CN105572712A - Real-time determination method of ambiguity of whole cycles of carrier phase of Beidou system - Google Patents
Real-time determination method of ambiguity of whole cycles of carrier phase of Beidou system Download PDFInfo
- Publication number
- CN105572712A CN105572712A CN201511008216.3A CN201511008216A CN105572712A CN 105572712 A CN105572712 A CN 105572712A CN 201511008216 A CN201511008216 A CN 201511008216A CN 105572712 A CN105572712 A CN 105572712A
- Authority
- CN
- China
- Prior art keywords
- carrier phase
- frequency
- frequency carrier
- ambiguity
- beidou system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 241001269238 Data Species 0.000 claims 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
- G01S19/44—Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于卫星定位系统和定位测量技术领域,具体涉及一种北斗系统载波相位整周模糊度实时确定方法。The invention belongs to the technical field of satellite positioning system and positioning measurement, and in particular relates to a method for determining the ambiguity of the carrier phase of the Beidou system in real time.
背景技术Background technique
目前,具有我国独立自主产权的北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS),已经正式向亚太地区提供导航定位服务;由于各种因素的影响,北斗系统提供的标准定位服务的精度约为10m,北斗系统标准定位服务采用伪距观测值,只能满足低精度导航定位的要求;利用北斗系统载波相位观测数据,可实现北斗系统用户的高精度实时定位;如果需要利用北斗系统载波相位观测数据实现北斗系统用户的高精度实时定位,其核心问题是北斗系统载波相位观测数据整周模糊度的实时准确确定。At present, the BeiDou Navigation Satellite System (BDS), which has independent property rights in my country, has officially provided navigation and positioning services to the Asia-Pacific region; The positioning service uses pseudo-range observations, which can only meet the requirements of low-precision navigation and positioning; the use of Beidou system carrier phase observation data can realize high-precision real-time positioning of Beidou system users; if it is necessary to use Beidou system carrier phase observation data to realize Beidou system users The core issue of high-precision real-time positioning is the real-time and accurate determination of the ambiguity of the carrier phase observation data of the Beidou system.
北斗系统定位原理和信号结构与GPS相似,因此,北斗系统高精度定位中的载波相位整周模糊度实时确定方法多借鉴或采用GPS系统的载波相位整周模糊度实时解算方法。GPS是目前最成熟稳定的卫星导航定位系统,而北斗系统的广播星历卫星轨道精度和观测数据质量等方面要逊于GPS系统,尤其目前北斗系统在轨工作卫星包含了GEO卫星和IGSO卫星,使得采用GPS载波相位观测值整周模糊度的实时解算方法,不能很好地解决北斗系统载波相位整周模糊度的实时准确确定问题。The positioning principle and signal structure of the Beidou system are similar to those of GPS. Therefore, the real-time determination method of the carrier phase integer ambiguity in the Beidou system's high-precision positioning mostly refers to or adopts the real-time resolution method of the carrier phase integer ambiguity of the GPS system. GPS is currently the most mature and stable satellite navigation and positioning system, while the Beidou system is inferior to the GPS system in terms of broadcast ephemeris satellite orbit accuracy and observation data quality. As a result, the real-time resolution method of the integer ambiguity of the GPS carrier phase observation value cannot well solve the problem of real-time and accurate determination of the carrier phase integer ambiguity of the Beidou system.
北斗系统中IGSO卫星的运动周期约为24小时,GEO卫星相对于地球静止,在北斗系统载波相位整周模糊度的实时确定较短的时间内,用户观测到的北斗系统在轨工作卫星的几何构型变化较小;因此,北斗系统卫星星座构成(GEO、IGSO卫星较多)造成的观测卫星几何构型不佳,不利于北斗系统载波相位整周模糊度的实时确定。The motion period of the IGSO satellites in the Beidou system is about 24 hours, and the GEO satellites are relatively stationary relative to the earth. In a short period of time for the real-time determination of the carrier phase ambiguity of the Beidou system, the geometry of the satellites in orbit of the Beidou system observed by the user The configuration changes are small; therefore, the composition of the Beidou system satellite constellation (more GEO and IGSO satellites) results in poor geometric configuration of the observation satellites, which is not conducive to the real-time determination of the carrier phase ambiguity of the Beidou system.
发明内容Contents of the invention
针对现有技术的缺点,本发明提出一种北斗系统载波相位整周模糊度实时确定方法,该方法以单个模糊度参数为对象,首先利用B1频率伪距观测值,计算B2频率载波相位与B3频率载波相位的宽巷整周模糊度,然后使用B2频率载波相位与B3频率载波相位的宽巷整周模糊度计算B1频率载波相位与B3频率载波相位的宽巷整周模糊度,再使用B1频率载波相位与B3频率载波相位的宽巷整周模糊度计算B1频率载波相位与B2频率载波相位的宽巷整周模糊度,最后利用B1频率载波相位与B2频率载波相位的宽巷整周模糊度计算B1、B2、B3三频载波相位整周模糊度。克服了北斗系统观测卫星的几何构型变化缓慢,而不利于载波相位整周模糊度实时确定的问题。Aiming at the shortcomings of the prior art, the present invention proposes a real-time determination method for the carrier phase ambiguity of the Beidou system. The method takes a single ambiguity parameter as an object, and first uses the B1 frequency pseudo-range observation value to calculate the B2 frequency carrier phase and B3 frequency The wide-lane integer ambiguity of frequency carrier phase, and then use the wide-lane integer ambiguity of B2 frequency carrier phase and B3 frequency carrier phase to calculate the wide-lane integer ambiguity of B1 frequency carrier phase and B3 frequency carrier phase, and then use B1 The wide-lane integer ambiguity of frequency carrier phase and B3 frequency carrier phase calculates the wide-lane integer ambiguity of B1 frequency carrier phase and B2 frequency carrier phase, and finally uses the wide-lane integer ambiguity of B1 frequency carrier phase and B2 frequency carrier phase Calculation of B1, B2, B3 three-frequency carrier phase integer ambiguity. It overcomes the problem that the geometric configuration of the Beidou system observation satellite changes slowly, which is not conducive to the real-time determination of the carrier phase integer ambiguity.
本发明的技术方案是:Technical scheme of the present invention is:
一种北斗系统载波相位整周模糊度实时确定方法,包括以下步骤:A method for determining the ambiguity of the carrier phase of the Beidou system in real time, comprising the following steps:
步骤1、利用北斗系统卫星的B1频率伪距观测值,计算北斗系统卫星的B2频率载波相位与B3频率载波相位的宽巷整周模糊度;Step 1. Using the B1 frequency pseudo-range observation value of the Beidou system satellite, calculate the wide-lane integer ambiguity of the B2 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite;
步骤2、利用北斗系统卫星的B2频率载波相位与B3频率载波相位的宽巷整周模糊度,计算北斗系统卫星的B1频率载波相位与B3频率载波相位的宽巷整周模糊度;Step 2. Using the wide-lane integer ambiguity of the B2 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite, calculate the wide-lane integer ambiguity of the B1 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite;
步骤3、利用北斗系统卫星的B1频率载波相位与B3频率载波相位的宽巷整周模糊度,计算北斗系统卫星的B1频率载波相位与B2频率载波相位的宽巷整周模糊度;Step 3. Using the wide-lane integer ambiguity of the B1 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite, calculate the wide-lane integer ambiguity of the B1 frequency carrier phase and the B2 frequency carrier phase of the Beidou system satellite;
步骤4、利用北斗系统卫星的B1频率载波相位与B2频率载波相位的宽巷整周模糊度,计算北斗系统卫星的三频载波相位整周模糊度,进而获得北斗系统用户的坐标。Step 4. Using the wide-lane integer ambiguity of the B1 frequency carrier phase and the B2 frequency carrier phase of the Beidou system satellite, calculate the tri-frequency carrier phase integer ambiguity of the Beidou system satellite, and then obtain the coordinates of the Beidou system user.
所述步骤1按如下步骤进行:Described step 1 is carried out as follows:
步骤1-1、北斗系统各颗卫星向北斗系统用户接收机播发三频非差载波相位观测值数据和B1频率非差伪距观测值数据;Step 1-1. Each satellite of the Beidou system broadcasts the three-frequency non-difference carrier phase observation data and the B1 frequency non-difference pseudo-range observation data to the Beidou system user receiver;
步骤1-2、对北斗系统接收机接收的三频非差载波相位观测值和B1频率非差伪距观测值进行双差组合;Step 1-2, perform double-difference combination on the three-frequency non-difference carrier phase observation value received by the Beidou system receiver and the B1 frequency non-difference pseudo-range observation value;
步骤1-3、利用B1频率双差伪距观测值,计算B2频率载波相位与B3频率载波相位的宽巷整周模糊度。Step 1-3, using the double-difference pseudo-range observations at frequency B1, to calculate the wide-lane integer ambiguities of the carrier phase at frequency B2 and the carrier phase at frequency B3.
有益效果:Beneficial effect:
本发明提出一种北斗系统载波相位整周模糊度实时确定方法,该方法以单个模糊度参数为对象,不需要求解载波相位观测方程组。首先利用B1频率伪距观测值,计算B2频率载波相位与B3频率载波相位的宽巷整周模糊度,然后使用B2频率载波相位与B3频率载波相位的宽巷整周模糊度计算B1频率载波相位与B3频率载波相位的宽巷整周模糊度,再使用B1频率载波相位与B3频率载波相位的宽巷整周模糊度计算B1频率载波相位与B2频率载波相位的宽巷整周模糊度,最后利用B1频率载波相位与B2频率载波相位的宽巷整周模糊度计算B1、B2、B3三频载波相位整周模糊度。本发明的方法能够克服北斗系统观测卫星的几何构型变化缓慢,而不利于载波相位整周模糊度实时确定的问题,并且是以单个北斗系统载波相位整周模糊度为对象进行载波相位整周模糊度的计算,计算量小,准确性高。本发明的北斗系统载波相位整周模糊度实时确定方法解决了北斗系统实时定位的整周模糊度实时确定问题。The invention proposes a real-time determination method for the carrier phase integer ambiguity of the Beidou system. The method takes a single ambiguity parameter as an object and does not need to solve the carrier phase observation equation group. First, use the B1 frequency pseudo-range observation value to calculate the wide-lane integer ambiguity of B2 frequency carrier phase and B3 frequency carrier phase, and then use the wide-lane integer ambiguity of B2 frequency carrier phase and B3 frequency carrier phase to calculate the B1 frequency carrier phase The wide-lane integer ambiguity with the B3 frequency carrier phase, and then use the wide-lane integer ambiguity between the B1 frequency carrier phase and the B3 frequency carrier phase to calculate the wide-lane integer ambiguity between the B1 frequency carrier phase and the B2 frequency carrier phase, and finally Using the wide-lane integer ambiguity of B1 frequency carrier phase and B2 frequency carrier phase to calculate the B1, B2, B3 three-frequency carrier phase integer ambiguity. The method of the present invention can overcome the problem that the geometric configuration of the Beidou system observation satellite changes slowly, which is not conducive to the real-time determination of the carrier phase ambiguity, and the carrier phase ambiguity is carried out with a single Beidou system carrier phase ambiguity as the object. The calculation of ambiguity has a small amount of calculation and high accuracy. The method for determining the integer ambiguity of the carrier phase of the Beidou system in real time in the present invention solves the problem of determining the integer ambiguity in real time in the real-time positioning of the Beidou system.
附图说明Description of drawings
图1是本发明一种实施例的北斗系统载波相位整周模糊度实时确定方法流程图;Fig. 1 is a flow chart of a method for determining the integer ambiguity of the Beidou system carrier phase in real time according to an embodiment of the present invention;
图2是本发明一种实施例的步骤1的具体流程图;Fig. 2 is the specific flowchart of step 1 of an embodiment of the present invention;
图3是本发明一种实施例的利用北斗系统载波相位整周模糊度和载波相位观测数据计算的用户坐标计算值与用户已知精确坐标的差值时间序列;Fig. 3 is a difference time series between the user coordinate calculation value and the user's known precise coordinate calculated by using the Beidou system carrier phase integer ambiguity and carrier phase observation data according to an embodiment of the present invention;
(a)是E方向(东方向)北斗系统用户坐标计算值与已知精确坐标差值的时间序列;(a) is the time series of the difference between the calculated value of the Beidou system user coordinates and the known precise coordinates in the E direction (east direction);
(b)是N方向(北方向)北斗系统用户坐标计算值与已知精确坐标差值的时间序列;(b) is the time series of the difference between the calculated value of the Beidou system user coordinates and the known precise coordinates in the N direction (north direction);
(c)是U方向(高程方向)北斗系统用户坐标计算值与已知精确坐标差值的时间序列。(c) is the time series of the difference between the calculated value of the Beidou system user coordinates and the known precise coordinates in the U direction (elevation direction).
具体实施方式detailed description
下面结合附图对本发明的具体实施方式做详细说明。The specific implementation manners of the present invention will be described in detail below in conjunction with the accompanying drawings.
一种北斗系统载波相位整周模糊度实时确定方法,如图1所示,包括以下步骤:A method for real-time determination of the carrier phase ambiguity of the Beidou system, as shown in Figure 1, comprising the following steps:
步骤1、利用北斗系统卫星的B1频率伪距观测值,计算北斗系统卫星的B2频率、B3频率载波相位的宽巷整周模糊度。Step 1. Using the B1 frequency pseudo-range observation value of the Beidou system satellite, calculate the wide-lane integer ambiguity of the B2 frequency and B3 frequency carrier phase of the Beidou system satellite.
如图2所示,具体流程如下:As shown in Figure 2, the specific process is as follows:
步骤1-1、北斗系统各颗卫星向北斗系统用户接收机播发三频非差载波相位观测值数据和B1频率非差伪距观测值数据。Step 1-1. Each satellite of the Beidou system broadcasts the three-frequency undifferenced carrier phase observation data and the B1 frequency undifferenced pseudorange observation data to the Beidou system user receiver.
北斗系统B1频率非差伪距观测方程为:The BDS B1 frequency non-difference pseudo-range observation equation is:
P1=ρ+c·(t-tS)+Orb+Ion1+Trop+ε1(1)P 1 =ρ+c·(tt S )+Orb+Ion 1 +Trop+ε 1 (1)
其中,P1为北斗系统B1频率非差伪距观测值;ρ是北斗系统卫星到用户的初始几何距离,由用户初始坐标与北斗系统广播星历提供的卫星坐标计算得到;c为光速;t为测站接收机钟差,tS为北斗系统卫星钟差,单位为秒;Orb表示BDS卫星轨道误差,Trop表示对流层延迟误差;Ion1表示B1频率电离层延迟误差;ε1为B1频率伪距观测值的观测噪声。Among them, P 1 is the B1 frequency non-difference pseudo-range observation value of the Beidou system; ρ is the initial geometric distance from the Beidou system satellite to the user, which is calculated from the user's initial coordinates and the satellite coordinates provided by the Beidou system broadcast ephemeris; c is the speed of light; t is the station receiver clock error, t S is the Beidou system satellite clock error, in seconds; Orb is the BDS satellite orbit error, Trop is the tropospheric delay error; Ion 1 is the B1 frequency ionospheric delay error; ε 1 is the B1 frequency pseudo Observation noise from observations.
北斗系统三频非差载波相位观测方程分别为:The BDS tri-frequency non-difference carrier phase observation equations are:
λi·Φi=ρ+c·(t-tS)-λi·Ni+Orb-Ioni+Trop(2)λ i ·Φ i =ρ+c·(tt S )-λ i ·N i +Orb-Ion i +Trop(2)
其中,λi为北斗系统载波相位观测值的波长,下标i为1、2、3,分别表示B1频率、B2频率、B3频率;Φi为北斗系统非差载波相位观测值,Ni为北斗系统载波相位整周模糊度;Ioni为北斗系统电离层延迟误差;其他符号与公式(1)相同。Among them, λ i is the wavelength of the carrier phase observation value of the Beidou system, and the subscript i is 1, 2, and 3, respectively representing the B1 frequency, B2 frequency, and B3 frequency; Φ i is the non-difference carrier phase observation value of the Beidou system, and N i is BDS carrier phase integer ambiguity; Ion i is BDS ionospheric delay error; other symbols are the same as formula (1).
本实施方式中,北斗系统B1、B2、B3三频非差载波相位观测方程分别为:In this embodiment, the three-frequency non-difference carrier phase observation equations of BDS B1, B2, and B3 are respectively:
λ1·Φ1=ρ+c·(t-tS)-λ1·N1+Orb-Ion1+Tropλ 1 ·Φ 1 =ρ+c·(tt S )-λ 1 ·N 1 +Orb-Ion 1 +Trop
λ2·Φ2=ρ+c·(t-tS)-λ2·N2+Orb-Ion2+Tropλ 2 ·Φ 2 =ρ+c·(tt S )-λ 2 ·N 2 +Orb-Ion 2 +Trop
λ3·Φ3=ρ+c·(t-tS)-λ3·N3+Orb-Ion3+Tropλ 3 ·Φ 3 =ρ+c·(tt S )-λ 3 ·N 3 +Orb-Ion 3 +Trop
其中,北斗系统B1频率载波相位观测值的波长λ1为0.19203m,北斗系统B2频率载波相位观测值的波长λ2为0.24834m,北斗系统B3频率载波相位观测值的波长λ3为0.23633m。Among them, the wavelength λ 1 of the BDS B1 frequency carrier phase observation value is 0.19203m, the BDS B2 frequency carrier phase observation value wavelength λ 2 is 0.24834m, and the BDS B3 frequency carrier phase observation wavelength λ 3 is 0.23633m.
步骤1-2、对北斗系统用户接收机接收的三频非差载波相位观测值和B1频率非差伪距观测值进行双差组合,消除卫星钟差、接收机钟差,基本消除电离层延迟误差、对流层延迟误差和卫星轨道误差。Step 1-2. Perform double-difference combination on the three-frequency non-differenced carrier phase observation value received by the Beidou system user receiver and the B1 frequency non-difference pseudo-range observation value to eliminate satellite clock error and receiver clock error, and basically eliminate ionospheric delay error, tropospheric delay error and satellite orbit error.
北斗系统双差伪距观测方程为:The BDS double-difference pseudo-range observation equation is:
Δ▽P1=Δ▽ρ+Δ▽Orb+Δ▽Ion1+Δ▽Trop+Δ▽ε1(3)Δ▽P 1 =Δ▽ρ+Δ▽Orb+Δ▽Ion 1 +Δ▽Trop+Δ▽ε 1 (3)
北斗系统双差载波相位观测方程为:The Beidou system double-difference carrier phase observation equation is:
λi·Δ▽Φi=Δ▽ρ-λi·Δ▽Ni+Δ▽Orb-Δ▽Ioni+Δ▽Trop(4)λ i ·Δ▽Φ i =Δ▽ρ-λ i ·Δ▽N i +Δ▽Orb-Δ▽Ion i +Δ▽Trop(4)
其中,Δ▽为双差操作符;Δ▽P1为B1频率双差伪距观测值;Δ▽Φi为双差载波相位观测值;其他符号与公式(1)、(2)相同;Among them, Δ▽ is the double-difference operator; Δ▽P 1 is the double-difference pseudorange observation value of B1 frequency; Δ▽Φ i is the double-difference carrier phase observation value; other symbols are the same as formulas (1) and (2);
本实施方式中,北斗系统B1频率双差载波相位观测方程、B2频率双差载波相位观测方程、B3频率双差载波相位观测方程分别为:In this embodiment, the Beidou system B1 frequency double-difference carrier phase observation equation, B2 frequency double-difference carrier phase observation equation, and B3 frequency double-difference carrier phase observation equation are respectively:
λ1·Δ▽Φ1=Δ▽ρ-λ1·Δ▽N1+Δ▽Orb-Δ▽Ion1+Δ▽Tropλ 1 ·Δ▽Φ 1 =Δ▽ρ-λ 1 ·Δ▽N 1 +Δ▽Orb-Δ▽Ion 1 +Δ▽Trop
λ2·Δ▽Φ2=Δ▽ρ-λ2·Δ▽N2+Δ▽Orb-Δ▽Ion2+Δ▽Tropλ 2 ·Δ▽Φ 2 =Δ▽ρ-λ 2 ·Δ▽N 2 +Δ▽Orb-Δ▽Ion 2 +Δ▽Trop
λ3·Δ▽Φ3=Δ▽ρ-λ3·Δ▽N3+Δ▽Orb-Δ▽Ion3+Δ▽Tropλ 3 ·Δ▽Φ 3 =Δ▽ρ-λ 3 ·Δ▽N 3 +Δ▽Orb-Δ▽Ion 3 +Δ▽Trop
步骤1-3、利用B1频率双差伪距观测值Δ▽P1,计算B2频率载波相位与B3频率载波相位的宽巷整周模糊度;Step 1-3, using the B1 frequency double-difference pseudorange observation value Δ▽P 1 , to calculate the wide-lane integer ambiguity of the B2 frequency carrier phase and the B3 frequency carrier phase;
B2频率载波相位整周模糊度和B3频率载波相位整周模糊度分别为:B2 frequency carrier phase integer ambiguity and B3 frequency carrier phase integer ambiguity are respectively:
Δ▽N2=Δ▽ρ/λ2-Δ▽Φ2(5)Δ▽N 2 =Δ▽ρ/λ 2 -Δ▽Φ 2 (5)
Δ▽N3=Δ▽ρ/λ3-Δ▽Φ3(6)Δ▽N 3 =Δ▽ρ/λ 3 -Δ▽Φ 3 (6)
北斗系统B2频率载波相位与B3频率载波相位的宽巷整周模糊度为The wide-lane integer ambiguity of the B2 frequency carrier phase and the B3 frequency carrier phase of the Beidou system is
Δ▽N32=Δ▽N3-Δ▽N2=Δ▽ρ/λ3-Δ▽ρ/λ2-Δ▽Φ3+Δ▽Φ2(7)Δ▽N 32 =Δ▽N 3 -Δ▽N 2 =Δ▽ρ/λ 3 -Δ▽ρ/λ 2 -Δ▽Φ 3 +Δ▽Φ 2 (7)
其中,Δ▽Φ3、Δ▽Φ2分别是B3频率双差载波相位观测值、B2频率双差载波相位观测值;λ3、λ2分别为B3频率载波相位观测值的波长、B2频率载波相位观测值的波长;Δ▽ρ为测站到卫星的几何距离,利用测站坐标与已知的卫星坐标计算得到,包含用户的未知坐标,为未知值;Among them, Δ▽Φ 3 and Δ▽Φ 2 are the double-difference carrier phase observation value of B3 frequency and the double-difference carrier phase observation value of B2 frequency respectively; λ 3 and λ 2 are the wavelength of the carrier phase observation value of B3 frequency and the carrier phase The wavelength of the phase observation value; Δ▽ρ is the geometric distance from the station to the satellite, calculated by using the coordinates of the station and the known satellite coordinates, including the unknown coordinates of the user, which is an unknown value;
忽略双差电离层延迟误差、双差对流层延迟误差、双差卫星轨道误差的残差影响Δ▽Orb+Δ▽Ion1+Δ▽Trop,则有:Ignoring the residual effects of double-difference ionospheric delay error, double-difference tropospheric delay error, and double-difference satellite orbit error Δ▽Orb+Δ▽Ion 1 +Δ▽Trop, then:
Δ▽ρ=Δ▽P1-Δ▽ε1(8)Δ▽ρ=Δ▽P 1 -Δ▽ε 1 (8)
其中,Δ▽P1是B1频率双差伪距观测值,为已知值;Δ▽ε1为B1频率双差伪距观测值的噪声;Among them, Δ▽P 1 is the double-difference pseudo-range observation value of B1 frequency, which is a known value; Δ▽ε 1 is the noise of the double-difference pseudo-range observation value of B1 frequency;
则将公式(8)带入公式(7):Then bring formula (8) into formula (7):
由于,λ2为0.24834m、λ3为0.23633m,则有:Because, λ 2 is 0.24834m, λ 3 is 0.23633m, then have:
Δ▽N32=0.20463385022·(Δ▽P1-Δ▽ε1)-Δ▽Φ3+Δ▽Φ2 Δ▽N 32 =0.20463385022·(Δ▽P 1 -Δ▽ε 1 )-Δ▽Φ 3 +Δ▽Φ 2
对于上式,B2频率载波相位与B3频率载波相位的宽巷模糊度的计算,主要受Δ▽ε1的影响。For the above formula, the calculation of the wide-lane ambiguity of the B2 frequency carrier phase and the B3 frequency carrier phase is mainly affected by Δ▽ε1.
对Δ▽N32值取整即确定B2频率载波相位与B3频率载波相位的宽巷整周模糊度,或者将多个历元的Δ▽N32取平均值,然后取整确定B2频率载波相位与B3频率载波相位的宽巷整周模糊度;Round the Δ▽N 32 value to determine the wide-lane integer ambiguity between the carrier phase of the B2 frequency and the carrier phase of the B3 frequency, or take the average value of Δ▽N 32 in multiple epochs, and then round to determine the carrier phase of the B2 frequency Widelane integer ambiguity with carrier phase at frequency B3;
步骤2、利用北斗系统卫星的B2频率载波相位与B3频率载波相位的宽巷整周模糊度,计算北斗系统卫星的B1频率载波相位与B3频率载波相位的宽巷整周模糊度;Step 2. Using the wide-lane integer ambiguity of the B2 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite, calculate the wide-lane integer ambiguity of the B1 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite;
B1频率载波相位整周模糊度和B3频率载波相位整周模糊度分别为:B1 frequency carrier phase integer ambiguity and B3 frequency carrier phase integer ambiguity are respectively:
Δ▽N1=Δ▽ρ/λ1-Δ▽Φ1(10)Δ▽N 1 =Δ▽ρ/λ 1 -Δ▽Φ 1 (10)
Δ▽N3=Δ▽ρ/λ3-Δ▽Φ3(11)Δ▽N 3 =Δ▽ρ/λ 3 -Δ▽Φ 3 (11)
北斗系统B1频率载波相位与B3频率载波相位的宽巷整周模糊度:The wide-lane integer ambiguity of B1 frequency carrier phase and B3 frequency carrier phase of Beidou system:
Δ▽N13=Δ▽N1-Δ▽N3=Δ▽ρ/λ1-Δ▽ρ/λ3-Δ▽Φ1+Δ▽Φ3(12)Δ▽N 13 =Δ▽N 1 -Δ▽N 3 =Δ▽ρ/λ 1 -Δ▽ρ/λ 3 -Δ▽Φ 1 +Δ▽Φ 3 (12)
其中,Δ▽Φ1、Δ▽Φ3分别是B1频率双差载波相位观测值、B3频率双差载波相位观测值;λ1、λ3分别是B1频率载波相位观测值的波长、B3频率载波相位观测值的波长;Δ▽ρ包含北斗系统用户的未知坐标。Among them, Δ▽Φ 1 and Δ▽Φ 3 are the double-difference carrier phase observation value of B1 frequency and the double-difference carrier phase observation value of B3 frequency respectively; λ 1 and λ 3 are the wavelength of the carrier phase observation value of B1 frequency and the carrier phase observation value of B3 frequency The wavelength of the phase observation; Δ▽ρ contains the unknown coordinates of the Beidou system users.
根据确定的B2频率载波相位与B3频率载波相位的宽巷整周模糊度Δ▽N32计算Δ▽ρ:Calculate Δ▽ρ according to the wide-lane integer ambiguity Δ▽N 32 of the determined B2 frequency carrier phase and B3 frequency carrier phase:
将Δ▽ρ带入公式(12),则得:Put Δ▽ρ into formula (12), then:
由于,λ1为0.19203m、λ2为0.24834m、λ3为0.23633m,则有:Since, λ 1 is 0.19203m, λ 2 is 0.24834m, λ 3 is 0.23633m, then:
Δ▽N13=4.7702189539·(Δ▽N32+Δ▽Φ3-Δ▽Φ2)-Δ▽Φ1+Δ▽Φ3 Δ▽N 13 =4.7702189539·(Δ▽N 32 +Δ▽Φ 3 -Δ▽Φ 2 )-Δ▽Φ 1 +Δ▽Φ 3
在B2频率载波相位与B3频率载波相位的宽巷整周模糊度Δ▽N32已经确定的情况下,直接对公式(14)计算的值取整即确定B1频率载波相位与B3频率载波相位的宽巷整周模糊度Δ▽N13;In the case that the wide-lane integer ambiguity Δ▽N 32 of the carrier phase of the B2 frequency and the carrier phase of the B3 frequency has been determined, the value calculated by the formula (14) is directly rounded to determine the carrier phase of the B1 frequency and the carrier phase of the B3 frequency Wide lane integer ambiguity Δ▽N 13 ;
步骤3、利用北斗系统卫星的B1频率载波相位与B3频率载波相位的宽巷整周模糊度,计算北斗系统卫星的B1频率载波相位与B2频率载波相位的宽巷整周模糊度;Step 3. Using the wide-lane integer ambiguity of the B1 frequency carrier phase and the B3 frequency carrier phase of the Beidou system satellite, calculate the wide-lane integer ambiguity of the B1 frequency carrier phase and the B2 frequency carrier phase of the Beidou system satellite;
B1频率载波相位整周模糊度和B2频率载波相位整周模糊度分别为:B1 frequency carrier phase integer ambiguity and B2 frequency carrier phase integer ambiguity are respectively:
Δ▽N1=Δ▽ρ/λ1-Δ▽Φ1(15)Δ▽N 1 =Δ▽ρ/λ 1 -Δ▽Φ 1 (15)
Δ▽N2=Δ▽ρ/λ2-Δ▽Φ2(16)Δ▽N 2 =Δ▽ρ/λ 2 -Δ▽Φ 2 (16)
Δ▽N12=Δ▽N1-Δ▽N2,则得:Δ▽N 12 =Δ▽N 1 -Δ▽N 2 , then:
Δ▽N12=Δ▽ρ/λ1-Δ▽ρ/λ2-Δ▽Φ1+Δ▽Φ2(17)Δ▽N 12 =Δ▽ρ/λ 1 -Δ▽ρ/λ 2 -Δ▽Φ 1 +Δ▽Φ 2 (17)
其中,Δ▽Φ1、Δ▽Φ2分别是B1频率双差载波相位观测值、B2频率双差载波相位观测值;λ1、λ2分别为B1频率载波相位观测值的波长、B2频率载波相位观测值的波长;Δ▽ρ包含北斗系统的未知坐标。Among them, Δ▽Φ 1 and Δ▽Φ 2 are the double-difference carrier phase observation value of B1 frequency and the double-difference carrier phase observation value of B2 frequency respectively; λ 1 and λ 2 are the wavelength of the carrier phase observation value of B1 frequency and the carrier phase The wavelength of the phase observation; Δ▽ρ contains the unknown coordinates of the Beidou system.
根据确定的B1频率载波相位与B3频率载波相位的宽巷整周模糊度计算Δ▽ρ:Calculate Δ▽ρ according to the determined wide-lane integer ambiguities of the B1 frequency carrier phase and the B3 frequency carrier phase:
将公式(18)得到的Δ▽ρ带入公式(17),则得:Putting the Δ▽ρ obtained from formula (18) into formula (17), we get:
由于,λ1为0.19203m、λ2为0.24834m、λ3为0.23633m,则有:Since λ 1 is 0.19203m, λ 2 is 0.24834m, and λ 3 is 0.23633m, then:
Δ▽N12=1.2096339832·(Δ▽N13+Δ▽Φ1-Δ▽Φ3)-Δ▽Φ1+Δ▽Φ2 Δ▽N 12 =1.2096339832·(Δ▽N 13 +Δ▽Φ 1 -Δ▽Φ 3 )-Δ▽Φ 1 +Δ▽Φ 2
在B1频率载波相位与B3频率载波相位的宽巷整周模糊度Δ▽N13已经确定的情况下,直接对公式(19)的计算值取整即确定B1频率载波相位与B2频率载波相位的宽巷整周模糊度Δ▽N12;In the case that the wide-lane integer ambiguity Δ▽N 13 of the carrier phase of the B1 frequency and the carrier phase of the B3 frequency has been determined, directly round the calculated value of the formula (19) to determine the carrier phase of the B1 frequency and the carrier phase of the B2 frequency Wide-lane integer ambiguity Δ▽N 12 ;
步骤4、利用北斗系统卫星的B1频率载波相位与B2频率载波相位的宽巷整周模糊度,计算北斗系统卫星的B1、B2、B3载波相位整周模糊度,进而获得北斗系统用户的坐标。Step 4. Using the wide-lane integer ambiguities of B1 frequency carrier phase and B2 frequency carrier phase of Beidou system satellites, calculate the B1, B2, B3 carrier phase integer ambiguities of Beidou system satellites, and then obtain the coordinates of Beidou system users.
B1频率载波相位整周模糊度、B2频率载波相位整周模糊度和B3频率载波相位整周模糊度分别为:B1 frequency carrier phase integer ambiguity, B2 frequency carrier phase integer ambiguity and B3 frequency carrier phase integer ambiguity are respectively:
Δ▽N1=Δ▽ρ/λ1-Δ▽Φ1(20)Δ▽N 1 =Δ▽ρ/λ 1 -Δ▽Φ 1 (20)
Δ▽N2=Δ▽ρ/λ2-Δ▽Φ2(21)Δ▽N 2 =Δ▽ρ/λ 2 -Δ▽Φ 2 (21)
Δ▽N3=Δ▽ρ/λ3-Δ▽Φ3(22)Δ▽N 3 =Δ▽ρ/λ 3 -Δ▽Φ 3 (22)
根据确定的B1频率载波相位与B2频率载波相位的宽巷整周模糊度计算Δ▽ρ:Calculate Δ▽ρ according to the determined wide-lane integer ambiguities of the B1 frequency carrier phase and the B2 frequency carrier phase:
将公式(23)得到的Δ▽ρ分别带入公式(20)、(21)、(22),则得:Substitute the Δ▽ρ obtained from formula (23) into formulas (20), (21), and (22), then:
由于,λ1为0.19203m、λ2为0.24834m、λ3为0.23633m,则有:Since, λ 1 is 0.19203m, λ 2 is 0.24834m, λ 3 is 0.23633m, then:
Δ▽N1=4.4102290889·(Δ▽N12+Δ▽Φ1-Δ▽Φ2)-Δ▽Φ1 Δ▽N 1 =4.4102290889·(Δ▽N 12 +Δ▽Φ 1 -Δ▽Φ 2 )-Δ▽Φ 1
Δ▽N2=3.4102290889·(Δ▽N12+Δ▽Φ1-Δ▽Φ2)-Δ▽Φ2 Δ▽N 2 =3.4102290889·(Δ▽N 12 +Δ▽Φ 1 -Δ▽Φ 2 )-Δ▽Φ 2
Δ▽N3=3.5835327379·(Δ▽N12+Δ▽Φ1-Δ▽Φ2)-Δ▽Φ3 Δ▽N 3 =3.5835327379·(Δ▽N 12 +Δ▽Φ 1 -Δ▽Φ 2 )-Δ▽Φ 3
在B1频率载波相位与B2频率载波相位的宽巷整周模糊度Δ▽N12已经确定的情况下,对公式(24)、(25)、(26)的计算值取整即确定B1频率载波相位整周模糊度Δ▽N1、B2频率载波相位整周模糊度Δ▽N2、B3频率载波相位整周模糊度Δ▽N3;In the case that the wide-lane integer ambiguity Δ▽N 12 of the B1 frequency carrier phase and the B2 frequency carrier phase has been determined, the calculated values of the formulas (24), (25), and (26) are rounded to determine the B1 frequency carrier Phase integer ambiguity Δ▽N 1 , B2 frequency carrier phase integer ambiguity Δ▽N 2 , B3 frequency carrier phase integer ambiguity Δ▽N 3 ;
利用确定的载波相位整周模糊度计算得到北斗系统用户的坐标。图3(a)~(c)分别为计算的不同方向上的北斗系统用户坐标计算值与已知精确坐标的差值时间序列,其中(a)是E方向(东方向)北斗系统用户坐标计算值与已知精确坐标差值的时间序列;(b)是N方向(北方向)北斗系统用户坐标计算值与已知精确坐标差值的时间序列;(c)是U方向(高程方向)北斗系统用户坐标计算值与已知精确坐标差值的时间序列。E、N、U三个方向的定位结果差值为厘米级,其精度分别为E方向0.0235米,N方向0.0251米,U方向0.0403米,可以表明北斗系统用户的载波相位整周模糊度已经准确固定,能够得到高精度的用户坐标。The coordinates of Beidou system users are calculated by using the determined carrier phase integer ambiguity. Figure 3(a)~(c) are the time series of the difference between the calculated BDS user coordinates and the known precise coordinates in different directions, where (a) is the E direction (east direction) BDS user coordinate calculation The time series of the difference between the value and the known precise coordinate; (b) is the time series of the difference between the calculated value of the Beidou system user coordinates in the N direction (north direction) and the known precise coordinate; (c) is the U direction (elevation direction) Beidou The time series of the difference between the calculated value of the system user coordinates and the known precise coordinates. The difference of the positioning results in the three directions of E, N, and U is at the centimeter level, and the accuracy is 0.0235 meters in the E direction, 0.0251 meters in the N direction, and 0.0403 meters in the U direction, which can indicate that the carrier phase ambiguity of the Beidou system users is accurate. Fixed, can get high-precision user coordinates.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511008216.3A CN105572712B (en) | 2015-12-29 | 2015-12-29 | A kind of dipper system ambiguity of carrier phase determines method in real time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511008216.3A CN105572712B (en) | 2015-12-29 | 2015-12-29 | A kind of dipper system ambiguity of carrier phase determines method in real time |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105572712A true CN105572712A (en) | 2016-05-11 |
CN105572712B CN105572712B (en) | 2018-06-19 |
Family
ID=55883054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511008216.3A Active CN105572712B (en) | 2015-12-29 | 2015-12-29 | A kind of dipper system ambiguity of carrier phase determines method in real time |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105572712B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797677A (en) * | 1982-10-29 | 1989-01-10 | Istac, Incorporated | Method and apparatus for deriving pseudo range from earth-orbiting satellites |
WO2006049450A1 (en) * | 2004-11-04 | 2006-05-11 | Electronics And Telecommunications Research Institute | Method for correcting ionosphere error, and system and method for determining precision orbit using the same |
CN102650694A (en) * | 2011-02-25 | 2012-08-29 | 中国人民解放军61081部队 | Medium-long baseline ambiguity resolution method based on BeiDou four-frequency signal |
CN103728643A (en) * | 2014-01-20 | 2014-04-16 | 东南大学 | Beidou tri-band network RTK ambiguity single epoch fixing method accompanied by wide-lane constraint |
-
2015
- 2015-12-29 CN CN201511008216.3A patent/CN105572712B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4797677A (en) * | 1982-10-29 | 1989-01-10 | Istac, Incorporated | Method and apparatus for deriving pseudo range from earth-orbiting satellites |
WO2006049450A1 (en) * | 2004-11-04 | 2006-05-11 | Electronics And Telecommunications Research Institute | Method for correcting ionosphere error, and system and method for determining precision orbit using the same |
CN102650694A (en) * | 2011-02-25 | 2012-08-29 | 中国人民解放军61081部队 | Medium-long baseline ambiguity resolution method based on BeiDou four-frequency signal |
CN103728643A (en) * | 2014-01-20 | 2014-04-16 | 东南大学 | Beidou tri-band network RTK ambiguity single epoch fixing method accompanied by wide-lane constraint |
Non-Patent Citations (2)
Title |
---|
HAN S.等: ""The impact of two additional civilian GPS frequencies on ambiguity resolution strategies"", 《PROCEEDINGS OF ION ANNUAL TECHNICAL MEETING》 * |
谢恺 等: ""基于北斗三频的CIR方法和矩阵变换模糊度解算方法研究"", 《第四届中国卫星导航学术年会电子文集》 * |
Also Published As
Publication number | Publication date |
---|---|
CN105572712B (en) | 2018-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xia et al. | Assessing the latest performance of Galileo-only PPP and the contribution of Galileo to Multi-GNSS PPP | |
CN104714244B (en) | A kind of multisystem dynamic PPP calculation methods based on robust adaptable Kalman filter | |
Cai et al. | A combined GPS/GLONASS navigation algorithm for use with limited satellite visibility | |
CN104111467B (en) | Network real time kinematic (RTK) instant locating method based on big dipper tri-band wide-lane combination | |
CN108919634A (en) | A kind of three non-non-combined observation Time Transmission system and method for difference of frequency of Beidou | |
CN105607089B (en) | A kind of method of the Big Dipper common-view time transmission based on pseudorange assisted carrier phase | |
CN106569242B (en) | The mono- poor processing method of the GNSS of fixed reference star | |
CN103728643B (en) | With the Big Dipper three network RTK blur level single epoch fixing means frequently that wide lane retrains | |
CN105842720B (en) | A wide-area precise real-time positioning method based on carrier phase | |
CN105044747B (en) | Time synchronization device and method based on multi-satellite common view and filtering | |
CN107561568A (en) | The non-combined PPP RTK localization methods of the non-difference of the Big Dipper based on unified model | |
CN104483691B (en) | A kind of GNSS combines accurate one-point positioning method | |
CN105182384A (en) | Dual-mode real-time pseudo-range differential positioning system and pseudo-range correction data generation method | |
Bulbul et al. | The performance assessment of Precise Point Positioning (PPP) under various observation conditions | |
CN105158782A (en) | Wide lane ambiguity resolution method through BDS and GPS observation information fusion | |
CN104483689B (en) | Determination method for BDS reference station three-frequency carrier phase whole cycle ambiguities | |
CN103235321A (en) | GPS (global positioning system) pseudo-range positioning precision timing method | |
CN107544075A (en) | Based on Static Precise Point Positioning and harmonic analysis estimation oceanic tides loading displacement parameter method | |
CN103529482B (en) | A kind of high accuracy is determined the method for carrier dynamic acceleration | |
Luo et al. | Results of real-time kinematic positioning based on real GPS L5 data | |
Tang et al. | Performance analysis of ionosphere monitoring with BeiDou CORS observational data | |
CN105510946B (en) | A kind of BDS satellite carriers Phase integer ambiguity fast resolution algorithm | |
CN103543454B (en) | A kind of Satellite Orbit Determination system being embedded in wireless network | |
CN105510945A (en) | PPP positioning method applied to satellite navigation landing outfield detection | |
Naumov et al. | Methods and software for estimation of total electron content in ionosphere using GNSS observations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |