hybrid perovskite material and a preparation method thereof.
技术背景technical background
有机无机钙钛矿材料是近年来颇受关注的一种半导体材料,这种杂化材料不但具备无机半导体优良的光电性能与稳定性,也具备有机物制备便利的优点。利用这种材料制备的太阳电池,生产过程简易、成本低、转换效率高,成为了光伏产业及科研机构关注的前沿和焦点。为了提高钙钛矿电池的光电转换效率,一般采用两种手段:一是调节钙钛矿分子的有机或无机集团的构成元素和分子结构,使钙钛矿薄膜具有更优良的光电性能;二是通过寻找新的电子传输层缓冲层,或改进沉积手段,以优化电池各层的界面特性。但是,这些已有的钙钛矿电池结构均为采用单一钙钛矿材料薄层制成的单节电池,我们知道,太阳能电池的理论转换效率取决于光电材料的禁带宽度。而单一钙钛矿材料具有特定的带宽,并且吸收谱宽往往有限,而且,在研究中发现,在优化钙钛矿材料的吸收谱宽时,往往会出现吸收谱宽拓宽同时伴随着光吸收强度下降的现象。如太阳能电池中常使用的CH3NH3PbI3材料,虽然其在太阳光400-800nm(1.55-3.1eV)波段均有吸收,但吸收强度很低,而且在500-800nm(2.48-3.1eV)一段吸收更少。因此成为了效率提高的严重障碍。为解决单一吸收材料吸收光谱窄的问题,许多研究机构采用钙钛矿电池与硅电池两种子电池串联形成形成叠层电池,或制成HIT型叠层电池。虽然这些方法可增加红外光的吸收使组件效率提升,但是,增加了子电池(如硅电池)导致制作工艺较昂贵,使电池制造成本大大增加。因此。这一设计不利于工业化生产。Organic-inorganic perovskite materials are a kind of semiconductor materials that have attracted much attention in recent years. This hybrid material not only has the excellent photoelectric performance and stability of inorganic semiconductors, but also has the advantages of convenient preparation of organic substances. The solar cells made of this material have simple production process, low cost and high conversion efficiency, which has become the frontier and focus of the photovoltaic industry and scientific research institutions. In order to improve the photoelectric conversion efficiency of perovskite cells, two methods are generally used: one is to adjust the constituent elements and molecular structure of the organic or inorganic groups of perovskite molecules, so that the perovskite film has better photoelectric performance; the other is By finding a new electron transport layer buffer layer, or improving the deposition method, the interface properties of each layer of the battery can be optimized. However, these existing perovskite battery structures are all single-cell batteries made of a single thin layer of perovskite material. We know that the theoretical conversion efficiency of solar cells depends on the bandgap width of optoelectronic materials. A single perovskite material has a specific bandwidth, and the absorption spectrum width is often limited. Moreover, it is found in the study that when the absorption spectrum width of the perovskite material is optimized, the absorption spectrum width is often broadened and accompanied by light absorption intensity. decline phenomenon. For example, the CH 3 NH 3 PbI 3 material commonly used in solar cells has absorption in the 400-800nm (1.55-3.1eV) wavelength band of sunlight, but the absorption intensity is very low, and the absorption intensity is very low at 500-800nm (2.48-3.1eV). A section absorbs less. Therefore, it becomes a serious obstacle to efficiency improvement. In order to solve the problem of a narrow absorption spectrum of a single absorbing material, many research institutions use a perovskite battery and a silicon battery in series to form a laminated battery, or make a HIT-type laminated battery. Although these methods can increase the absorption of infrared light to improve the efficiency of components, however, the addition of sub-cells (such as silicon cells) leads to more expensive manufacturing processes, which greatly increases the cost of cell manufacturing. therefore. This design is not conducive to industrialized production.
为了增加电池对光的吸收量,在不增加成本的前提下,我们提出一种将具有不同禁带宽度的几种钙钛矿材料,通过沉积手段,制成一种含不同种类钙钛矿分子的复合薄膜的方法,并把这种薄膜利用在钙钛矿电池中,就能够在不增加子电池数的前提下使太阳电池获得对光能更大限度的吸收,进一步提高钙钛矿电池的转换效率。由于本方法工艺经济、便利,因此控制了电池制作成本。有望实现产业化。In order to increase the light absorption of the battery without increasing the cost, we propose a kind of perovskite materials with different bandgap widths, which can be made into a kind of perovskite molecules containing different kinds of perovskite molecules by means of deposition. The composite thin film method, and using this thin film in the perovskite battery, can make the solar cell obtain a greater absorption of light energy without increasing the number of sub-cells, and further improve the performance of the perovskite battery. conversion efficiency. Because the process of the method is economical and convenient, the manufacturing cost of the battery is controlled. It is expected to realize industrialization.
发明内容Contents of the invention
针对现有技术的不足,本发明提供一种含不同种钙钛矿分子的钙钛矿光吸收复合层及其制备方法,并提供一种具有钙钛矿光吸收复合层的钙钛矿太阳电池的制备方法,提高电池的转换效率。经过对钙钛矿材料进行选择、设计和吸收带宽的调整,钙钛矿光吸收复合层可更广泛地吸收太阳光光谱中具有不同能量的光子,对光子收集范围得到拓展,同时光的吸收强度不会因波段的拓展而下降。Aiming at the deficiencies of the prior art, the present invention provides a perovskite light-absorbing composite layer containing different perovskite molecules and a preparation method thereof, and provides a perovskite solar cell with a perovskite light-absorbing composite layer The preparation method improves the conversion efficiency of the battery. After selecting, designing and adjusting the absorption bandwidth of the perovskite material, the perovskite light-absorbing composite layer can absorb photons with different energies in the sunlight spectrum more widely, and the range of photon collection is expanded. It will not decrease due to the expansion of the band.
为了达到上述目的,本发明的技术方案为:In order to achieve the above object, technical scheme of the present invention is:
一种钙钛矿光吸收复合层包含多个钙钛矿单层自下而上逐层沉积而成,每一钙钛矿单层有固定的吸收带隙宽度,从最上单层至最下单层,吸收带隙宽度逐层减小。先沉积制备最下一层钙钛矿层,再依次逐层沉积上面几层钙钛矿单层,直至最上一层。所述的每个钙钛矿单层的分子的结构为AMX3,其中,M为金属阳离子,A为有机阳离子集团,X为卤族元素。钙钛矿光吸收复合层的各层的钙钛矿分子可以具有完全不同的阳离子集团A、金属阳离子M、和卤素X种类,也可以是具有完全相同或部分组分相同的一系列有机无机钙钛矿分子;每个钙钛矿单层的分子成分可以是同种的钙钛矿分子,也可以是不同种类的钙钛矿分子。当有机无机钙钛矿分子部分组分相同时,可以但不限于这种情况:第一层是AMX3钙钛矿层,最下一层为AMY3钙钛矿层,Y为另一不同于X的卤族元素,介于第一层和最下一层之间的各层,可以是AMXxY3-x的混合钙钛矿层,x表示AMX3与AMY3两种分子的混合比例。A perovskite light-absorbing composite layer consists of multiple perovskite monolayers deposited layer by layer from bottom to top, each perovskite monolayer has a fixed absorption band gap width, from the uppermost monolayer to the bottom monolayer Layer by layer, the absorption bandgap width decreases layer by layer. The bottom perovskite layer is deposited first, and then the upper perovskite monolayers are deposited layer by layer until the uppermost layer. The molecular structure of each perovskite monolayer is AMX 3 , wherein M is a metal cation, A is an organic cation group, and X is a halogen element. The perovskite molecules of each layer of the perovskite light-absorbing composite layer can have completely different cation group A, metal cation M, and halogen X species, or a series of organic-inorganic calcium with the same or part of the same composition Titanium molecules; the molecular composition of each perovskite monolayer can be the same kind of perovskite molecules or different kinds of perovskite molecules. When the organic and inorganic perovskite molecular components are the same, it can be but not limited to this situation: the first layer is an AMX 3 perovskite layer, the bottom layer is an AMY 3 perovskite layer, and Y is another layer different from X The halogen element, each layer between the first layer and the bottom layer, can be a mixed perovskite layer of AMXxY 3-x , where x represents the mixing ratio of AMX 3 and AMY 3 molecules.
所述的单层钙钛矿薄膜的吸收带宽一般在0.8-4.8eV范围内,整个钙钛矿光吸收复合层含有多个钙钛矿单层,是具有不同带宽的多个钙钛矿分子的叠加,使钙钛矿光吸收复合层在很宽的光谱范围内对光子有较强的光子收集能力的吸收层,含有这种复合层的钙钛矿太阳电池的转换效率会得到明显的提高。The absorption bandwidth of the single-layer perovskite film is generally in the range of 0.8-4.8eV, and the entire perovskite light-absorbing composite layer contains multiple perovskite monolayers, which are multiple perovskite molecules with different bandwidths. Superimposed, the perovskite light-absorbing composite layer has a strong photon collection ability for photons in a wide spectral range, and the conversion efficiency of the perovskite solar cell containing this composite layer will be significantly improved.
一种具有上述钙钛矿光吸收复合层的钙钛矿太阳电池,钙钛矿太阳电池自下而上包括导电玻璃、电子传输层、钙钛矿光吸收复合层、空穴传输层和顶部导电层。所述的导电玻璃为包括ITO,FTO等多种材料;所述的电子传输层主要成分为TiO2,厚度为50-800nm;所述的钙钛矿光吸收复合层厚度为0.01-100μm,每个钙钛矿单层的厚度为5-800nm;所述的空穴传输层厚度为0.1-50μm。A perovskite solar cell with the above-mentioned perovskite light-absorbing composite layer, the perovskite solar cell includes conductive glass, electron transport layer, perovskite light-absorbing composite layer, hole transport layer and top conductive layer. The conductive glass includes various materials such as ITO and FTO; the main component of the electron transport layer is TiO 2 , and the thickness is 50-800 nm; the thickness of the perovskite light-absorbing composite layer is 0.01-100 μm, each The thickness of each perovskite monolayer is 5-800 nm; the thickness of the hole transport layer is 0.1-50 μm.
钙钛矿太阳电池中钙钛矿光吸收复合层可以为多层,以7层的钙钛矿复合层为例,如图1所示,自下而上,依次为第I层钙钛矿单层,第II层钙钛矿单层,第III层钙钛矿单层,第IV层钙钛矿单层,第V层钙钛矿单层,第VI层钙钛矿单层,第VII层钙钛矿单层。In the perovskite solar cell, the perovskite light-absorbing composite layer can be multi-layered. Take the 7-layer perovskite composite layer as an example, as shown in Figure 1, from bottom to top, followed by the first layer of perovskite single layer. layer, layer II perovskite monolayer, layer III perovskite monolayer, layer IV perovskite monolayer, layer V perovskite monolayer, layer VI perovskite monolayer, layer VII Perovskite monolayer.
一种制备上述钙钛矿太阳电池的方法,具体包括以下步骤:A method for preparing the above-mentioned perovskite solar cell, specifically comprising the following steps:
第一步,清洗导电玻璃基片,并进行表面处理;所述的清洗剂包括丙酮、酒精或去离子水。The first step is to clean the conductive glass substrate and perform surface treatment; the cleaning agent includes acetone, alcohol or deionized water.
第二步,制备电子传输层The second step is to prepare the electron transport layer
将TiO2浆料涂覆在处理后的导电玻璃上,80-180℃烘烤3-12min后;在400-550℃退火处理1-2.5h。Coat the TiO 2 slurry on the treated conductive glass, bake at 80-180°C for 3-12min; anneal at 400-550°C for 1-2.5h.
第三步,制备钙钛矿光吸收复合层The third step is to prepare the perovskite light-absorbing composite layer
在电子传输层之上,根据钙钛矿光吸收复合层的带宽、厚度优化设计参数,沉积并烘干第一层钙钛矿单层,并逐层沉积并烘干位于该第一层之上各钙钛矿单层制成钙钛矿复合光吸收复合层;最后对整个钙钛矿复合层在60-180℃进行退火处理1-30min。所述的沉积方法为旋涂法、气相沉积法、喷涂法、浸润法、蒸发法。On the electron transport layer, according to the bandwidth and thickness optimization design parameters of the perovskite light-absorbing composite layer, deposit and dry the first layer of perovskite monolayer, and deposit and dry layer by layer on the first layer Each perovskite monolayer is made into a perovskite composite light-absorbing composite layer; finally, the entire perovskite composite layer is annealed at 60-180° C. for 1-30 minutes. The deposition method is a spin coating method, a vapor deposition method, a spray coating method, an infiltration method, and an evaporation method.
第四步,制备空穴传输层The fourth step is to prepare the hole transport layer
将0.01-2mol/L的2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-MeOTAD)的溶液沉积到钙钛矿光吸收复合层之上,得到p型空穴传输层。第五步,在空穴传输层顶部覆盖导电层,得到钙钛矿太阳电池;所述的导电层为导电玻璃或含金属电极的透光膜。0.01-2mol/L of 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) The solution is deposited onto the perovskite light-absorbing composite layer to obtain a p-type hole-transporting layer. In the fifth step, a conductive layer is covered on the top of the hole transport layer to obtain a perovskite solar cell; the conductive layer is conductive glass or a light-transmitting film containing metal electrodes.
本发明的有益效果为:将具有不同禁带宽度的几种钙钛矿材料设计制成为一种钙钛矿光吸收复合层,能够拓展薄膜对太阳光谱中不同波长光的吸收范围。采用钙钛矿光吸收复合层制备太阳能电池,和普通钙钛矿电池相比,能够在不增加子电池数的前提下,提高对光子的利用率和对光能的吸收强度。电池的光电转换效率将得到提高。该电池比以往的叠层电池工艺经济、简便,因此控制了电池制作成本。非常有利于未来实现钙钛矿电池的工业化制造。The beneficial effect of the invention is that several perovskite materials with different band gaps are designed and made into a perovskite light-absorbing composite layer, which can expand the absorption range of the thin film to light of different wavelengths in the solar spectrum. The use of perovskite light-absorbing composite layers to prepare solar cells, compared with ordinary perovskite cells, can improve the utilization rate of photons and the absorption intensity of light energy without increasing the number of sub-cells. The photoelectric conversion efficiency of the battery will be improved. The battery is more economical and simple than the previous stacked battery process, so the cost of battery production is controlled. It is very beneficial to realize the industrialized manufacturing of perovskite batteries in the future.
附图说明Description of drawings
图1为本发明中钙钛矿光吸收复合层的结构剖视图;Fig. 1 is the structural sectional view of perovskite light-absorbing composite layer among the present invention;
图2为本发明钙钛矿太阳能电池的结构剖视图;Fig. 2 is the structural sectional view of perovskite solar cell of the present invention;
图3为本发明实例1的钙钛矿太阳能电池的结构剖视图;Fig. 3 is the structural sectional view of the perovskite solar cell of example 1 of the present invention;
图中:1第I层钙钛矿单层,2第II层钙钛矿单层,3第III层钙钛矿单层,4第IV层钙钛矿单层,5第V层钙钛矿单层,6第VI层钙钛矿单层,7第VII层钙钛矿单层,8导电玻璃,9电子传输层,10钙钛矿光吸收复层,11空穴传输层,12顶部导电层,13钙钛矿光吸收复合薄膜的钙钛矿I层,14钙钛矿光吸收复合薄膜的钙钛矿II层,15钙钛矿光吸收复合薄膜的钙钛矿III层,16钙钛矿光吸收复合薄膜的钙钛矿IV层。In the figure: 1 layer I perovskite monolayer, 2 layer II perovskite monolayer, 3 layer III perovskite monolayer, 4 layer IV perovskite monolayer, 5 layer V perovskite Single layer, 6 layer VI perovskite single layer, 7 layer VII perovskite single layer, 8 conductive glass, 9 electron transport layer, 10 perovskite light absorption layer, 11 hole transport layer, 12 top conductive Layer, 13 Perovskite I layer of perovskite light-absorbing composite film, 14 Perovskite II layer of perovskite light-absorbing composite film, 15 Perovskite III layer of perovskite light-absorbing composite film, 16 Perovskite Perovskite IV layer of mineral light absorbing composite film.
具体实施方式detailed description
实施例1:Example 1:
如图3,本实施例提供一种具有光吸收复合层的钙钛矿太阳电池的制作方法,该电池自下而上包括:导电玻璃8、电子传输层9、钙钛矿光吸收复层10、空穴传输层11和顶部导电层12,该实例中的钙钛矿光吸收复层10的结构,含有四个钙钛矿单层,每层含单一钙钛矿分子成分,自下而上分别为钙钛矿I层13、钙钛矿II层14、钙钛矿III层15、钙钛矿IV层16。这四种钙钛矿分子具有部分相同的组分,I层是AMX3钙钛矿层,II层是AMX2Y1,III层为AMX1Y2,IV层为AMY3钙钛矿层,Y为另一不同于X的卤族元素。IV层为的吸收带宽为3.6eV,层厚80nm,III层的吸收带宽为3.1eV,层厚70nm,II层的吸收带宽为2.6eV,层厚90nm,I层的吸收带宽为2.1eV,层厚50nm。As shown in Figure 3, the present embodiment provides a method for manufacturing a perovskite solar cell with a light-absorbing composite layer, which comprises from bottom to top: a conductive glass 8, an electron transport layer 9, and a perovskite light-absorbing composite layer 10 , the hole transport layer 11 and the top conductive layer 12, the structure of the perovskite light-absorbing complex layer 10 in this example contains four perovskite monolayers, each layer contains a single perovskite molecular component, from bottom to top They are perovskite I layer 13, perovskite II layer 14, perovskite III layer 15, and perovskite IV layer 16, respectively. These four perovskite molecules have partly the same composition, layer I is AMX 3 perovskite layer, layer II is AMX 2 Y 1 , layer III is AMX 1 Y 2 , layer IV is AMY 3 perovskite layer, Y is Another halogen element other than X. The absorption bandwidth of the IV layer is 3.6eV, and the layer thickness is 80nm; the absorption bandwidth of the III layer is 3.1eV, and the layer thickness is 70nm; the absorption bandwidth of the II layer is 2.6eV, and the layer thickness is 90nm; 50nm thick.
具有该光吸收复合层的钙钛矿太阳电池的制作方法如下:The fabrication method of the perovskite solar cell with the light-absorbing composite layer is as follows:
第一步:对导电玻璃8基片进行清洗并作表面处理;用丙酮、酒精、去离子水对导电玻璃依次清洗。每种溶剂清洗时间持续10分钟;Step 1: Clean the conductive glass 8 substrate and perform surface treatment; clean the conductive glass with acetone, alcohol, and deionized water in sequence. Each solvent cleaning time lasts 10 minutes;
第二步:制作电子传输层9:将TiO2浆料涂覆在处理后的导电玻璃8上,膜厚200nm,在120℃烘烤8min,再经450℃退火处理1.5h;The second step: making the electron transport layer 9: coating the TiO 2 slurry on the treated conductive glass 8 with a film thickness of 200nm, baking at 120°C for 8min, and then annealing at 450°C for 1.5h;
第三步:利用旋涂法制备钙钛矿光吸收复层10,将含有钙钛矿AMX3的溶液旋涂至在电子传输层9上,在50℃烘干4min,形成I层;将含有钙钛矿AMX2Y1的溶液旋涂至在钙钛矿I层上,在50℃烘干4min,形成II层,将含有钙钛矿AMX1Y2的溶液旋涂至在钙钛矿II层上,在50℃烘干4min,形成III层,将含有钙钛矿AMY3的溶液旋涂至在钙钛矿III层上,在55℃烘干4min,形成IV层,再将整个样品在烤箱中退火,温度在100℃,时间为15min。Step 3: Prepare the perovskite light-absorbing layer 10 by spin coating, spin-coat the solution containing perovskite AMX 3 onto the electron transport layer 9, and dry it at 50° C. for 4 minutes to form a layer 1; The solution of perovskite AMX 2 Y 1 was spin-coated on the perovskite I layer, dried at 50°C for 4min to form layer II, and the solution containing perovskite AMX 1 Y 2 was spin-coated on the perovskite II layer. On the perovskite layer, dry at 50°C for 4min to form layer III, spin-coat the solution containing perovskite AMY 3 on the perovskite III layer, dry at 55°C for 4min to form layer IV, and then put the whole sample on Anneal in an oven at 100°C for 15 minutes.
第四步:沉积p型的HTM(spiro-MeOTAD)层11。将含有spiro-MeOTAD的溶液旋涂至步骤(3)制备的钙钛矿复合薄膜之上,溶液浓度在1mol/L;Step 4: Deposit a p-type HTM (spiro-MeOTAD) layer 11 . The solution containing spiro-MeOTAD is spin-coated onto the perovskite composite film prepared in step (3), and the solution concentration is 1mol/L;
第五步:覆盖顶部FTO导电层12。完成电池制作。Step 5: Cover the top FTO conductive layer 12 . Finished making the battery.
实施例2:Example 2:
本实施例提供一种具有光吸收复合层的钙钛矿太阳电池的制作方法,该电池自下而上包括:导电玻璃8、电子传输层9、钙钛矿光吸收复层10、空穴传输层11和顶部导电层12,该实例中的钙钛矿光吸收复层10的结构,含有两个钙钛矿单层,每层含单一钙钛矿分子成分,自下而上分别为钙钛矿A层、钙钛矿B层。A层的吸收带宽为1.9eV,层厚160nm,B层的吸收带宽为2.6eV,层厚570nm。This embodiment provides a method for manufacturing a perovskite solar cell with a light-absorbing composite layer, which comprises from bottom to top: conductive glass 8, electron transport layer 9, perovskite light-absorbing composite layer 10, hole transport Layer 11 and top conductive layer 12, the structure of the perovskite light-absorbing layer 10 in this example contains two perovskite monolayers, each layer contains a single perovskite molecular component, from bottom to top are respectively perovskite Ore A layer, perovskite B layer. The absorption bandwidth of the A layer is 1.9eV, and the layer thickness is 160nm, and the absorption bandwidth of the B layer is 2.6eV, and the layer thickness is 570nm.
该光吸收复合层的钙钛矿太阳电池的制作方法如下:The fabrication method of the perovskite solar cell of the light-absorbing composite layer is as follows:
第一步:对导电玻璃8基片进行清洗并作表面处理;The first step: cleaning and surface treatment of the conductive glass 8 substrate;
用丙酮、酒精、去离子水对导电玻璃8依次清洗。每种溶剂清洗时间持续15分钟;Clean the conductive glass 8 sequentially with acetone, alcohol, and deionized water. Each solvent cleaning time lasts 15 minutes;
第二步:制作电子传输层9:将TiO2浆料涂覆在处理后的导电玻璃8上,膜厚220nm,在140℃烘烤8min,再经450℃退火处理1.5h;The second step: making the electron transport layer 9: coating the TiO 2 slurry on the treated conductive glass 8 with a film thickness of 220nm, baking at 140°C for 8min, and then annealing at 450°C for 1.5h;
第三步:利用蒸发法制备钙钛矿光吸收复层10,将含有钙钛矿A的溶液蒸发至电子传输层9上,在蒸发装置中70℃烘干2min;将含有钙钛矿B的溶液蒸发至在钙钛矿A层上,在50℃烘干4min。再将整个样品退火,温度在150℃,时间为12min。Step 3: Prepare the perovskite light-absorbing layer 10 by evaporation method, evaporate the solution containing perovskite A onto the electron transport layer 9, and dry it in an evaporation device at 70°C for 2 minutes; The solution was evaporated onto the perovskite A layer and dried at 50°C for 4min. Then the whole sample was annealed at 150°C for 12 min.
第四步:沉积p型的HTM(spiro-MeOTAD)层11。将含有spiro-MeOTAD的溶液旋涂至步骤(3)制备的钙钛矿光吸收复层10之上,溶液浓度在0.2mol/L;Step 4: Deposit a p-type HTM (spiro-MeOTAD) layer 11 . The solution containing spiro-MeOTAD is spin-coated onto the perovskite light-absorbing layer 10 prepared in step (3), and the solution concentration is 0.2mol/L;
第五步:覆盖顶部FTO导电层12。完成电池制作。Step 5: Cover the top FTO conductive layer 12 . Finished making the battery.
以上实施方式仅用于说明本发明,而并非本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,可以作出变化和变形,因此所有等同的技术方案也属于本发明的范畴。The above embodiments are only used to illustrate the present invention, rather than to limit the present invention. Those of ordinary skill in the relevant technical field can make changes and deformations without departing from the spirit and scope of the present invention. Therefore, all equivalent technical solutions Also belong to the category of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610076596.2A CN105591032A (en) | 2016-02-03 | 2016-02-03 | Perovskite light absorption composite layer, perovskite solar cell and preparation methods thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610076596.2A CN105591032A (en) | 2016-02-03 | 2016-02-03 | Perovskite light absorption composite layer, perovskite solar cell and preparation methods thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105591032A true CN105591032A (en) | 2016-05-18 |
Family
ID=55930453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610076596.2A Pending CN105591032A (en) | 2016-02-03 | 2016-02-03 | Perovskite light absorption composite layer, perovskite solar cell and preparation methods thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105591032A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410039A (en) * | 2016-11-07 | 2017-02-15 | 大连理工大学 | Perovskite laminated solar cell and preparation method thereof |
CN106450001A (en) * | 2016-10-31 | 2017-02-22 | 电子科技大学 | Composite laminated perovskite solar cell and manufacturing method therefor |
CN108435514A (en) * | 2018-04-16 | 2018-08-24 | 西安电子科技大学 | A kind of preparation method of Bi based perovskites light absorption layer material |
CN108649127A (en) * | 2018-05-17 | 2018-10-12 | 北京大学 | A kind of continuous multilayer perovskite thin film preparation method based on seed layer assisting growth |
CN108886097A (en) * | 2016-05-23 | 2018-11-23 | 株式会社Lg化学 | Organic-inorganic hybrid solar cells |
CN109285952A (en) * | 2017-07-20 | 2019-01-29 | 松下知识产权经营株式会社 | Light absorbing material and solar cell using the same |
CN109478598A (en) * | 2016-12-28 | 2019-03-15 | 松下知识产权经营株式会社 | Solar cell, light absorbing layer, and method for forming the light absorbing layer |
CN110491998A (en) * | 2019-08-23 | 2019-11-22 | 通威太阳能(成都)有限公司 | A kind of plane non-impurity-doped hetero-junctions-perovskite laminated cell and preparation method thereof |
CN112289934A (en) * | 2019-07-23 | 2021-01-29 | 高丽大学校产学协力团 | Preparation method of multilayer perovskite structure, multilayer perovskite structure prepared thereby, and solar cell |
CN112582554A (en) * | 2020-12-10 | 2021-03-30 | 北京大学深圳研究生院 | Perovskite double-band photoelectric detector and preparation method thereof |
WO2024098451A1 (en) * | 2022-11-10 | 2024-05-16 | 微集电科技(苏州)有限公司 | Lanthanide-series perovskite ceramic-based light absorber, and use thereof and preparation method therefor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103700769A (en) * | 2013-12-03 | 2014-04-02 | 常州大学 | Organic/inorganic hybridized perovskite solar battery and preparation method thereof |
WO2014097299A1 (en) * | 2012-12-20 | 2014-06-26 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Perovskite schottky type solar cell |
US20160020411A1 (en) * | 2014-07-16 | 2016-01-21 | Industrial Technology Research Institute | Solar cell and method for manufacturing the same |
-
2016
- 2016-02-03 CN CN201610076596.2A patent/CN105591032A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097299A1 (en) * | 2012-12-20 | 2014-06-26 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Perovskite schottky type solar cell |
CN103700769A (en) * | 2013-12-03 | 2014-04-02 | 常州大学 | Organic/inorganic hybridized perovskite solar battery and preparation method thereof |
US20160020411A1 (en) * | 2014-07-16 | 2016-01-21 | Industrial Technology Research Institute | Solar cell and method for manufacturing the same |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11165034B2 (en) | 2016-05-23 | 2021-11-02 | Lg Chem, Ltd. | Organic-inorganic hybrid solar cell |
CN108886097A (en) * | 2016-05-23 | 2018-11-23 | 株式会社Lg化学 | Organic-inorganic hybrid solar cells |
CN108886097B (en) * | 2016-05-23 | 2022-08-23 | 株式会社Lg化学 | Organic-inorganic hybrid solar cell |
CN106450001A (en) * | 2016-10-31 | 2017-02-22 | 电子科技大学 | Composite laminated perovskite solar cell and manufacturing method therefor |
CN106410039A (en) * | 2016-11-07 | 2017-02-15 | 大连理工大学 | Perovskite laminated solar cell and preparation method thereof |
CN109478598A (en) * | 2016-12-28 | 2019-03-15 | 松下知识产权经营株式会社 | Solar cell, light absorbing layer, and method for forming the light absorbing layer |
CN109285952A (en) * | 2017-07-20 | 2019-01-29 | 松下知识产权经营株式会社 | Light absorbing material and solar cell using the same |
CN109285952B (en) * | 2017-07-20 | 2024-04-12 | 松下知识产权经营株式会社 | Light absorbing material and solar cell using the same |
CN108435514A (en) * | 2018-04-16 | 2018-08-24 | 西安电子科技大学 | A kind of preparation method of Bi based perovskites light absorption layer material |
CN108649127A (en) * | 2018-05-17 | 2018-10-12 | 北京大学 | A kind of continuous multilayer perovskite thin film preparation method based on seed layer assisting growth |
CN112289934A (en) * | 2019-07-23 | 2021-01-29 | 高丽大学校产学协力团 | Preparation method of multilayer perovskite structure, multilayer perovskite structure prepared thereby, and solar cell |
CN110491998A (en) * | 2019-08-23 | 2019-11-22 | 通威太阳能(成都)有限公司 | A kind of plane non-impurity-doped hetero-junctions-perovskite laminated cell and preparation method thereof |
CN112582554A (en) * | 2020-12-10 | 2021-03-30 | 北京大学深圳研究生院 | Perovskite double-band photoelectric detector and preparation method thereof |
WO2024098451A1 (en) * | 2022-11-10 | 2024-05-16 | 微集电科技(苏州)有限公司 | Lanthanide-series perovskite ceramic-based light absorber, and use thereof and preparation method therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105591032A (en) | Perovskite light absorption composite layer, perovskite solar cell and preparation methods thereof | |
Cojocaru et al. | Surface treatment of the compact TiO2 layer for efficient planar heterojunction perovskite solar cells | |
CN103700769B (en) | A kind of hybrid perovskite solar cell and preparation method thereof | |
EP3172776B9 (en) | Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same | |
Ying et al. | A two-layer structured PbI 2 thin film for efficient planar perovskite solar cells | |
CN106410039A (en) | Perovskite laminated solar cell and preparation method thereof | |
CN105514277B (en) | A kind of perovskite photovoltaic material of wide scope spectral absorption and preparation method thereof | |
CN104409636A (en) | Perovskite thin-film solar cell with three-dimensional ordered mesopore support layer | |
JP2023538996A (en) | Method for producing perovskite solar cells and perovskite solar cells produced therefrom | |
CN103346193B (en) | A kind of CdTe nanometer crystalline heterojunction solar cell and preparation method thereof | |
CN111029470B (en) | Perovskite solar cells based on nanograss-like mesoporous layer and preparation method thereof | |
CN105529403A (en) | A method for modifying the light-absorbing layer of perovskite solar cells | |
US20150380169A1 (en) | Surface-Passivated Mesoporous Structure Solar Cell | |
CN104157787A (en) | Plane-mesopore mixed perovskite solar cell structure and manufacturing method | |
CN109768167B (en) | Perovskite solar cell without current lag and preparation method thereof | |
CN106887482A (en) | A kind of mechanical lamination solar cell and preparation method thereof | |
CN106450001A (en) | Composite laminated perovskite solar cell and manufacturing method therefor | |
CN107046027A (en) | Perovskite and gallium arsenide hetero-integrated solar cell manufacturing method and cell | |
Ito et al. | Substrate-preheating effects on PbI2 spin coating for perovskite solar cells via sequential deposition | |
JP2017054912A (en) | Photoelectric conversion element | |
TWI572049B (en) | Perovskite solar cell and manufacturing method thereof | |
CN109103280B (en) | All-inorganic perovskite ferroelectric fiber composite structure solar cell and preparation method | |
Chen et al. | TiO2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell | |
Lei et al. | Effect of morphology control of light absorbing layer on CH3NH3PbI3 perovskite solar cells | |
CN113782677A (en) | Solar cell device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160518 |
|
RJ01 | Rejection of invention patent application after publication |