CN105586351A - Cyanobacteria aliphatic hydrocarbon key synthesis gene and application thereof - Google Patents
Cyanobacteria aliphatic hydrocarbon key synthesis gene and application thereof Download PDFInfo
- Publication number
- CN105586351A CN105586351A CN201410660371.2A CN201410660371A CN105586351A CN 105586351 A CN105586351 A CN 105586351A CN 201410660371 A CN201410660371 A CN 201410660371A CN 105586351 A CN105586351 A CN 105586351A
- Authority
- CN
- China
- Prior art keywords
- cyanobacteria
- gene
- aar
- ado
- nies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种源于蓝细菌的脂肪烃合成关键基因及其应用。所述脂肪烃合成基因包括脂酰ACP还原酶(Fatty?acyl-acyl?carrier?protein?reductase,AAR)和脂肪醛脱甲酰基加氧酶(Fatty?aldehyde?deformylating?oxygenase,ADO)的编码基因。本发明还涉及构建体,所述构建体包含有活性的启动子和受该启动子控制的脂肪烃合成关键基因。将所述构建体转化大肠杆菌,可使基因工程大肠杆菌获得脂肪烃合成能力。将至少一种构建体转化蓝细菌,可显著提高基因工程蓝细菌的脂肪烃产量。本发明公开的蓝细菌产烃关键基因将为微生物直接合成脂肪烃类新型生物燃料提供新的候选基因资源。The invention discloses a key gene for aliphatic hydrocarbon synthesis derived from cyanobacteria and its application. The aliphatic hydrocarbon synthesis genes include fatty acyl-ACP reductase (Fatty?acyl?carrier?protein?reductase, AAR) and fatty aldehyde deformyloxygenase (Fatty?aldehyde?deformylating?oxygenase, ADO) coding genes . The present invention also relates to a construct comprising an active promoter and a key gene for aliphatic hydrocarbon synthesis controlled by the promoter. Transforming the construct into Escherichia coli can make the genetically engineered Escherichia coli obtain aliphatic hydrocarbon synthesis ability. The aliphatic hydrocarbon production of the genetically engineered cyanobacteria can be significantly improved by transforming the at least one construct into the cyanobacteria. The key genes for hydrocarbon production of cyanobacteria disclosed by the invention will provide new candidate gene resources for microorganisms to directly synthesize new biofuels of aliphatic hydrocarbons.
Description
技术领域technical field
本发明涉及能源微生物种质资源与基因资源领域,具体而言是一种蓝细菌脂肪烃合成关键基因。The invention relates to the field of energy microbial germplasm resources and gene resources, in particular to a key gene for cyanobacteria aliphatic hydrocarbon synthesis.
背景技术Background technique
能源是现代工业的支柱,以化石燃料为代表的传统能源的日益短缺是制约我国经济可持续发展的瓶颈,可再生的生物燃料的应用成为缓解能源危机并改善生态环境的最佳选择之一。在交通运输业中广泛使用的汽油、柴油和航空煤油等化石燃料的主要成分是特定链长范围的脂肪烃,脂肪烃具有高能量密度、低吸湿性、低挥发性、与现有发动机相兼容等优点,是传统石化液体燃料的最佳替代品(KeaslingandChou2008)。Energy is the pillar of modern industry. The increasing shortage of traditional energy represented by fossil fuels is the bottleneck restricting the sustainable development of my country's economy. The application of renewable biofuels has become one of the best choices to alleviate the energy crisis and improve the ecological environment. Fossil fuels such as gasoline, diesel and aviation kerosene widely used in the transportation industry are mainly composed of aliphatic hydrocarbons of a specific chain length range, which have high energy density, low hygroscopicity, low volatility, and are compatible with existing engines It is the best substitute for traditional petrochemical liquid fuels (Keasling and Chou2008).
石油、古代沉积物以及陨石中包含了大量可能为生物来源的物质,其中脂肪烃也是最受关注的成员之一。科学家曾针对传统化石能源的起源提出了腐朽的藻类细胞是其组成成分的理论(HanandCalvin1969)。而自上世纪六十年代末期开始的关于蓝细菌中脂肪烃的研究主要是围绕分析和鉴定不同蓝细菌(或者其他真核藻类)的脂肪烃组成和含量展开的。目前已报道的野生蓝细菌中脂肪烃含量最低占细胞干重的0.01%(Wintersetal.1969),最高可达0.26%(Coatesetal.2014)。研究发现其链长主要集中于C15至C20之间,且以C17为主(Hanetal.1968)。Petroleum, ancient sediments, and meteorites contain a large number of substances that may be of biological origin, among which aliphatic hydrocarbons are also one of the most concerned members. Scientists have proposed the theory that decayed algae cells are its constituents for the origin of traditional fossil energy (Han and Calvin 1969). Since the late 1960s, the research on aliphatic hydrocarbons in cyanobacteria mainly revolves around the analysis and identification of the composition and content of aliphatic hydrocarbons in different cyanobacteria (or other eukaryotic algae). The reported content of aliphatic hydrocarbons in wild cyanobacteria is as low as 0.01% of dry cell weight (Winters et al. 1969) and as high as 0.26% (Coates et al. 2014). Studies have found that the chain length is mainly concentrated between C15 and C20, and mainly C17 (Hanetal.1968).
作为新一代能源微生物系统,蓝细菌具有以下优势:(1)与合成生物燃料的异养微生物反应器大肠杆菌、酿酒酵母等不同,蓝细菌能够利用太阳能并可以二氧化碳作为碳源生长,具备种类丰富、培养成本低、生命力强、生长速率快等优点。(2)从基因工程角度考虑,与同样可利用太阳能和二氧化碳的真核微藻、高等植物不同,蓝细菌作为合成脂肪烃的宿主,其基因操作更为简易,可进行大规模的遗传改造。(3)蓝细菌具有相对清晰的遗传背景。目前已公布了130余株蓝细菌的全基因组序列(Shihetal.2013)。As a new generation of energy microbial system, cyanobacteria have the following advantages: (1) Unlike Escherichia coli and Saccharomyces cerevisiae, which are heterotrophic microbial reactors that synthesize biofuels, cyanobacteria can use solar energy and can grow with carbon dioxide as a carbon source, and have a variety of , low cultivation cost, strong vitality, fast growth rate and other advantages. (2) From the perspective of genetic engineering, unlike eukaryotic microalgae and higher plants that can also utilize solar energy and carbon dioxide, cyanobacteria are hosts for synthesizing aliphatic hydrocarbons, and their genetic manipulation is simpler and large-scale genetic modification can be carried out. (3) Cyanobacteria have a relatively clear genetic background. The whole genome sequences of more than 130 strains of cyanobacteria have been published (Shih et al. 2013).
得益于分子生物学、生物信息学和代谢工程技术等的迅猛发展,目前已经在蓝细菌中鉴定出两条脂肪烃合成途径。其一存在于多数蓝细菌中,主要由脂酰酰基载体蛋白还原酶(Fattyacyl-acylcarrierproteinreductase,AAR)和脂肪醛脱甲酰基加氧酶(Fattyaldehydedeformylatingoxygenase,ADO)催化完成,其产物主要为直链烷烃、侧链烷烃和烯烃(不饱和键位于碳链内部)(Schirmeretal.2010)。另一途径存在于少数蓝细菌中,主要由末端烯烃合成酶(terminalolefinsynthase,OLS)催化完成,其产物为末端烯烃(不饱和键位于碳链末尾)(Mendez-Perezetal.2011)。Thanks to the rapid development of molecular biology, bioinformatics and metabolic engineering technologies, two aliphatic hydrocarbon synthesis pathways have been identified in cyanobacteria. One exists in most cyanobacteria, and is mainly catalyzed by fatty acyl-acylcarrier protein reductase (Fattyacyl-acylcarrierprotein reductase, AAR) and fatty aldehyde deformyloxygenase (Fattyaldehydedeformylatingoxygenase, ADO), and its products are mainly linear alkanes, Side-chain alkanes and alkenes (unsaturated bonds located inside the carbon chain) (Schirmer et al. 2010). Another pathway exists in a few cyanobacteria, mainly catalyzed by terminal olefin synthase (OLS), whose product is terminal olefins (unsaturated bonds at the end of the carbon chain) (Mendez-Perez et al. 2011).
基于上述脂肪烃合成途径的鉴定,目前已通过基因工程改造和代谢工程优化提高了重组蓝细菌的脂肪烃产量。以集胞藻PCC6803为例,研究结果证实,重组菌株的产量已可达野生株的9倍以上(Wangetal.2013)。但目前基因工程蓝细菌合成脂肪烃的水平还远未达到工业应用的水平,产烃蓝细菌种质资源和基因资源的挖掘是进一步提高蓝细菌脂肪烃合成效率与丰富产烃多样性的重要因素之一。Based on the above identification of aliphatic hydrocarbon synthesis pathways, the production of aliphatic hydrocarbons in recombinant cyanobacteria has been improved through genetic engineering and metabolic engineering optimization. Taking Synechocystis sp. PCC6803 as an example, the research results confirmed that the yield of the recombinant strain was more than 9 times that of the wild strain (Wang et al. 2013). However, the level of aliphatic hydrocarbon synthesis by genetically engineered cyanobacteria is far from the level of industrial application. The mining of germplasm resources and genetic resources of hydrocarbon-producing cyanobacteria is an important factor to further improve the efficiency of aliphatic hydrocarbon synthesis in cyanobacteria and enrich the diversity of hydrocarbon production. one.
发明内容Contents of the invention
本发明目的在于提供一种蓝细菌脂肪烃合成关键基因。The purpose of the present invention is to provide a key gene for aliphatic hydrocarbon synthesis of cyanobacteria.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical solution adopted in the present invention is:
一种蓝细菌产烃基因:产烃基因包括脂酰ACP还原酶的编码基因(aar)和脂肪醛脱甲酰基加氧酶的编码基因(ado)。A cyanobacteria hydrocarbon-producing gene: the hydrocarbon-producing gene includes the coding gene (aar) of fatty acyl ACP reductase and the coding gene (ado) of fatty aldehyde deformyl oxygenase.
所述脂酰ACP还原酶的编码基因(aar)和脂肪醛脱甲酰基加氧酶的编码基因(ado)为蓝细菌NostoccalcicolaFACHB389,Leptolyngbyasp.NIES-30,PhormidiumambiguumNIES-2119,ChroogloeocystissiderophilaNIES-1031,Calothrixsp.NIES-2101或Scytonemasp.NIES-2130的aar和ado。The coding gene (aar) of the fatty acyl ACP reductase and the coding gene (ado) of fatty aldehyde deformyl oxygenase are cyanobacteria NostoccalcicolaFACHB389, Leptolyngbyasp.NIES-30, PhormidiumambiguumNIES-2119, ChroogloeocystissiderophilaNIES-1031, Calothrixsp.NIES - aar and ado of 2101 or Scytonemasp.NIES-2130.
所述脂酰ACP还原酶的编码基因(aar)和脂肪醛脱甲酰基加氧酶的编码基因(ado)具有SEQIDNO:1与2、SEQIDNO:3与4、SEQIDNO:5与6、SEQIDNO:7与8、SEQIDNO:9与10或SEQIDNO:11与12所示的序列。The coding gene (aar) of the fatty acyl ACP reductase and the coding gene (ado) of fatty aldehyde deformyl oxygenase have SEQIDNO:1 and 2, SEQIDNO:3 and 4, SEQIDNO:5 and 6, SEQIDNO:7 and 8, the sequences shown in SEQ ID NO: 9 and 10 or SEQ ID NO: 11 and 12.
一种构建体,构建体包含启动子,以及该启动子控制的脂酰ACP还原酶的编码基因(aar)和脂肪醛脱甲酰基加氧酶的编码基因(ado)。A construct, which comprises a promoter, and the coding gene (aar) of fatty acyl ACP reductase and the coding gene (ado) of fatty aldehyde deformyl oxygenase controlled by the promoter.
所述构建体的启动子为来源于蓝细菌的PcpcB启动子或来源于大肠杆菌的T7启动子。The promoter of the construct is the PcpcB promoter derived from cyanobacteria or the T7 promoter derived from Escherichia coli.
所述脂酰ACP还原酶的编码基因(aar)和脂肪醛脱甲酰基加氧酶的编码基因(ado)为蓝细菌NostoccalcicolaFACHB389,Leptolyngbyasp.NIES-30,PhormidiumambiguumNIES-2119,ChroogloeocystissiderophilaNIES-1031,Calothrixsp.NIES-2101或Scytonemasp.NIES-2130的aar和ado。The coding gene (aar) of the fatty acyl ACP reductase and the coding gene (ado) of fatty aldehyde deformyl oxygenase are cyanobacteria NostoccalcicolaFACHB389, Leptolyngbyasp.NIES-30, PhormidiumambiguumNIES-2119, ChroogloeocystissiderophilaNIES-1031, Calothrixsp.NIES - aar and ado of 2101 or Scytonemasp.NIES-2130.
一种能合成脂肪烃的基因工程菌,工程菌包含上述构建体。A genetically engineered bacterium capable of synthesizing aliphatic hydrocarbons, the engineered bacterium contains the above construct.
进一步的说是,将所述构建体通过转化导入大肠杆菌中。Furthermore, the construct was introduced into E. coli by transformation.
更进一步的说是,将所述构建体通过转化导入大肠杆菌BL21(DE3)fadE突变株中。Furthermore, the construct was introduced into Escherichia coli BL21(DE3)fadE mutant strain by transformation.
一种所述的蓝细菌产烃基因作为合成脂肪烃的应用中。In the application of the cyanobacteria hydrocarbon-producing gene as a synthetic aliphatic hydrocarbon.
本发明所具有的有益效果:The beneficial effects that the present invention has:
以蓝细菌作为微生物表达系统合成脂肪烃,是利用太阳能固定二氧化碳合成生物燃料的过程。该过程是清洁生物能源的生产过程,不受原料不足的制约,不会增加碳排放。本发明的技术方案可为上述生物能源制备过程提供有价值的候选基因资源。Using cyanobacteria as a microbial expression system to synthesize aliphatic hydrocarbons is the process of using solar energy to fix carbon dioxide to synthesize biofuels. This process is a production process of clean bio-energy, which is not restricted by the shortage of raw materials and will not increase carbon emissions. The technical solution of the present invention can provide valuable candidate gene resources for the above bioenergy production process.
同时,蓝细菌产烃关键基因(脂酰ACP还原酶/脂肪醛脱甲酰基加氧酶编码基因)的克隆有以下重要作用:一、为从分子水平上深入研究蓝细菌脂肪烃合成的代谢机制和蓝细菌胞内脂肪烃的生理功能奠定了基础。二、可了解不同蓝细菌菌株的产烃特性,并解析不同结构脂肪烃在蓝细菌中的分布规律。At the same time, the cloning of key genes for hydrocarbon production in cyanobacteria (fatty acyl-ACP reductase/fatty aldehyde deformyloxygenase encoding genes) has the following important functions: 1. To study the metabolic mechanism of cyanobacteria aliphatic hydrocarbon synthesis at the molecular level and lay the foundation for the physiological function of aliphatic hydrocarbons in cyanobacteria. 2. Understand the hydrocarbon production characteristics of different cyanobacteria strains, and analyze the distribution of aliphatic hydrocarbons with different structures in cyanobacteria.
因此,本发明通过广泛收集蓝细菌菌种资源,并借助全基因组测序和产烃基因克隆,旨在为用太阳能、二氧化碳和水直接合成脂肪烃的蓝细菌液体燃料合成体系提供候选种质和基因资源。Therefore, the present invention aims to provide candidate germplasm and genes for the cyanobacteria liquid fuel synthesis system that uses solar energy, carbon dioxide and water to directly synthesize aliphatic hydrocarbons by extensively collecting cyanobacteria strain resources, and by means of whole genome sequencing and hydrocarbon-producing gene cloning resource.
附图说明Description of drawings
图1为基于GC-MS测定的藻株NostoccalcicolaFACHB389的脂肪烃组成和特性。Figure 1 shows the aliphatic hydrocarbon composition and characteristics of the algal strain Nostoccalcicola FACHB389 determined based on GC-MS.
图2为基于GC-MS测定的藻株Leptolyngbyasp.NIES-30的脂肪烃组成和特性。Fig. 2 is the aliphatic hydrocarbon composition and characteristics of algal strain Leptolyngbyasp. NIES-30 determined based on GC-MS.
图3为基于GC-MS测定的藻株PhormidiumambiguumNIES-2119的脂肪烃组成和特性。Fig. 3 is the aliphatic hydrocarbon composition and characteristics of algal strain Phormidium ambiguum NIES-2119 determined based on GC-MS.
图4为基于GC-MS测定的藻株ChroogloeocystissiderophilaNIES-1031的脂肪烃组成和特性。Fig. 4 is the aliphatic hydrocarbon composition and characteristics of algal strain Chroogloeocystissiderophila NIES-1031 determined based on GC-MS.
图5为基于GC-MS测定的藻株Calothrixsp.NIES-2101的脂肪烃组成和特性。Fig. 5 is the aliphatic hydrocarbon composition and characteristics of algae strain Calothrixsp.NIES-2101 determined based on GC-MS.
图6为基于GC-MS测定的藻株Scytonemasp.NIES-2130的脂肪烃组成和特性。Fig. 6 is the aliphatic hydrocarbon composition and characteristics of algae strain Scytonemasp.NIES-2130 determined based on GC-MS.
图7为重组载体pTZ60的基本结构。重组载体pTZ60是以389-1/2为引物,以NostoccalcicolaFACHB389基因组DNA为模板,PCR扩增出2065bp片段,克隆入pEASY-blunt载体,转化E.coliTrans1-T1噬菌体抗性感受态细胞而获得。Figure 7 is the basic structure of the recombinant vector pTZ60. The recombinant vector pTZ60 is obtained by using 389-1/2 as a primer and NostoccalcicolaFACHB389 genomic DNA as a template to amplify a 2065bp fragment by PCR, clone it into the pEASY-blunt vector, and transform it into E.coliTrans1-T1 phage-resistant competent cells.
图8为重组载体pTZ61的基本结构。重组载体pTZ61是以30-1/2为引物,以Leptolyngbyasp.NIES-30基因组DNA为模板,PCR扩增出1949bp片段,克隆入pEASY-blunt载体,转化E.coliTrans1-T1噬菌体抗性感受态细胞而获得。Figure 8 is the basic structure of the recombinant vector pTZ61. The recombinant vector pTZ61 uses 30-1/2 as a primer and Leptolyngbyasp.NIES-30 genomic DNA as a template to amplify a 1949bp fragment by PCR, clone it into pEASY-blunt vector, and transform E.coliTrans1-T1 phage-resistant competent cells And get.
图9为重组载体pTZ62的基本结构。重组载体pTZ62是以2119-1/2为引物,以PhormidiumambiguumNIES-2119基因组DNA为模板,PCR扩增出1914bp片段,克隆入pEASY-blunt载体,转化E.coliTrans1-T1噬菌体抗性感受态细胞而获得。Figure 9 shows the basic structure of the recombinant vector pTZ62. The recombinant vector pTZ62 is obtained by using 2119-1/2 as a primer and PhormidiumambiguumNIES-2119 genomic DNA as a template to amplify a 1914bp fragment by PCR, clone it into pEASY-blunt vector, and transform E.coliTrans1-T1 phage-resistant competent cells .
图10为重组载体pTZ63的基本结构。重组载体pTZ63是以1031-1/2为引物,以ChroogloeocystissiderophilaNIES-1031基因组DNA为模板,PCR扩增出1911bp片段,克隆入pEASY-blunt载体,转化E.coliTrans1-T1噬菌体抗性感受态细胞而获得。Figure 10 shows the basic structure of the recombinant vector pTZ63. The recombinant vector pTZ63 is obtained by using 1031-1/2 as a primer and ChroogloeocystissiderophilaNIES-1031 genomic DNA as a template to amplify a 1911bp fragment by PCR, clone it into pEASY-blunt vector, and transform E.coliTrans1-T1 phage-resistant competent cells .
图11为重组载体pTZ64的基本结构。重组载体pTZ64是以2101-1/2为引物,以Calothrixsp.NIES-2101基因组DNA为模板,PCR扩增出1831bp片段,克隆入pEASY-blunt载体,转化E.coliTrans1-T1噬菌体抗性感受态细胞而获得。Figure 11 shows the basic structure of the recombinant vector pTZ64. The recombinant vector pTZ64 uses 2101-1/2 as a primer and Calothrixsp.NIES-2101 genomic DNA as a template to amplify a 1831bp fragment by PCR, clone it into pEASY-blunt vector, and transform E.coliTrans1-T1 phage-resistant competent cells And get.
图12为重组载体pTZ65的基本结构。重组载体pTZ65是以2130-1/2为引物,以Scytonemasp.NIES-2130基因组DNA为模板,PCR扩增出1887bp片段,克隆入pEASY-blunt载体,转化E.coliTrans1-T1噬菌体抗性感受态细胞而获得。Figure 12 shows the basic structure of the recombinant vector pTZ65. The recombinant vector pTZ65 uses 2130-1/2 as a primer and Scytonemasp.NIES-2130 genomic DNA as a template to amplify a 1887bp fragment by PCR, clone it into pEASY-blunt vector, and transform E.coliTrans1-T1 phage-resistant competent cells And get.
图13为重组载体pTZ68的基本结构。以BamHI和XhoI酶切pTZ60并回收NostoccalcicolaFACHB389的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接构建获得重组质粒pTZ68。Figure 13 is the basic structure of the recombinant vector pTZ68. pTZ60 was digested with BamHI and XhoI and the hydrocarbon-producing gene fragment ado-aar of NostoccalcicolaFACHB389 was recovered, pET21b was digested with BamHI and XhoI and the vector part was recovered, and the recombinant plasmid pTZ68 was constructed by ligation of the two.
图14为重组载体pTZ69的基本结构。以BamHI和XhoI酶切pTZ61并回收Leptolyngbyasp.NIES-30的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接构建获得重组质粒pTZ69。Figure 14 is the basic structure of the recombinant vector pTZ69. pTZ61 was digested with BamHI and XhoI and the hydrocarbon-producing gene fragment ado-aar of Leptolyngbyasp.NIES-30 was recovered, pET21b was digested with BamHI and XhoI and the vector part was recovered, and the recombinant plasmid pTZ69 was obtained by ligation of the two.
图15为重组载体pTZ70的基本结构。以BamHI和XhoI酶切pTZ62并回收PhormidiumambiguumNIES-2119的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接构建获得重组质粒pTZ70。Figure 15 is the basic structure of the recombinant vector pTZ70. pTZ62 was digested with BamHI and XhoI and the hydrocarbon-producing gene fragment ado-aar of PhormidiumambiguumNIES-2119 was recovered, pET21b was digested with BamHI and XhoI and the vector part was recovered, and the recombinant plasmid pTZ70 was constructed by ligation of the two.
图16为重组载体pTZ71的基本结构。以BamHI和XhoI酶切pTZ63并回收ChroogloeocystissiderophilaNIES-1031的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接构建获得重组质粒pTZ71。Figure 16 shows the basic structure of the recombinant vector pTZ71. pTZ63 was digested with BamHI and XhoI and the hydrocarbon-producing gene fragment ado-aar of ChroogloeocystissiderophilaNIES-1031 was recovered, pET21b was digested with BamHI and XhoI and the vector part was recovered, and the recombinant plasmid pTZ71 was obtained by ligation of the two.
图17为重组载体pTZ72的基本结构。以BamHI和NotI酶切pTZ64并回收Calothrixsp.NIES-2101的产烃基因片段ado-aar,以BamHI和NotI酶切pET21b并回收载体部分,两者连接构建获得重组质粒pTZ72。Figure 17 shows the basic structure of the recombinant vector pTZ72. Digest pTZ64 with BamHI and NotI and recover the hydrocarbon-producing gene fragment ado-aar of Calothrixsp.
图18为重组载体pTZ73的基本结构。以BamHI和XhoI酶切pTZ65并回收Scytonemasp.NIES-2130的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接构建获得重组质粒pTZ73。Figure 18 is the basic structure of the recombinant vector pTZ73. pTZ65 was digested with BamHI and XhoI and the hydrocarbon-producing gene fragment ado-aar of Scytonemasp.NIES-2130 was recovered, pET21b was digested with BamHI and XhoI and the vector part was recovered, and the recombinant plasmid pTZ73 was obtained by ligation of the two.
图19为重组载体pTZ66的基本结构。以NdeI酶切pTZ60补平,再以XhoI酶切并回收NostoccalcicolaFACHB389的产烃基因片段ado-aar,克隆入经相同限制性内切酶处理的pXX47中,构建获得重组质粒pTZ66。Figure 19 shows the basic structure of the recombinant vector pTZ66. pTZ60 was digested with NdeI to make up the level, and then digested with XhoI to recover the hydrocarbon-producing gene fragment ado-aar of NostoccalcicolaFACHB389, cloned into pXX47 treated with the same restriction endonuclease, and constructed the recombinant plasmid pTZ66.
图20为基于GC-MS测定的产烃基因工程蓝细菌ZT187的脂肪烃组成和特性。Fig. 20 is the aliphatic hydrocarbon composition and characteristics of the hydrocarbon-producing genetically engineered cyanobacteria ZT187 determined based on GC-MS.
图21为基因工程蓝细菌ZT187的脂肪烃产量分析。Figure 21 is the analysis of the aliphatic hydrocarbon production of the genetically engineered cyanobacteria ZT187.
序列表信息:Sequence listing information:
SEQIDNO:1为NostoccalcicolaFACHB389的脂肪醛脱甲酰基加氧酶编码基因ado的序列。SEQ ID NO: 1 is the sequence of the gene ado encoding fatty aldehyde deformyloxygenase of Nostoccalcicola FACHB389.
SEQIDNO:2为NostoccalcicolaFACHB389的脂酰ACP还原酶编码基因aar的序列。SEQ ID NO: 2 is the sequence of the acyl-ACP reductase coding gene aar of Nostoccalcicola FACHB389.
SEQIDNO:3为Leptolyngbyasp.NIES-30的脂肪醛脱甲酰基加氧酶编码基因ado的序列。SEQ ID NO: 3 is the sequence of the gene ado encoding fatty aldehyde deformyloxygenase of Leptolyngbyasp.NIES-30.
SEQIDNO:4为Leptolyngbyasp.NIES-30的脂酰ACP还原酶编码基因aar的序列。SEQ ID NO: 4 is the sequence of the acyl-ACP reductase coding gene aar of Leptolyngbyasp.NIES-30.
SEQIDNO:5为PhormidiumambiguumNIES-2119的脂肪醛脱甲酰基加氧酶编码基因ado的序列。SEQ ID NO: 5 is the sequence of the gene ado encoding fatty aldehyde deformyloxygenase of Phormidium ambiguum NIES-2119.
SEQIDNO:6为PhormidiumambiguumNIES-2119的脂酰ACP还原酶编码基因aar的序列。SEQ ID NO: 6 is the sequence of the acyl-ACP reductase coding gene aar of Phormidium ambiguum NIES-2119.
SEQIDNO:7为ChroogloeocystissiderophilaNIES-1031的脂肪醛脱甲酰基加氧酶编码基因ado的序列。SEQ ID NO: 7 is the sequence of the gene ado encoding fatty aldehyde deformyloxygenase of ChroogloeocystissiderophilaNIES-1031.
SEQIDNO:8为ChroogloeocystissiderophilaNIES-1031的脂酰ACP还原酶编码基因aar的序列。SEQ ID NO: 8 is the sequence of the acyl-ACP reductase coding gene aar of ChroogloeocystissiderophilaNIES-1031.
SEQIDNO:9为Calothrixsp.NIES-2101的脂肪醛脱甲酰基加氧酶编码基因ado的序列。SEQ ID NO: 9 is the sequence of ado, the fatty aldehyde deformyloxygenase encoding gene of Calothrixsp.NIES-2101.
SEQIDNO:10为Calothrixsp.NIES-2101的脂酰ACP还原酶编码基因aar的序列。SEQ ID NO: 10 is the sequence of the acyl-ACP reductase coding gene aar of Calothrixsp.NIES-2101.
SEQIDNO:11为Scytonemasp.NIES-2130的脂肪醛脱甲酰基加氧酶编码基因ado的序列。SEQ ID NO: 11 is the sequence of the gene ado encoding fatty aldehyde deformyloxygenase of Scytonemasp.NIES-2130.
SEQIDNO:12为Scytonemasp.NIES-2130的脂酰ACP还原酶编码基因aar的序列。SEQ ID NO: 12 is the sequence of the fatty acyl-ACP reductase coding gene aar of Scytonemasp.NIES-2130.
SEQIDNO:13为引物389F的核苷酸序列。SEQ ID NO: 13 is the nucleotide sequence of primer 389F.
SEQIDNO:14为引物389R的核苷酸序列。SEQ ID NO: 14 is the nucleotide sequence of primer 389R.
SEQIDNO:15为引物30F的核苷酸序列。SEQ ID NO: 15 is the nucleotide sequence of primer 30F.
SEQIDNO:16为引物30R的核苷酸序列。SEQ ID NO: 16 is the nucleotide sequence of primer 30R.
SEQIDNO:17为引物2119F的核苷酸序列。SEQ ID NO: 17 is the nucleotide sequence of primer 2119F.
SEQIDNO:18为引物2119R的核苷酸序列。SEQ ID NO: 18 is the nucleotide sequence of primer 2119R.
SEQIDNO:19为引物1031F的核苷酸序列。SEQ ID NO: 19 is the nucleotide sequence of primer 1031F.
SEQIDNO:20为引物1031R的核苷酸序列。SEQ ID NO: 20 is the nucleotide sequence of primer 1031R.
SEQIDNO:21为引物2101F的核苷酸序列。SEQ ID NO: 21 is the nucleotide sequence of primer 2101F.
SEQIDNO:22为引物2101R的核苷酸序列。SEQ ID NO: 22 is the nucleotide sequence of primer 2101R.
SEQIDNO:23为引物2130F的核苷酸序列。SEQ ID NO: 23 is the nucleotide sequence of primer 2130F.
SEQIDNO:24为引物2130R的核苷酸序列。SEQ ID NO: 24 is the nucleotide sequence of primer 2130R.
SEQIDNO:25为NostoccalcicolaFACHB389的ado-aar及其间隔序列。SEQ ID NO: 25 is the ado-aar of Nostoccalcicola FACHB389 and its spacer sequence.
SEQIDNO:26为Leptolyngbyasp.NIES-30的ado-aar及其间隔序列。SEQ ID NO: 26 is the ado-aar of Leptolyngbyasp.NIES-30 and its spacer sequence.
SEQIDNO:27为PhormidiumambiguumNIES-2119的ado-aar及其间隔序列。SEQ ID NO: 27 is the ado-aar of Phormidium ambiguum NIES-2119 and its spacer sequence.
SEQIDNO:28为ChroogloeocystissiderophilaNIES-1031的及其间隔序列。SEQ ID NO: 28 is Chroogloeocystissiderophila NIES-1031 and its spacer sequence.
SEQIDNO:29为Calothrixsp.NIES-2101的ado-aar及其间隔序列。SEQ ID NO: 29 is the ado-aar of Calothrixsp.NIES-2101 and its spacer sequence.
SEQIDNO:30为Scytonemasp.NIES-2130的ado-aar及其间隔序列。SEQ ID NO: 30 is the ado-aar of Scytonemasp.NIES-2130 and its spacer sequence.
SEQIDNO:31为FischerellamajorNIES-592的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 31 is the amino acid sequence of the fatty acyl-ACP reductase of FischerellamajorNIES-592.
SEQIDNO:31为NostoccalcicolaFACHB389的脂肪醛脱甲酰基加氧酶的氨基酸序列。SEQ ID NO: 31 is the amino acid sequence of the fatty aldehyde deformyloxygenase of Nostoccalcicola FACHB389.
SEQIDNO:32为NostoccalcicolaFACHB389的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 32 is the amino acid sequence of the fatty acyl-ACP reductase of Nostoccalcicola FACHB389.
SEQIDNO:33为Leptolyngbyasp.NIES-30的脂肪醛脱甲酰基加氧酶的氨基酸序列。SEQ ID NO: 33 is the amino acid sequence of the fatty aldehyde deformyloxygenase of Leptolyngbyasp.NIES-30.
SEQIDNO:34为Leptolyngbyasp.NIES-30的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 34 is the amino acid sequence of the fatty acyl-ACP reductase of Leptolyngbyasp.NIES-30.
SEQIDNO:35为PhormidiumambiguumNIES-2119的脂肪醛脱甲酰基加氧酶的氨基酸序列。SEQ ID NO: 35 is the amino acid sequence of the fatty aldehyde deformyloxygenase of Phormidium ambiguum NIES-2119.
SEQIDNO:36为PhormidiumambiguumNIES-2119的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 36 is the amino acid sequence of the fatty acyl-ACP reductase of Phormidium ambiguum NIES-2119.
SEQIDNO:37为ChroogloeocystissiderophilaNIES-1031的脂肪醛脱甲酰基加氧酶的氨基酸序列。SEQ ID NO: 37 is the amino acid sequence of the fatty aldehyde deformyloxygenase of Chroogloeocystissiderophila NIES-1031.
SEQIDNO:38为ChroogloeocystissiderophilaNIES-1031的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 38 is the amino acid sequence of the fatty acyl-ACP reductase of Chroogloeocystissiderophila NIES-1031.
SEQIDNO:39为Calothrixsp.NIES-2101的脂肪醛脱甲酰基加氧酶的氨基酸序列。SEQ ID NO: 39 is the amino acid sequence of the fatty aldehyde deformyloxygenase of Calothrix sp. NIES-2101.
SEQIDNO:40为Calothrixsp.NIES-2101的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 40 is the amino acid sequence of the fatty acyl-ACP reductase of Calothrixsp.NIES-2101.
SEQIDNO:41为Scytonemasp.NIES-2130的脂肪醛脱甲酰基加氧酶的氨基酸序列。SEQ ID NO: 41 is the amino acid sequence of the fatty aldehyde deformyloxygenase of Scytonemasp.NIES-2130.
SEQIDNO:42为Scytonemasp.NIES-2130的脂酰ACP还原酶的氨基酸序列。SEQ ID NO: 42 is the amino acid sequence of the fatty acyl-ACP reductase of Scytonemasp.NIES-2130.
SEQIDNO:43为引物ado-1的核苷酸序列。SEQ ID NO: 43 is the nucleotide sequence of primer ado-1.
SEQIDNO:44为引物ado-2的核苷酸序列。SEQ ID NO: 44 is the nucleotide sequence of primer ado-2.
SEQIDNO:45为引物aar-1的核苷酸序列。SEQ ID NO: 45 is the nucleotide sequence of primer aar-1.
SEQIDNO:46为引物aar-2的核苷酸序列。SEQ ID NO: 46 is the nucleotide sequence of primer aar-2.
具体实施方式detailed description
下面将结合实施例对本发明的实施方案进行详细描述。本文所述实施例是以说明性而非限制性形式提供。本领域技术人员将会理解,可以改变或修改多个非关键参数而获得相似性的结果。Embodiments of the present invention will be described in detail below in conjunction with examples. The examples described herein are provided by way of illustration and not limitation. Those skilled in the art will appreciate that a number of non-critical parameters can be changed or modified to obtain similar results.
相关术语related terms
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的蓝细菌培养、分子生物学、分析化学实验操作步骤均为相应领域内广泛使用的常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。In the present invention, unless otherwise specified, the scientific and technical terms used herein have the meanings commonly understood by those skilled in the art. Moreover, the experimental operation steps of cyanobacteria culture, molecular biology, and analytical chemistry used in this paper are all routine steps widely used in the corresponding fields. Meanwhile, in order to better understand the present invention, definitions and explanations of related terms are provided below.
如本文所用,“蓝细菌(Cyanobacterium)”是一类光合自养的原核微生物,其能够利用太阳能,固定二氧化碳。蓝细菌也称为蓝藻。在本发明中,“蓝细菌”和“蓝藻”可互换使用。As used herein, "Cyanobacterium" is a class of photoautotrophic prokaryotic microorganisms capable of harnessing solar energy to fix carbon dioxide. Cyanobacteria are also known as cyanobacteria. In the present invention, "cyanobacteria" and "cyanobacteria" are used interchangeably.
如本文所用,“种质资源(Germplasmresources)”是一切具有一定种质或基因并能繁殖的生物类型的总称。种质资源又称遗传资源。包括但不限于:古老的地方品种、新培育的推广品种、重要的遗传材料、野生近缘植物,微生物等等。As used herein, "germplasm resources (Germplasm resources)" is a general term for all biological types that have certain germplasm or genes and are capable of reproduction. Germplasm resources are also called genetic resources. Including but not limited to: ancient local varieties, newly cultivated promotion varieties, important genetic materials, wild relatives, microorganisms, etc.
如本文所用,“脂肪烃”是具有脂肪族化合物基本属性的碳氢化合物。分子中碳原子间连结成链状的碳架,两端张开而不成环的烃,叫做开链烃,简称链烃。因为脂肪具有这种结构,所以也叫做脂链烃。有些环烃在性质上不同于芳香烃,而十分类似脂链烃,这类环烃叫脂环烃。这样,脂肪烃便成为除芳香烃以外的所有烃的总称。As used herein, an "aliphatic hydrocarbon" is a hydrocarbon having the basic attributes of an aliphatic compound. The carbon atoms in the molecule are connected to form a chain-like carbon frame, and the hydrocarbons whose two ends are opened without forming a ring are called open-chain hydrocarbons, or chain hydrocarbons for short. Because fats have this structure, they are also called aliphatic chain hydrocarbons. Some cyclic hydrocarbons are different from aromatic hydrocarbons in nature, but very similar to aliphatic chain hydrocarbons. Such cyclic hydrocarbons are called alicyclic hydrocarbons. In this way, aliphatic hydrocarbons become the general term for all hydrocarbons except aromatic hydrocarbons.
如本文所用,“酰基载体蛋白(acylcarrierprotein,ACP)”一般缩写为ACP。从头合成脂肪酸,是在含有多种酶的复合体的脂肪酸合成系统的催化下进行的,而在它的酰基缩合的阶段,酰基CoA不是作为直接底物,而是被转移至复合体中的酰基载体蛋白起反应的。ACP在动物或酵母中不易从酶复合体解离出来,但在大肠杆菌则可被分离,分子量为8847道尔顿,由77个氨基酸残基组成。4′-磷酸泛酸巯基乙胺与蛋白质部分的丝氨酸以脂键结合ACP的生成如下:辅酶A的4′-磷酸泛酰巯基乙胺由酶的反应转移至脱辅基的ACP。As used herein, "acylcarrier protein (ACP)" is generally abbreviated as ACP. The de novo synthesis of fatty acids is catalyzed by the fatty acid synthesis system of a complex containing multiple enzymes, and in the stage of its acyl condensation, the acyl CoA is not used as a direct substrate, but is transferred to the acyl group in the complex The carrier protein is reactive. ACP is not easily dissociated from the enzyme complex in animals or yeast, but can be separated in Escherichia coli, with a molecular weight of 8847 Daltons and composed of 77 amino acid residues. The formation of 4'-phosphopantethein and serine in the protein part is lipid-bonded to ACP as follows: 4'-phosphopantethein of coenzyme A is transferred to apo-ACP by the enzyme reaction.
如本文所用,“脂酰ACP还原酶(Fattyacyl-ACPreductase,AAR)”是蓝细菌脂肪烃合成途径中的一个关键酶,催化脂酰ACP转化为脂肪醛。编码蓝细菌脂酰ACP还原酶的基因是本领域公知的,包括但不限于:来源于蓝细菌FischerellamajorNIES-592,NostoccalcicolaFACHB389,Leptolyngbyasp.NIES-30,PhormidiumambiguumNIES-2119,ChroogloeocystissiderophilaNIES-1031,Calothrixsp.NIES-2101和Scytonemasp.NIES-2130的脂酰ACP还原酶。As used herein, "Fattyacyl-ACPreductase (AAR)" is a key enzyme in the aliphatic hydrocarbon synthesis pathway of cyanobacteria, which catalyzes the conversion of fatty acyl-ACP into fatty aldehyde. Genes encoding cyanobacterial fatty acyl-ACP reductase are well known in the art, including but not limited to: derived from cyanobacteria FischerellamajorNIES-592, NostoccalcicolaFACHB389, Leptolyngbyasp.NIES-30, PhormidiumambiguumNIES-2119, ChroogloeocystissiderophilaNIES-1031, Calothrixsp.NIES-2101 and Scytonemasp. NIES-2130 acyl-ACP reductase.
如本文所用,“脂肪醛脱甲酰基加氧酶(Fattyaldehydedeformylatingoxygenase,ADO)”是蓝细菌脂肪烃合成途径中的一个关键酶,催化脂肪醛转化为脂肪烃,属于类铁蛋白超家族。编码蓝细菌脂肪醛脱甲酰基加氧酶的基因是本领域公知的,包括但不限于:来源于蓝细菌FischerellamajorNIES-592,NostoccalcicolaFACHB389,Leptolyngbyasp.NIES-30,PhormidiumambiguumNIES-2119,ChroogloeocystissiderophilaNIES-1031,Calothrixsp.NIES-2101和Scytonemasp.NIES-2130的脂肪醛脱甲酰基加氧酶。As used herein, "Fattyaldehydedeformylatingoxygenase (ADO)" is a key enzyme in the aliphatic hydrocarbon synthesis pathway of cyanobacteria, which catalyzes the conversion of fatty aldehydes into aliphatic hydrocarbons, and belongs to the ferritin-like protein superfamily. Genes encoding cyanobacteria fatty aldehyde deformyloxygenase are well known in the art, including but not limited to: derived from cyanobacteria FischerellamajorNIES-592, NostoccalcicolaFACHB389, Leptolyngbyasp.NIES-30, PhormidiumambiguumNIES-2119, ChroogloeocystissiderophilaNIES-1031, Calothrixsp. Fatty aldehyde deformyloxygenases of NIES-2101 and Scytonemasp.NIES-2130.
如本文所用,“载体(vector)”是指能够将DNA片段(例如,目的基因)插入其中从而允许将DNA(例如,目的基因)转移到受者细胞中的一种核酸运载工具。载体可以通过转化,转导或者转染导入宿主细胞,使其携带的DNA片段在宿主细胞中获得表达。载体是本领域技术人员公知的,包括但不限于:质粒;噬菌体;柯斯质粒等等。As used herein, "vector" refers to a nucleic acid delivery vehicle into which a DNA segment (eg, a gene of interest) can be inserted, thereby allowing the DNA (eg, a gene of interest) to be transferred into a recipient cell. The vector can be introduced into host cells by transformation, transduction or transfection, so that the DNA fragments it carries can be expressed in the host cells. Vectors are well known to those skilled in the art, including but not limited to: plasmids; bacteriophages; cosmids and the like.
“同一性”或“同一性百分比”是指两个氨基酸序列之间或两个核酸序列之间的序列同一性。为确定两个氨基酸序列或两个核酸的同一性百分数,以最佳比较目的对序列进行比对。两个序列之间的同一性百分比是由这些序列共有的相同位置的数目的函数(即,同一性百分数=相同位置的数目/位置的总数(例如,重叠位置)×100)。例如,“同一性百分比”通过下列方式来计算:在比较窗中比较两个经最佳比对的序列,测定在两个序列中出现相同核苷酸碱基或相同氨基酸残基的位置的数目以产生匹配位置的数目,将匹配位置的数目除以比较窗中位置的总数目(即,窗的大小),并且将结果乘以100从而产生序列同一性百分比。用于比较的序列的最佳比对可以通过下述来进行:例如,Smith和Waterman的局部同源性算法(SmithandWaterman1981);Needleman和Wunsch的同源性比对算法(Needlema.SbandWunsch1970);Pearson和Lipman的相似性搜索方法(PearsonandLipman1988);这些算法的计算机化实施(例如,WisconsinGeneticsSoftwarePackage,GeneticsComputerGroup,575ScienceDr.,Madison,Wis.中的GAP、BESTFIT、FASTA、BLASTP、BLASTN和TFASTA)。"Identity" or "percent identity" refers to the sequence identity between two amino acid sequences or between two nucleic acid sequences. To determine the percent identity of two amino acid sequences or two nucleic acids, the sequences are aligned for optimal comparison purposes. The percent identity between two sequences is a function of the number of identical positions shared by the sequences (ie, percent identity = number of identical positions/total number of positions (eg, overlapping positions) x 100). For example, "percent identity" is calculated by comparing two optimally aligned sequences over a comparison window and determining the number of positions where the same nucleotide base or the same amino acid residue occurs in the two sequences To generate the number of matching positions, the number of matching positions is divided by the total number of positions in the comparison window (ie, the size of the window), and the result is multiplied by 100 to generate the percent sequence identity. Optimal alignment of sequences for comparison can be performed by, for example, the local homology algorithm of Smith and Waterman (Smithand Waterman 1981); the homology alignment algorithm of Needleman and Wunsch (Needlema. Sband Wunsch 1970); Pearson and Lipman's Similarity Search Method (Pearson and Lipman 1988); computerized implementations of these algorithms (eg, GAP, BESTFIT, FASTA, BLASTP, BLASTN, and TFASTA in Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.).
本发明的实施方案所涉及的同一性百分比包括至少大约50%,或至少大约60%,或至少大约70%,或至少大约75%,或至少大约80%,或至少大约85%,或至少大约90%,或更高,例如大约95%,或大约96%,或大约97%,或大约98%,或大约99%,例如至少大约50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、100%。Percentages of identity contemplated by embodiments of the present invention include at least about 50%, or at least about 60%, or at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%, or at least about 90%, or higher, such as about 95%, or about 96%, or about 97%, or about 98%, or about 99%, for example at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71% , 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88 %, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%.
实施例1:蓝细菌的培养及生物量测定Embodiment 1: the cultivation and biomass determination of cyanobacteria
蓝细菌的培养和生理指标测定:Cultivation and physiological index determination of cyanobacteria:
所述表1蓝细菌菌株采用通气培养方式培养,藻株接种至装有300mLBG11培养基的500mL三角瓶中,在30℃,30μE.m-2.s-1持续光照下培养8至10天。为测定其生长量,将10ml充分混匀的蓝细菌悬液,经0.45μm预先称重的硝酸纤维素膜(ddH2O水洗三遍,110℃高温烘干)抽滤后,置110℃,烘干24小时,并称量其干重。最后以菌体干重作为参考指标衡量其生物量。菌株及其来源如表1所示。The cyanobacteria strains in Table 1 were cultured by aeration culture, and the algae strains were inoculated into 500 mL Erlenmeyer flasks filled with 300 mL of BG11 medium, and cultured at 30°C and 30 μE.m -2 .s -1 under continuous light for 8 to 10 days. In order to measure the growth amount, 10ml of the well-mixed cyanobacteria suspension was suction-filtered through a 0.45μm pre-weighed nitrocellulose membrane (washed three times with ddH 2 O, dried at 110°C), and placed at 110°C. Dry it for 24 hours and measure its dry weight. Finally, the dry weight of the bacteria was used as a reference index to measure the biomass. The strains and their sources are shown in Table 1.
表1使用的藻(菌)株及其来源Algae (bacteria) strains used in Table 1 and their sources
aFACHB:FreshwaterAlgalCultureCollectionofTheInstituteOfHydrobiology(中科院水生生物研究所淡水藻种库) a FACHB: FreshwaterAlgalCultureCollectionofTheInstituteOfHydrobiology
bNIES-MCC:TheNationalInstituteforEnvironmentalStudiesofJapan-MicrobialCultureCollection(日本环境科学研究院微生物研究所) b NIES-MCC: The National Institute for Environmental Studies of Japan-MicrobialCultureCollection (Institute of Microbial Culture, Japan Academy of Environmental Sciences)
实施例2:蓝细菌的脂肪烃组成及含量测定Embodiment 2: the aliphatic hydrocarbon composition and content determination of cyanobacteria
各收集上述200mL处于平台期、且充分混匀的蓝细菌(表1中),用10mLddH2O分别重悬上述蓝细菌,而后置于冰水浴上,超声波破碎10min(10son,10soff)。破碎后分别加入30μg正二十烷烃作为内标,混匀后加入10mL氯仿:甲醇(V:V为2:1),剧烈震荡混匀1-2小时后。然后6,000g离心10min,将下层有机相转移至新的试管中,置55℃下氮气吹干。加入1ml正己烷溶解所提脂肪烃,然后经0.22μm滤膜过滤,转移至2ml气相小瓶中。采用Agilent7890A气相色谱-质谱联用仪(GC-MS)测定脂肪烃,GC-MS测试程序为:40℃1min;以5℃min-1升至200℃;以25℃min-1至240℃;240℃维持15min。色谱柱为HP-INNOWax(30m×250μm×0.25μm);载气是氦气,气体流速为1mL/min,进样量为1μL,进样口温度为250℃。各藻株脂肪烃GC-MS分析图谱如图1至图6所示,脂肪烃组成及含量总结于表2中。Collect 200 mL of the above-mentioned cyanobacteria in the plateau stage and well mixed (in Table 1), resuspend the above-mentioned cyanobacteria in 10 mL of ddH 2 O, place them on an ice-water bath, and ultrasonically disrupt them for 10 min (10son, 10soff). After crushing, add 30 μg of n-eicosane as an internal standard, and after mixing, add 10 mL of chloroform:methanol (V:V is 2:1), shake and mix vigorously for 1-2 hours. Then centrifuge at 6,000 g for 10 min, transfer the lower organic phase to a new test tube, and dry it with nitrogen at 55°C. Add 1ml of n-hexane to dissolve the extracted aliphatic hydrocarbons, then filter through a 0.22μm membrane filter, and transfer to a 2ml gas phase vial. Use Agilent7890A gas chromatography-mass spectrometry (GC-MS) to measure aliphatic hydrocarbons. The GC-MS test program is: 40°C for 1min; 5°C min-1 to 200°C; 25°C min-1 to 240°C; Maintain at 240°C for 15 minutes. The chromatographic column is HP-INNOWax (30m×250μm×0.25μm); the carrier gas is helium, the gas flow rate is 1mL/min, the injection volume is 1μL, and the inlet temperature is 250°C. The GC-MS analysis patterns of aliphatic hydrocarbons of each algae strain are shown in Figures 1 to 6, and the composition and content of aliphatic hydrocarbons are summarized in Table 2.
表2各藻株脂肪烃组成及产量(mg/gDCW)Table 2 The composition and yield of aliphatic hydrocarbons in each algal strain (mg/gDCW)
a7-Methylheptadecane a 7-Methylheptadecane
b4-Ethyltetradecane b 4-Ethyltetradecane
c可能为5-Methylpetadecane,6-Methylpetadecane,7-Methylpetadecane,4-Ethyltetradecane c may be 5-Methylpetadecane, 6-Methylpetadecane, 7-Methylpetadecane, 4-Ethyltetradecane
dN.D:未检测到(Notdetectable) d ND: Not detected (Notdetectable)
实施例3:蓝细菌基因组测序及产烃关键基因ado-aar的序列检索Example 3: Sequencing of the cyanobacteria genome and sequence retrieval of the key gene ado-aar for hydrocarbon production
(1)蓝细菌基因组的提取步骤如下:(1) The extraction steps of the cyanobacteria genome are as follows:
收集50ml左右充分混匀的各菌液,5,000g离心收集,用1.8ml溶液A(50mMTris-Cl+50mMNa2EDTA+1MNaCl)重悬,然后用2ml组织匀浆器适度匀浆,将丝状细胞匀浆分散至单细胞状态。Collect about 50ml of well-mixed bacterial solution, centrifuge at 5,000g, resuspend with 1.8ml solution A (50mM Tris-Cl+50mMNa 2 EDTA+1MNaCl), and then use a 2ml tissue homogenizer to properly homogenize the filamentous cells The homogenate was dispersed to a single cell state.
然后进行如下操作:将上述各蓝细菌和藻株的细胞悬液分装至6个Eppendorf管中(300μl/管),每管加入10%十二烷基肌氨酸钠水溶液(Sarkosyl溶液)至终浓度为0.1%,然后在4℃下保存1hr,以10,000g离心15min,沉淀细胞;用1ml溶液A洗涤细胞两次;Then proceed as follows: the cell suspension of each of the above-mentioned cyanobacteria and algal strains is divided into 6 Eppendorf tubes (300 μl/tube), and 10% sodium lauryl sarcosine aqueous solution (Sarkosyl solution) is added to each tube. The final concentration is 0.1%, and then stored at 4°C for 1 hr, centrifuged at 10,000g for 15 min to pellet the cells; wash the cells twice with 1ml solution A;
洗涤后重新将蓝细菌和藻株细胞分别悬于250μl(缓冲液A+25%蔗糖)的溶液中,室温放置1hr;加入溶菌酶至重悬溶液(终浓度10-20mg/ml),并于37℃保温15min,用750μl缓冲液B(10mMTris-Cl+50mMNa2EDTA)稀释细胞悬液,并再于37℃保温30min;加入10%SDS至终浓度为1%,小心搅匀,继续保温1hr,直至悬液变粘,加入蛋白酶K至悬液中(终浓度100μg/ml),再保温2hr;用酚/氯仿(1:1)抽提一次,再用氯仿抽提一次,离心吸上清后,用2倍体积的无水乙醇沉淀核酸,-20℃过夜;以12,000rpm离心沉淀的DNA,然后将沉淀溶于TE缓冲液中,用RNase处理溶液,然后用酚/氯仿(1:1)抽提一次,再用氯仿抽提一次,加入5MNaCl至终浓度为1M,再用管中液体2倍体积的冰冷乙醇沉淀DNA,-20℃过夜,再次离心沉淀DNA,并将其溶于100μlTE缓冲液中。After washing, resuspend the cyanobacteria and algae cells in 250 μl (buffer A+25% sucrose) solution, and place at room temperature for 1 hr; add lysozyme to the resuspension solution (final concentration 10-20 mg/ml), and Incubate at 37°C for 15min, dilute the cell suspension with 750μl buffer B (10mM Tris-Cl+50mMNa2EDTA), and incubate at 37°C for 30min; add 10% SDS to a final concentration of 1%, stir carefully, and continue to incubate for 1hr until The suspension becomes viscous, add proteinase K to the suspension (final concentration 100 μg/ml), and keep warm for 2 hours; extract once with phenol/chloroform (1:1), then extract once with chloroform, centrifuge and suck the supernatant, Precipitate nucleic acid with 2 times the volume of absolute ethanol, overnight at -20°C; centrifuge the precipitated DNA at 12,000 rpm, then dissolve the precipitate in TE buffer, treat the solution with RNase, and then pump it with phenol/chloroform (1:1) Extract once, then extract once with chloroform, add 5M NaCl to a final concentration of 1M, then precipitate DNA with 2 times the volume of liquid in the tube with ice-cold ethanol, overnight at -20°C, centrifuge again to precipitate DNA, and dissolve it in 100 μl TE buffer middle.
(2)基因组测序:各菌株全基因组测序委托上海生工生物工程股份有限公司完成。(2) Genome sequencing: Whole genome sequencing of each strain was entrusted to Shanghai Sangon Bioengineering Co., Ltd. to complete.
(3)产烃关键基因ado-aar序列检索(3) Key gene ado-aar sequence search for hydrocarbon production
以蓝细菌产烃关键基因ado和aar特异的简并引物(SEQIDNO:43至SEQIDNO:46)检索蓝细菌NostoccalcicolaFACHB389,Leptolyngbyasp.NIES-30,PhormidiumambiguumNIES-2119,ChroogloeocystissiderophilaNIES-1031,Calothrixsp.NIES-2101或Scytonemasp.NIES-2130基因组草图,获得了上述各藻株的ado和aar。所得基因具有如SEQIDNO:1至SEQIDNO:12所示的序列。Retrieve the cyanobacteria NostoccalcicolaFACHB389, Leptolyngbyasp.NIES-30, PhormidiumambiguumNIES-2119, ChroogloeocystissiderophilaNIES-1031, Calothrixsp.NIES-2101 or Scytonemasp with the specific degenerate primers (SEQIDNO:43 to SEQIDNO:46) of the key genes of cyanobacteria hydrocarbon production ado and aar . The draft genome of NIES-2130 obtained the ado and aar of the above-mentioned algae strains. The resulting gene has the sequences shown in SEQ ID NO:1 to SEQ ID NO:12.
实施例4:蓝细菌产烃关键基因ado-aar的克隆Embodiment 4: Cloning of key gene ado-aar of cyanobacteria hydrocarbon production
(1)用于扩增ado-aar的引物的设计(1) Design of primers for amplifying ado-aar
因为已鉴定的所有蓝细菌中ado和aar均为相邻基因,所以采用同时克隆ado和aar的策略。针对实施例3确定的ado-aar序列,设计如SEQIDNO:13至SEQIDNO:24所示的引物序列,用于扩增所述藻株的产烃关键基因。Because ado and aar are adjacent genes in all identified cyanobacteria, the strategy of simultaneously cloning ado and aar was adopted. For the ado-aar sequence determined in Example 3, primer sequences as shown in SEQIDNO: 13 to SEQIDNO: 24 were designed to amplify the key genes for hydrocarbon production of the algal strain.
(2)PCR扩增及携带ado-aar序列重组质粒的构建(2) PCR amplification and construction of a recombinant plasmid carrying the ado-aar sequence
以引物389-1/2(SEQIDNO:13/14)扩增NostoccalcicolaFACHB389的基因组DNA,获得2065bp的片段,扩增产物克隆入pEASYBlunt载体(氨苄/卡那抗性),构建获得重组质粒pTZ60(如图7所示)。The genomic DNA of NostoccalcicolaFACHB389 was amplified with primer 389-1/2 (SEQIDNO: 13/14) to obtain a 2065bp fragment, and the amplified product was cloned into the pEASYBlunt vector (ampicillin/kanna resistance), and the recombinant plasmid pTZ60 (as shown in the figure) was constructed and obtained 7).
以引物30-1/2(SEQIDNO:15/16)扩增Leptolyngbyasp.NIES-30的基因组DNA,获得1949bp的片段,扩增产物克隆入pEASYBlunt载体(氨苄/卡那抗性),构建获得重组质粒pTZ61(如图8所示)。The genomic DNA of Leptolyngbyasp.NIES-30 was amplified with primer 30-1/2 (SEQIDNO: 15/16) to obtain a 1949bp fragment, and the amplified product was cloned into the pEASYBlunt vector (ampicillin/Kana resistance) to construct a recombinant plasmid pTZ61 (shown in Figure 8).
以引物2119-1/2(SEQIDNO:17/18)扩增PhormidiumambiguumNIES-2119的基因组DNA,获得1914bp的片段,扩增产物克隆入pEASYBlunt载体(氨苄/卡那抗性),构建获得重组质粒pTZ62(如图9所示)。The genomic DNA of PhormidiumambiguumNIES-2119 was amplified with primer 2119-1/2 (SEQIDNO:17/18) to obtain a 1914bp fragment, and the amplified product was cloned into the pEASYBlunt vector (ampicillin/kanna resistance) to construct the recombinant plasmid pTZ62 ( as shown in Figure 9).
以引物1031-1/2(SEQIDNO:19/20)扩增ChroogloeocystissiderophilaNIES-1031的基因组DNA,获得1911bp的片段,扩增产物克隆入pEASYBlunt载体(氨苄/卡那抗性),构建获得重组质粒pTZ63(如图10所示)。The genomic DNA of ChroogloeocystissiderophilaNIES-1031 was amplified with primer 1031-1/2 (SEQIDNO:19/20) to obtain a 1911bp fragment, and the amplified product was cloned into the pEASYBlunt vector (ampelin/Kana resistance) to construct the recombinant plasmid pTZ63 ( as shown in Figure 10).
以引物2101-1/2(SEQIDNO:21/22)扩增Calothrixsp.NIES-2101的基因组DNA,获得1831bp的片段,扩增产物克隆入pEASYBlunt载体(氨苄/卡那抗性),构建获得重组质粒pTZ64(如图11所示)。The genomic DNA of Calothrixsp.NIES-2101 was amplified with primer 2101-1/2 (SEQIDNO: 21/22) to obtain a 1831bp fragment, and the amplified product was cloned into the pEASYBlunt vector (ampelin/Kana resistance) to construct a recombinant plasmid pTZ64 (shown in Figure 11).
以引物2130-1/2(SEQIDNO:23/24)扩增Scytonemasp.NIES-2130的基因组DNA,获得1887bp的片段,扩增产物克隆入pEASYBlunt载体(氨苄/卡那抗性),构建获得重组质粒pTZ65(如图12所示)。The genomic DNA of Scytonemasp.NIES-2130 was amplified with primer 2130-1/2 (SEQIDNO:23/24) to obtain a 1887bp fragment, and the amplified product was cloned into the pEASYBlunt vector (ampelin/Kana resistance) to construct a recombinant plasmid pTZ65 (shown in Figure 12).
上述PCR均使用FastPfuFlyDNA聚合酶,扩增条件如下:The above PCRs all use FastPfuFly DNA polymerase, and the amplification conditions are as follows:
95℃,5min;(95℃,30sec,55℃,30sec,72℃,3min)30×;72℃,10min95°C, 5min; (95°C, 30sec, 55°C, 30sec, 72°C, 3min) 30×; 72°C, 10min
(3)大肠杆菌感受态制备及质粒的转化(3) Competent preparation of Escherichia coli and transformation of plasmid
1)大肠杆菌感受态细胞1) Competent cells of Escherichia coli
大肠杆菌感受态细胞(TransT1感受态)购自北京全式金生物技术有限公司Escherichia coli competent cells (TransT1 competent) were purchased from Beijing Quanshijin Biotechnology Co., Ltd.
2)重组质粒的转化2) Transformation of recombinant plasmids
取出一支-80℃保存的感受态细胞,置于冰中融化5min。Take out a competent cell stored at -80°C and put it on ice to thaw for 5 minutes.
向融化的感受态细胞中分别加入上述步骤(2)获得5-10μl不同扩增产物(如SEQIDNO:25至SEQIDNO:30所示)与pEASYBlunt载体的连接液,轻轻混匀,冰水浴中放置30min。Add 5-10 μl of different amplification products (as shown in SEQ ID NO: 25 to SEQ ID NO: 30) and pEASYBlunt carrier connection solution obtained in the above step (2) to the melted competent cells, mix gently, and place in an ice-water bath 30min.
42℃热激90秒,然后立即冰水浴2min。Heat shock at 42°C for 90 seconds, then immediately ice-water bath for 2 minutes.
加入900μlLB液体培养基,37℃、200rpm震荡复苏1小时。Add 900 μl LB liquid medium, shake and recover for 1 hour at 37°C and 200 rpm.
5000rpm离心3min,弃上清,沉淀重悬于100μlLB培养基中,涂布氨苄(50μg/mL)/卡那(50μg/mL)双抗固体平板。Centrifuge at 5000 rpm for 3 minutes, discard the supernatant, resuspend the pellet in 100 μl LB medium, and coat the ampicillin (50 μg/mL)/Kana (50 μg/mL) double antibody solid plate.
将平板倒置于37℃的培养箱里培养12-16小时后长出菌落。Place the plate upside down in an incubator at 37°C and incubate for 12-16 hours before colonies grow.
(4)以重组质粒pTZ60、pTZ61、pTZ62、pTZ63、pTZ64和pTZ65转化大肠杆菌TransT1感受态,即分别获得含有产烃基因的菌株ZT166、ZT167、ZT168、ZT169、ZT170和ZT171。(4) Transform Escherichia coli TransT1 competently with recombinant plasmids pTZ60, pTZ61, pTZ62, pTZ63, pTZ64 and pTZ65, that is, obtain strains ZT166, ZT167, ZT168, ZT169, ZT170 and ZT171 containing hydrocarbon-producing genes respectively.
实施例5:蓝细菌产烃关键基因ado-aar在大肠杆菌中的表达及产烃情况分析Example 5: Expression of key gene ado-aar in Escherichia coli and analysis of hydrocarbon production in cyanobacteria
(1)ado-aar表达载体的构建(1) Construction of ado-aar expression vector
以BamHI和XhoI酶切pTZ60并回收NostoccalcicolaFACHB389的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接转化大肠杆菌感受态细胞(TransT1感受态),构建获得重组质粒pTZ68(如图13所示)Digest pTZ60 with BamHI and XhoI and recover the hydrocarbon-producing gene fragment ado-aar of NostoccalcicolaFACHB389, digest pET21b with BamHI and XhoI and recover the vector part, connect the two to transform Escherichia coli competent cells (TransT1 competent), and construct a recombinant plasmid pTZ68 (as shown in Figure 13)
以BamHI和XhoI酶切pTZ61并回收Leptolyngbyasp.NIES-30的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接转化大肠杆菌感受态细胞(TransT1感受态),构建获得重组质粒pTZ69(如图14所示)Digest pTZ61 with BamHI and XhoI and recover the hydrocarbon-producing gene fragment ado-aar of Leptolyngbyasp.NIES-30, digest pET21b with BamHI and XhoI and recover the vector part, and connect the two to transform Escherichia coli competent cells (TransT1 competent), Construction obtains recombinant plasmid pTZ69 (as shown in Figure 14)
以BamHI和XhoI酶切pTZ62并回收PhormidiumambiguumNIES-2119的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接转化大肠杆菌感受态细胞(TransT1感受态),构建获得重组质粒pTZ70(如图15所示)Digest pTZ62 with BamHI and XhoI and recover the hydrocarbon-producing gene fragment ado-aar of PhormidiumambiguumNIES-2119, digest pET21b with BamHI and XhoI and recover the vector part, connect the two to transform Escherichia coli competent cells (TransT1 competent), and construct Recombinant plasmid pTZ70 (as shown in Figure 15)
以BamHI和XhoI酶切pTZ63并回收ChroogloeocystissiderophilaNIES-1031的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接转化大肠杆菌感受态细胞(TransT1感受态),构建获得重组质粒pTZ71(如图16所示)Digest pTZ63 with BamHI and XhoI and recover the hydrocarbon-producing gene fragment ado-aar of ChroogloeocystissiderophilaNIES-1031, digest pET21b with BamHI and XhoI and recover the vector part, connect the two to transform Escherichia coli competent cells (TransT1 competent), and construct Recombinant plasmid pTZ71 (as shown in Figure 16)
以BamHI和NotI酶切pTZ64并回收Calothrixsp.NIES-2101的产烃基因片段ado-aar,以BamHI和NotI酶切pET21b并回收载体部分,两者连接转化大肠杆菌感受态细胞(TransT1感受态),构建获得重组质粒pTZ72(如图17所示)Digest pTZ64 with BamHI and NotI and recover the hydrocarbon-producing gene fragment ado-aar of Calothrixsp. Construct and obtain recombinant plasmid pTZ72 (as shown in Figure 17)
以BamHI和XhoI酶切pTZ65并回收Scytonemasp.NIES-2130的产烃基因片段ado-aar,以BamHI和XhoI酶切pET21b并回收载体部分,两者连接转化大肠杆菌感受态细胞(TransT1感受态),构建获得重组质粒pTZ73(如图18所示)Digest pTZ65 with BamHI and XhoI and recover the hydrocarbon-producing gene fragment ado-aar of Scytonemasp.NIES-2130, digest pET21b with BamHI and XhoI and recover the vector part, and connect the two to transform Escherichia coli competent cells (TransT1 competent), Construct and obtain recombinant plasmid pTZ73 (as shown in Figure 18)
(2)ado-aar在大肠杆菌中的表达(2) Expression of ado-aar in Escherichia coli
宿主菌:大肠杆菌fadE为脂酰CoA脱氢酶的编码基因,fadE的敲除可使细胞积累脂酰CoA,有利于脂肪酸衍生物(例如脂肪酸乙酯、脂肪醇)的生成(Duanetal.2011)。因此,本发明ado-aar功能验证的相关实验选择以BL21(DE3)fadE突变株作为宿主细胞。以重组质粒pTZ68、pTZ69、pTZ70、pTZ71、pTZ72和pTZ73转化BL21(DE3)△fadE突变株,即分别获得基因工程产烃大肠杆菌菌株ZT181、ZT182、ZT183、ZT184、ZT185和ZT186。Host bacteria: Escherichia coli fadE is the coding gene of fatty acyl-CoA dehydrogenase. The knockout of fadE can make cells accumulate fatty acyl-CoA, which is beneficial to the production of fatty acid derivatives (such as fatty acid ethyl esters, fatty alcohols) (Duan et al.2011) . Therefore, the relevant experiments of ado-aar functional verification of the present invention are selected with BL21 (DE3) The fadE mutant was used as host cells. The BL21(DE3)△fadE mutant strains were transformed with the recombinant plasmids pTZ68, pTZ69, pTZ70, pTZ71, pTZ72 and pTZ73, and the genetically engineered hydrocarbon-producing Escherichia coli strains ZT181, ZT182, ZT183, ZT184, ZT185 and ZT186 were respectively obtained.
培养基:所用培养基为适合重组菌产烃的改良M9培养基,其具有如下成分:6g/LNa2HPO4,3g/LKH2PO4,0.5g/LNaCl,2g/LNH4Cl,0.25g/LMgSO4·7H2O,11mg/LCaCl2,27mg/LFeCl3·6H2O,2mg/LZnCl2·4H2O,2mg/LNa2MoO4·2H2O,1.9mg/LCuSO4·5H2O,0.5mg/LH3BO3,1mg/Lthiamine,200mMBis-Tris(pH7.25)和0.1%(v/v)Triton-X100。Medium: The medium used is an improved M9 medium suitable for hydrocarbon production by recombinant bacteria, which has the following components: 6g/LNa 2 HPO 4 , 3g/LKH 2 PO 4 , 0.5g/LNaCl, 2g/LNH 4 Cl, 0.25g /LMgSO 4 7H 2 O,11mg/LCaCl 2 ,27mg/LFeCl 3 6H 2 O,2mg/LZnCl 2 4H 2 O,2mg/LNa 2 MoO 4 2H 2 O,1.9mg/LCuSO 4 5H 2 O, 0.5 mg/LH 3 BO 3 , 1 mg/Lthiamine, 200 mM Bis-Tris (pH 7.25) and 0.1% (v/v) Triton-X100.
诱导及培养:将所构建的ZT181、ZT182、ZT183、ZT184、ZT185和ZT186菌株分别在接种于5mL液体改良M9培养基中(含50μg/mL氨苄青霉素),30℃,250rpm培养12h,而后按1:50(v/v)接种比例培养液转接至20mL改良M9培养基中(含50μg/mL氨苄青霉素),培养至对数期(OD600约为0.6~0.8)后,加入0.5mMIPTG诱导剂,30℃,250rpm培养24h,所得菌液用于脂肪烃提取。Induction and culture: Inoculate the constructed ZT181, ZT182, ZT183, ZT184, ZT185 and ZT186 strains in 5 mL liquid modified M9 medium (containing 50 μg/mL ampicillin), culture at 30 °C, 250 rpm for 12 h, and then press 1 : 50 (v/v) inoculum ratio culture solution was transferred to 20 mL of modified M9 medium (containing 50 μg/mL ampicillin), cultured to the logarithmic phase (OD 600 was about 0.6 to 0.8), and 0.5 mMIPTG inducer was added , 30°C, 250rpm cultured for 24h, the obtained bacterial liquid was used for the extraction of aliphatic hydrocarbons.
(3)基因工程大肠杆菌脂肪烃提取及产量分析(3) Extraction and yield analysis of genetically engineered Escherichia coli aliphatic hydrocarbons
取10mL处于平台期的上述各产烃基因工程大肠杆菌到20mL小烧杯中,置于冰水浴上,超声波破碎10min(10son,10soff)。破碎后分别加入50μg正二十烷烃作为内标,混匀后加入10mL氯仿:甲醇(V:V为2:1),剧烈震荡混匀1-2小时后。然后6,000g离心10min,将下层有机相转移至新的试管中,置55℃下氮气吹干。加入100μL正己烷溶解所提脂肪烃,然后经0.22μm滤膜过滤,转移至2ml气相小瓶中(内置200μL衬管)。采用Agilent7890A气相色谱-质谱联用仪(GC-MS)测定脂肪烃,GC-MS测试程序为:40℃1min;以5℃/min升至200℃;以25℃/min至240℃;240℃维持15min。色谱柱为HP-INNOWax(30m×250μm×0.25μm);载气是氦气,气体流速为1mL/min,进样量为1μL,进样口温度为250℃。各菌株脂肪烃组成及脂肪烃总产量总结于表3中。Take 10 mL of the above-mentioned hydrocarbon-producing genetically engineered Escherichia coli in the plateau stage into a 20 mL small beaker, place on an ice-water bath, and ultrasonically break for 10 min (10son, 10soff). After crushing, add 50 μg of n-eicosane as an internal standard, and after mixing, add 10 mL of chloroform:methanol (V:V is 2:1), shake and mix vigorously for 1-2 hours. Then centrifuge at 6,000 g for 10 min, transfer the lower organic phase to a new test tube, and dry it with nitrogen at 55°C. Add 100 μL of n-hexane to dissolve the extracted aliphatic hydrocarbons, then filter through a 0.22 μm filter membrane, and transfer to a 2 ml gas phase vial (built-in 200 μL liner). Use Agilent7890A gas chromatography-mass spectrometry (GC-MS) to measure aliphatic hydrocarbons. The GC-MS test program is: 40°C for 1min; 5°C/min to 200°C; 25°C/min to 240°C; 240°C Maintain for 15 minutes. The chromatographic column is HP-INNOWax (30m×250μm×0.25μm); the carrier gas is helium, the gas flow rate is 1mL/min, the injection volume is 1μL, and the inlet temperature is 250°C. The composition of aliphatic hydrocarbons and the total production of aliphatic hydrocarbons of each strain are summarized in Table 3.
表3.基因工程大肠杆菌产烃情况分析Table 3. Analysis of hydrocarbon production by genetically engineered Escherichia coli
上述结果证实本发明所公开的来源于NostoccalcicolaFACHB389,Leptolyngbyasp.NIES-30,PhormidiumambiguumNIES-2119,ChroogloeocystissiderophilaNIES-1031,Calothrixsp.NIES-2101或Scytonemasp.NIES-2130的aar和ado基因序列在大肠杆菌中均可以正常表达,使不能产烃的大肠杆菌获得脂肪烃合成能力。The above results confirm that the aar and ado gene sequences disclosed in the present invention derived from NostoccalcicolaFACHB389, Leptolyngbyasp.NIES-30, PhormidiumambiguumNIES-2119, ChroogloeocystissiderophilaNIES-1031, Calothrixsp.NIES-2101 or Scytonemasp.NIES-2130 can be normal in Escherichia coli Expression, so that Escherichia coli, which cannot produce hydrocarbons, acquires the ability to synthesize aliphatic hydrocarbons.
实施例6:NostoccalcicolaFACHB389脂肪烃合成关键基因在模式蓝细菌Synechocystissp.PCC6803的表达及产烃情况分析Example 6: Expression of NostoccalcicolaFACHB389 aliphatic hydrocarbon synthesis key gene in model cyanobacteria Synechocystissp.PCC6803 and analysis of hydrocarbon production
(1)ado-aar表达载体的构建(1) Construction of ado-aar expression vector
以NdeI酶切pTZ60补平,再以XhoI酶切并回收NostoccalcicolaFACHB389的产烃基因片段ado-aar,克隆入经相同限制性内切酶处理的pXX47(例如参见中国发明专利申请201310595856.3)(提供蓝细菌基因组中性位点整合平台、抗性筛选标记及强启动子)中,构建获得重组质粒pTZ66。Digest pTZ60 with NdeI to make up the level, and then digest with XhoI to recover the hydrocarbon-producing gene fragment ado-aar of NostoccalcicolaFACHB389, and clone it into pXX47 treated with the same restriction enzyme (for example, see Chinese invention patent application 201310595856.3) (provided by Cyanobacteria Genome neutral site integration platform, resistance selection marker and strong promoter), the recombinant plasmid pTZ66 was constructed.
(2)ado-aar在蓝细菌中的表达(2) Expression of ado-aar in cyanobacteria
宿主菌:Synechocystissp.PCC6803,以重组质粒pTZ66转化Synechocystissp.PCC6803获得基因工程产烃蓝细菌ZT187(壮观霉素抗性)。Host bacteria: Synechocystissp.PCC6803. Synechocystissp.PCC6803 was transformed with recombinant plasmid pTZ66 to obtain genetically engineered hydrocarbon-producing cyanobacteria ZT187 (spectinomycin resistance).
培养基:蓝细菌培养所用培养基为BG11培养基,其具有如下成分:1.5gL-1NaNO3,40mgL-1K2HPO4·3H2O,36mgL-1CaCl2·2H2O,6mgL-1柠檬酸,6mgL-1柠檬酸铁铵,1mgL-1EDTA二钠盐,20mgL-1NaCO3,2.9mgL-1H3BO3,1.8mgL-1MnCl2·4H2O,0.22mgL-1ZnSO4·7H2O,0.39mgL-1NaMoO4·2H2O,0.079mgL-1CuSO4·5H2O和0.01mgL-1CoCl2·6H2O。固体培养基中补加8mMTES缓冲剂,0.3%Na2S203和1.5%琼脂粉。Medium: The medium used for cyanobacteria culture is BG11 medium, which has the following components: 1.5gL -1 NaNO 3 , 40mgL -1 K 2 HPO 4 3H 2 O, 36mgL -1 CaCl 2 2H 2 O, 6mgL - 1 citric acid, 6mgL -1 ferric ammonium citrate, 1mgL -1 EDTA disodium salt, 20mgL -1 NaCO 3 , 2.9mgL -1 H 3 BO 3 , 1.8mgL -1 MnCl 2 4H 2 O, 0.22mgL -1 ZnSO 4 ·7H 2 O, 0.39 mgL −1 NaMoO 4 ·2H 2 O, 0.079 mgL −1 CuSO 4 ·5H 2 O and 0.01 mgL −1 CoCl 2 ·6H 2 O. Add 8mMTES buffer, 0.3% Na 2 S 2 0 3 and 1.5% agar powder to the solid medium.
转化方法:取处于对数生长期(OD730约为0.5~1.0)的Synechocystissp.PCC6803野生型细胞5mL,离心收集细胞;用新鲜的BG11培养基洗涤细胞两次,再将细胞重悬于0.5mLBG11培养基中。取0.2mL细胞重悬液置于新的PCR管中,加入2~3中,重组质粒pTZ66,混匀,置于30℃、30μ0,-2s-1光照条件下温育4小时。然后将混合物涂布于铺在BG11平板上的硝酸纤维素膜上,并置于30℃、30的硝酸纤-2s-1光照条件下培养24小时。然后,将硝酸纤维素膜转移到壮观抗性的固体平板上,在30℃、30性后,将-2s-1的光照条件下继续培养5~7天,将转化子从平板上挑出,在新鲜的BG11平板(壮观抗性)上划线培养5~7天;最后接入壮观抗性液体BG11培养基培养,提取基因组,PCR验证基因型正确后,取平台期菌液,用于脂肪烃检测。Transformation method: Take 5 mL of Synechocystissp.PCC6803 wild-type cells in the logarithmic growth phase (OD 730 is about 0.5-1.0), and collect the cells by centrifugation; wash the cells twice with fresh BG11 medium, and then resuspend the cells in 0.5 mL of BG11 medium. Take 0.2 mL of the cell suspension and place it in a new PCR tube, add 2 to 3, the recombinant plasmid pTZ66, mix well, and incubate for 4 hours at 30°C, 30 μ0, -2 s -1 light. Then the mixture was spread on the nitrocellulose membrane spread on the BG11 plate, and placed at 30°C, 30 nitrocellulose -2 s -1 light conditions and cultured for 24 hours. Then, transfer the nitrocellulose membrane to a solid plate with spectacular resistance. After 30°C and 30°C, continue to cultivate for 5 to 7 days under the light condition of -2 s -1 , and pick the transformant from the plate. , cultured by streaking on a fresh BG11 plate (Spectacular resistance) for 5-7 days; finally inserted into the Spectacular-resistant liquid BG11 medium for culture, extracting the genome, and after PCR verification of the correct genotype, take the plateau bacterial liquid for use in Aliphatic hydrocarbon detection.
(3)基因工程蓝细菌产烃情况及产量分析(3) Hydrocarbon production and yield analysis of genetically engineered cyanobacteria
基因工程蓝细菌脂肪烃提取方法同实施例2,不同的是加入100μg正二十烷烃作为内标。The method for extracting aliphatic hydrocarbons from genetically engineered cyanobacteria is the same as in Example 2, except that 100 μg of n-eicosane is added as an internal standard.
基因工程蓝细菌ZT187脂肪烃产量分析:经GC-MS测定,将来源于NostoccalcicolaFACHB389的脂肪烃合成关键基因ado-aar整合入模式菌株Synechocystissp.PCC6803基因组后:Analysis of aliphatic hydrocarbon production in genetically engineered cyanobacteria ZT187: after GC-MS determination, the key gene ado-aar derived from NostoccalcicolaFACHB389 for aliphatic hydrocarbon synthesis was integrated into the genome of model strain Synechocystissp.PCC6803:
在产烃多样性方面:使宿主菌获得了十五烷(C15)的合成能力(图20)。In terms of hydrocarbon production diversity: the host bacteria obtained the ability to synthesize pentadecane (C15) (Figure 20).
在脂肪烃产量方面:使宿主菌脂肪烃的总产量显著提高,约为野生型菌株的2倍(图21)。In terms of the production of aliphatic hydrocarbons: the total production of aliphatic hydrocarbons of the host bacteria is significantly increased, which is about 2 times that of the wild-type strain (Figure 21).
上述数据证实本发明所提供的产烃关键基因增加蓝细菌脂肪烃的产烃多样性,提高蓝细菌的脂肪烃产量。The above data prove that the key genes for hydrocarbon production provided by the present invention increase the diversity of hydrocarbon production of cyanobacteria aliphatic hydrocarbons and increase the production of aliphatic hydrocarbons of cyanobacteria.
本发明立足基因工程蓝细菌合成脂肪烃类新型生物能源的研究现状,受启发于蓝细菌中脂肪烃合成途径的鉴定,以本团队业已获得但基因组未知的6株蓝细菌作为研究对象,系统分析了其脂肪烃合成特性和产量。并基于序列同一性分析、全基因组测序和PCR技术,获得了所述蓝细菌菌株的产烃关键基因序列。同时,在大肠杆菌中对所得产烃基因进行了功能验证,并基于所得序列构建了高效合成脂肪烃的基因工程蓝细菌。不希望受任何理论束缚,发明人认为所得蓝细菌菌株和产烃关键基因序列将为利用微生物合成系统直接合成脂肪烃类生物燃料提供有价值的候选基因资源。The present invention is based on the current research status of genetically engineered cyanobacteria for the synthesis of aliphatic hydrocarbon new bioenergy sources, inspired by the identification of aliphatic hydrocarbon synthesis pathways in cyanobacteria, taking 6 strains of cyanobacteria that our team has obtained but whose genomes are unknown as research objects, and systematically analyzed The characteristics and yield of its aliphatic hydrocarbon synthesis were studied. And based on sequence identity analysis, whole genome sequencing and PCR technology, the key gene sequence for hydrocarbon production of the cyanobacteria strain was obtained. At the same time, the obtained hydrocarbon-producing gene was functionally verified in Escherichia coli, and a genetically engineered cyanobacteria for efficiently synthesizing aliphatic hydrocarbons was constructed based on the obtained sequence. Without wishing to be bound by any theory, the inventors believe that the obtained cyanobacteria strains and key gene sequences for hydrocarbon production will provide valuable candidate gene resources for the direct synthesis of aliphatic hydrocarbon biofuels using microbial synthesis systems.
同时,在本发明的产烃基因基础上,还可加入末端烯烃合成酶的编码基因(olefinssynthase,ols),使其通过类I型聚酮合成酶途径合成末端烯烃(Mendez-Perezetal.2011),进而也可为获得脂肪烃类生物燃料提供有价值的候选基因资源。At the same time, on the basis of the hydrocarbon-producing gene of the present invention, the coding gene (olefinssynthase, ols) of terminal olefin synthase can also be added to make it synthesize terminal olefins through the type I polyketide synthase pathway (Mendez-Perez et al. 2011), Furthermore, it can also provide valuable candidate gene resources for obtaining aliphatic hydrocarbon biofuels.
参考文献references
CoatesRC,PodellS,KorobeynikovA,LapidusA,PevznerP,ShermanDH,AllenEE,GerwickL,GerwickWH.2014.Characterizationofcyanobacterialhydrocarboncompositionanddistributionofbiosyntheticpathways.PLoSOne9:e85140.CoatesRC, PodellS, KorobeynikovA, LapidusA, PevznerP, ShermanDH, AllenEE, GerwickL, GerwickWH. 2014.Characterizationofcyanobacterialhydrocarboncompositionanddistributionofbiosyntheticpathways.PLoSOne9:e85140.
DuanYK,ZhuZ,CaiK,TanXM,LuXF.2011.DenovoBiosynthesisofBiodieselbyEscherichiacoliinOptimizedFed-BatchCultivation.PlosOne6:e20265.DuanYK, ZhuZ, CaiK, TanXM, LuXF.2011.DenovoBiosynthesisofBiodieselbyEscherichiacoliinOptimizedFed-BatchCultivation.PlosOne6:e20265.
HanJ,CalvinM.1969.Hydrocarbondistributionofalgaeandbacteria,andmicrobiologicalactivityinsediments.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica64:436-443.HanJ, CalvinM.1969.Hydrocarbondistributionofalgaeandbacteria,andmicrobiologicalactivityinsediments.ProceedingoftheNationalAcademyofScienceoftheUnitedStatesofAmerica64:436-443.
HanJ,McCarthyED,HoevenWV,CalvinM,BradleyWH.1968.Organicgeochemicalstudies,ii.Apreliminaryreportonthedistributionofaliphatichydrocarbonsinalgae,inbacteria,andinarecentlakesediment.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica59:29-33.HanJ, McCarthyED, HoevenWV, CalvinM, BradleyWH. 1968. Organicgeochemicalstudies, ii.
KeaslingJD,ChouH.2008.Metabolicengineeringdeliversnext-generationbiofuels.NatureBiotechnology26:298-299.Keasling JD, Chou H. 2008. Metabolic engineering delivers next-generation biofuels. Nature Biotechnology 26: 298-299.
Mendez-PerezD,BegemannMB,PflegerBF.2011.Modularsynthase-encodinggeneinvolvedinalpha-olefinbiosynthesisinSynechococcussp.StrainPCC7002.AppliedandEnvironmentalMicrobiology77:4264-4267.Mendez-PerezD, Begemann MB, PflegerBF.
Needlema.Sb,WunschCD.1970.AGeneralMethodApplicabletoSearchforSimilaritiesinAminoAcidSequenceof2Proteins.JournalofMolecularBiology48:443-453.Needlema. Sb, Wunsch CD. 1970. A General Method Applicable to Search for Similarities in Amino Acid Sequence of 2 Proteins. Journal of Molecular Biology 48:443-453.
PearsonWR,LipmanDJ.1988.ImprovedToolsforBiologicalSequenceComparison.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica85:2444-2448.Pearson WR, Lipman DJ. 1988. Improved Tools for Biological Sequence Comparison. Proceeding of the National Academy of Science of the United States of America 85: 2444-2448.
SchirmerA,RudeMA,LiX,PopovaE,delCardayreSB.2010.MicrobialBiosynthesisofAlkanes.Science329:559-562.SchirmerA, RudeMA, LiX, PopovaE, delCardayreSB. 2010. Microbial Biosynthesis of Alkanes. Science 329:559-562.
ShihPM,etal.2013.Improvingthecoverageofthecyanobacterialphylumusingdiversity-drivengenomesequencing.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica110:1053-1058.Shih PM, et al. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceeding of the National Academy of Science of the United States of America 110: 1053-1058.
SmithTF,WatermanMS.1981.Comparisonofbiosequences.AdvancesinAppliedMathematics2:482-489.Smith TF, Waterman MS. 1981. Comparison of biosequences. Advances in Applied Mathematics 2: 482-489.
WangWH,LiuXF,LuXF.2013.Engineeringcyanobacteriatoimprovephotosyntheticproductionofalka(e)nes.BiotechnologyforBiofuels6:69.WangWH, LiuXF, LuXF.2013.Engineeringcyanobacteriatoimprovephotosyntheticproductionofalka(e)nes.BiotechnologyforBiofuels6:69.
WintersK,ParkerPL,VanBaalenC.1969.Hydrocarbonsofblue-greenalgae:geochemicalsignfficance.Science163:467-468.Winters K, Parker PL, Van Baalen C. 1969. Hydrocarbons of blue-green algae: geochemical sign efficiency. Science 163: 467-468.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410660371.2A CN105586351B (en) | 2014-11-18 | 2014-11-18 | Cyanobacteria aliphatic hydrocarbon synthesis key gene and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410660371.2A CN105586351B (en) | 2014-11-18 | 2014-11-18 | Cyanobacteria aliphatic hydrocarbon synthesis key gene and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105586351A true CN105586351A (en) | 2016-05-18 |
CN105586351B CN105586351B (en) | 2020-02-14 |
Family
ID=55926255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410660371.2A Active CN105586351B (en) | 2014-11-18 | 2014-11-18 | Cyanobacteria aliphatic hydrocarbon synthesis key gene and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105586351B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106011164A (en) * | 2016-05-20 | 2016-10-12 | 天津大学 | Genetic element, expression vector and application of genetic element and expression vector |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102952818A (en) * | 2011-08-26 | 2013-03-06 | 中国科学院青岛生物能源与过程研究所 | Construction body and method for improving fatty alcohol yield in cyanobacteria |
-
2014
- 2014-11-18 CN CN201410660371.2A patent/CN105586351B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102952818A (en) * | 2011-08-26 | 2013-03-06 | 中国科学院青岛生物能源与过程研究所 | Construction body and method for improving fatty alcohol yield in cyanobacteria |
Non-Patent Citations (3)
Title |
---|
AIQIU LIU ET AL.: "Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species", 《APPLIED ENERGY》 * |
NCBI: "GenBank: JX872537.1", 《NCBI GENBANK》 * |
NCBI: "GenBank: JX872551.1", 《NCBI GENBANK》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106011164A (en) * | 2016-05-20 | 2016-10-12 | 天津大学 | Genetic element, expression vector and application of genetic element and expression vector |
CN106011164B (en) * | 2016-05-20 | 2019-12-31 | 天津大学 | Gene elements, expression vectors and their applications |
Also Published As
Publication number | Publication date |
---|---|
CN105586351B (en) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria | |
Schwarz et al. | Towards improved butanol production through targeted genetic modification of Clostridium pasteurianum | |
Yoshino et al. | Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway | |
CN103025864B (en) | Microbial variants capable of producing hydrocarbons and methods of using the same to produce hydrocarbons | |
CN107287143A (en) | The Recombinant organism and its construction method of high yield butanol and application | |
CN101748069B (en) | Recombinant blue-green algae | |
EP2524035A2 (en) | Constructs, vectors and cyanobacteria for the synthesis of fatty alcohols, and methods for producing fatty alcohols in cyanobacteria | |
CN104789516B (en) | A kind of genetic engineering bacterium of cytoalgae 6803 for producing trihydroxy propionic acid and construction method and application | |
CN104611355B (en) | Fusion protein Nt4CL3aPcSTS relevant biological material and its application | |
CN105586351A (en) | Cyanobacteria aliphatic hydrocarbon key synthesis gene and application thereof | |
JP6991897B2 (en) | Nucleic acids and vectors for controlling gene expression in non-phototrophic C1 metabolizing microorganisms, and transformants thereof | |
CN102952818B (en) | For improving construct and the method for fatty alcohol yield in cyanobacteria | |
CN102311966B (en) | For the synthesis of the construct of fatty alcohol, carrier, cyanobacteria, and the method for producing fatty alcohol in cyanobacteria | |
CN117210446A (en) | Method for improving yield of heterotrophic microorganism metabolite by reconstructing Calvin cycle | |
CN109486835B (en) | A cyanobacteria-derived key gene mutant for alkane production and its application | |
CN102978229B (en) | Blue-green algae integrant expression carrier and application thereof | |
CN117210422A (en) | Bacterial laccase allosteric and preparation method thereof | |
CN114015634B (en) | Recombinant Escherichia coli with high succinic acid production and its construction method and application | |
CN105624179A (en) | System for producing aliphatic-terminated alkene and application thereof | |
CN114456964B (en) | Recombinant yarrowia lipolytica for high yield of stigmasterol, construction method thereof, fermentation medium for producing stigmasterol and application | |
CN105463005B (en) | Construct for detecting aliphatic hydrocarbon in microbial cell and method for detecting aliphatic hydrocarbon in situ by using construct | |
CN114107285B (en) | A method to use alkane sensors to evolve hydrocarbon-producing enzymes to produce long-chain alkanes | |
CN107475269B (en) | An acyl-CoA thiolipase gene of Candida tropicalis and its application | |
Grosse-Honebrink | Forward and reverse genetics in industrially important Clostridia | |
CN119662507A (en) | Bacillus subtilis with high surfactant yield, related enzyme mutant and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |