CN105572651A - CFAR detection method based on clutter background statistical recognition - Google Patents
CFAR detection method based on clutter background statistical recognition Download PDFInfo
- Publication number
- CN105572651A CN105572651A CN201511023623.1A CN201511023623A CN105572651A CN 105572651 A CN105572651 A CN 105572651A CN 201511023623 A CN201511023623 A CN 201511023623A CN 105572651 A CN105572651 A CN 105572651A
- Authority
- CN
- China
- Prior art keywords
- cfar
- detection
- distribution
- background
- beta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 134
- 238000009826 distribution Methods 0.000 claims abstract description 91
- 238000001228 spectrum Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 13
- 230000001186 cumulative effect Effects 0.000 claims description 16
- 238000005315 distribution function Methods 0.000 claims description 16
- 238000010606 normalization Methods 0.000 claims description 12
- 238000009795 derivation Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 238000007476 Maximum Likelihood Methods 0.000 claims description 2
- 235000013350 formula milk Nutrition 0.000 claims 13
- 230000004069 differentiation Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 8
- 238000005192 partition Methods 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 101100269618 Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) aliA gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/414—Discriminating targets with respect to background clutter
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
一种基于杂波背景统计识别的CFAR检测方法,本发明涉及基于杂波背景统计识别的CFAR检测方法。本发明的目的是为了解决现有实际检测背景统计不再满足高斯背景的时候会引起检测器性能下降以及实际检测背景不再是均匀分布,引起虚警率上升或者检测概率下降的问题。具体过程为:一、开始;二、输入数据RD谱;三、对二中的RD谱进行KL散度分区,得到分区后的数据;四、对分区后的数据进行参数估计,得到估计的参数;五、利用估计的参数将背景归一化转换成指数分布,得到归一化后的检测背景;六、对归一化后的检测背景进行CFAR检测,得出CFAR检测结果。本发明应用于复杂杂波背景下目标检测处理领域。
A CFAR detection method based on clutter background statistical recognition, the invention relates to a CFAR detection method based on clutter background statistical recognition. The purpose of the present invention is to solve the problem that when the existing actual detection background statistics no longer satisfy the Gaussian background, the performance of the detector will decrease and the actual detection background is no longer uniformly distributed, causing the false alarm rate to increase or the detection probability to decrease. The specific process is: 1. Start; 2. Input the RD spectrum of the data; 3. Perform KL divergence partition on the RD spectrum in 2 to obtain the partitioned data; 4. Perform parameter estimation on the partitioned data to obtain the estimated parameters 5. Using the estimated parameters to normalize the background into an exponential distribution to obtain a normalized detection background; 6. Perform CFAR detection on the normalized detection background to obtain a CFAR detection result. The invention is applied in the field of target detection and processing under complex clutter background.
Description
技术领域technical field
本发明涉及基于杂波背景统计识别的CFAR检测方法。The invention relates to a CFAR detection method based on clutter background statistical recognition.
背景技术Background technique
传统的CFAR检测是基于高斯背景、杂波统计独立的假设下。存在的问题是当实际检测背景统计不再满足高斯背景的时候会引起检测器性能的急剧下降。Traditional CFAR detection is based on the assumption of Gaussian background and clutter statistical independence. The problem is that when the actual detection background statistics no longer satisfy the Gaussian background, the performance of the detector will drop sharply.
基于高斯背景的CFAR算法分为两大类:均值(meanlevel,ML)类CFAR检测器和有序统计(orderedstatistics,OS)类CFAR检测器。其中均值类恒虚警检测器包含CA、GO、OS-CFAR检测算法。在均匀的杂波背景中,CA-CFAR能实现最优检测,但是在非均匀环境中性能下降。GO-CFAR能改善在杂波边缘情况下的检测性能,则SO-CFAR具有较好的抗干扰能力。在多目标环境中,OS类检测算法有优于均值类CFAR的检测性能。传统的CFAR检测背景是基于高斯背景、杂波统计独立的假设下。传统CFAR算法存在的问题有两个:一是实际检测背景分布不再满足指数分布(回波服从高斯分布,经包络检波器输出为瑞利分布,平方律检波输出为指数分布),杂波实际分布与检测器设计模型的失配,若利用传统CFAR检测器会引起检测器的检测性能下降;二是实际检测背景不再是均匀分布,背景分布复杂,在该背景下检测目标时,必然会带来性能损失,引起虚警率上升或者检测概率下降。从雷达系统来看,常常希望实际的虚警概率在设定值附近,不希望虚警概率发生剧烈变化。CFAR algorithms based on Gaussian background are divided into two categories: mean level (ML) CFAR detectors and ordered statistics (OS) CFAR detectors. Among them, the average constant false alarm detector includes CA, GO, and OS-CFAR detection algorithms. In uniform clutter backgrounds, CA-CFAR achieves optimal detection, but its performance degrades in non-uniform environments. GO-CFAR can improve the detection performance in the edge case of clutter, and SO-CFAR has better anti-interference ability. In the multi-target environment, the detection performance of the OS class detection algorithm is better than that of the mean class CFAR. The traditional CFAR detection background is based on the assumption that the Gaussian background and clutter statistics are independent. There are two problems in the traditional CFAR algorithm: one is that the actual detection background distribution no longer satisfies the exponential distribution (the echo obeys Gaussian distribution, the output of the envelope detector is Rayleigh distribution, and the output of square law detection is exponential distribution), and the clutter The mismatch between the actual distribution and the design model of the detector, if the traditional CFAR detector is used, the detection performance of the detector will decrease; the second is that the actual detection background is no longer a uniform distribution, and the background distribution is complex. When detecting targets in this background, it is inevitable It will bring performance loss, cause the false alarm rate to increase or the detection probability to decrease. From the perspective of the radar system, it is often hoped that the actual false alarm probability is near the set value, and the false alarm probability does not want to change drastically.
发明内容Contents of the invention
本发明的目的是为了解决现有实际检测背景统计不再满足高斯背景的时候会引起检测器性能下降以及实际检测背景不再是均匀分布,引起虚警率上升或者检测概率下降的问题,而提出的一种基于杂波背景统计识别的CFAR(恒虚警)检测方法。The purpose of the present invention is to solve the problem that when the existing actual detection background statistics no longer satisfy the Gaussian background, the performance of the detector will decrease and the actual detection background is no longer uniformly distributed, causing the false alarm rate to increase or the detection probability to decrease. A CFAR (constant false alarm) detection method based on clutter background statistical recognition.
上述的发明目的是通过以下技术方案实现的:Above-mentioned purpose of the invention is achieved through the following technical solutions:
步骤一、开始;Step 1. Start;
步骤二、输入数据RD谱;Step 2, input data RD spectrum;
步骤三、对步骤二中的RD谱进行KL散度分区,得到分区后的数据;Step 3, performing KL divergence partitioning on the RD spectrum in step 2 to obtain partitioned data;
步骤四、对分区后的数据进行参数估计,得到估计的参数;Step 4, performing parameter estimation on the partitioned data to obtain estimated parameters;
步骤五、利用估计的参数将背景归一化转换成指数分布,得到归一化后的检测背景;Step 5, using the estimated parameters to normalize the background into an exponential distribution to obtain a normalized detection background;
步骤六、对归一化后的检测背景进行CFAR检测,得出CFAR检测结果。Step 6: Perform CFAR detection on the normalized detection background to obtain a CFAR detection result.
发明效果Invention effect
本发明结合KL散度分区和检测背景统计估计提出一种新的检测方法,对检测背景进行分割、杂波识别和参数估计,并进行归一化处理,可以很好地控制复杂杂波环境下的虚警概率。The present invention combines KL divergence partition and detection background statistical estimation to propose a new detection method, which can segment the detection background, identify clutter and estimate parameters, and perform normalization processing, which can well control the complex clutter environment. probability of false alarm.
本实验利用实测数据处理得到的分布参数分别仿真均匀区(背景杂波服从威布尔分布),杂波区(背景杂波服从对数正态分布)以及杂波边缘(参考单元分布特性不同,一部分服从威布尔分布,另一部分服从对数正态分布)这三种情况,通过比较传统CA(单元平均)、GO(最大选择)、SO(最小选择)、OS(有序统计)-CFAR、对数正态分布下的Log-t和基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率、实际虚警概率以及实际虚警概率相同下的检测概率性能来验证算法。In this experiment, the distribution parameters obtained by processing the measured data are used to simulate the uniform area (the background clutter obeys the Weibull distribution), the clutter area (the background clutter obeys the lognormal distribution) and the clutter edge (the distribution characteristics of the reference units are different, and some subject to Weibull distribution, and the other part obeys lognormal distribution), by comparing the traditional CA (unit average), GO (maximum choice), SO (minimum choice), OS (ordered statistics)-CFAR, pair The Log-t under the normal distribution of numbers and the detection probability of CA, GO, SO, OS-CFAR estimated based on detection background statistics, the actual false alarm probability and the detection probability performance under the same actual false alarm probability are used to verify the algorithm.
结果如图1至图9、表1至表3所示。在均匀区域,基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率优于传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t,结果如图1,传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t的实际虚警概率比基于检测背景统计估计的CA、GO、SO、OS-CFAR检测器低,但是基于检测背景统计估计的检测器能够保持在设定虚警0.01左右,结果如表1所示;存在干扰目标的情况下,只有基于检测背景统计估计的OS-CFAR和传统OS-CFAR能保持稳定的检测性能,不受干扰目标的影响,结果如图2至图3所示;在相同的实际虚警概率下,基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率和传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t相同,结果如图4所示。在杂波区域,虽然基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率相较于传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t没有改善,结果如图5,但是传统CA、GO、SO、OS-CFAR实际虚警概率较高,基于检测背景统计估计的CA、GO、SO、OS-CFAR能保持虚警在设定的值0.01左右,结果如表2所示;存在干扰目标的情况下,只有基于检测背景统计估计OS-CFAR和传统OS-CFAR能保持稳定的检测性能,不受干扰目标的影响,结果如图6至图7所示;相同的虚警概率下,基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率和传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t相同,结果如图8所示。在杂波边缘情况下,考虑两种情况,一是待检测单元在均匀区域,二是检测单元在杂波区域,当检测单元在均匀区域,基于检测背景统计估计的检测器的检测性能提高,结果如图9所示,当检测单元在杂波区域,基于检测背景统计估计能很好的降低虚警概率,结果如表3所示。通过仿真分析,当实际检测背景与检测器模型不匹配时,检测器的性能下降,基于背景统计估计将实际模型转换为检测器假定模型,实际虚警概率等于理论的虚警概率,保持恒虚警,具有很好的鲁棒性。因此基于杂波背景统计识别的CFAR检测达到最初设定的目标性能。The results are shown in Figures 1 to 9 and Tables 1 to 3. In the homogeneous area, the detection probability of CA, GO, SO, and OS-CFAR estimated based on detection background statistics is better than that of traditional CA, GO, SO, OS-CFAR, and Log-t under lognormal distribution. The results are shown in Figure 1 , the actual false alarm probability of Log-t under traditional CA, GO, SO, OS-CFAR, and lognormal distribution is lower than that of CA, GO, SO, OS-CFAR detectors estimated based on detection background statistics, but based on detection The detector based on background statistical estimation can keep the false alarm at about 0.01, and the results are shown in Table 1. In the case of interference targets, only OS-CFAR based on detection background statistical estimation and traditional OS-CFAR can maintain stable detection Performance, not affected by interference targets, the results are shown in Figure 2 to Figure 3; under the same actual false alarm probability, the detection probabilities of CA, GO, SO, and OS-CFAR estimated based on detection background statistics are comparable to those of traditional CA, The Log-t under GO, SO, OS-CFAR, and lognormal distribution are the same, and the results are shown in Figure 4. In the clutter area, although the detection probabilities of CA, GO, SO, and OS-CFAR estimated based on the detection background statistics are not improved compared with the Log-t under the traditional CA, GO, SO, OS-CFAR, and lognormal distribution , the results are shown in Figure 5, but the actual false alarm probability of traditional CA, GO, SO, and OS-CFAR is relatively high, and the CA, GO, SO, and OS-CFAR estimated based on the detection background statistics can keep the false alarm at the set value of about 0.01 , the results are shown in Table 2; in the presence of interfering targets, only OS-CFAR and traditional OS-CFAR based on detection background statistics can maintain stable detection performance and are not affected by interfering targets. The results are shown in Figures 6 to 7 Shown; under the same false alarm probability, the detection probability of CA, GO, SO, OS-CFAR estimated based on detection background statistics and the Log-t under the traditional CA, GO, SO, OS-CFAR, lognormal distribution Same, the result is shown in Figure 8. In the case of clutter edges, two cases are considered. One is that the unit to be detected is in the uniform area, and the other is that the detection unit is in the clutter area. When the detection unit is in the uniform area, the detection performance of the detector based on the statistical estimation of the detection background is improved. The results are shown in Figure 9. When the detection unit is in the clutter area, the statistical estimation based on the detection background can reduce the false alarm probability very well. The results are shown in Table 3. Through simulation analysis, when the actual detection background does not match the detector model, the performance of the detector will decline. Based on the background statistical estimation, the actual model is converted into the detector assumption model. The actual false alarm probability is equal to the theoretical false alarm probability, and the constant false alarm is maintained. It has good robustness. Therefore, CFAR detection based on statistical recognition of clutter background achieves the originally set target performance.
表1均匀区域各种检测器实际虚警概率(设定虚警概率Pfa=0.01)Table 1 Actual false alarm probability of various detectors in uniform area (set false alarm probability Pfa=0.01)
表2杂波区域各种检测器实际虚警概率(设定虚警概率Pfa=0.01)Table 2 The actual false alarm probability of various detectors in the clutter area (set false alarm probability Pfa=0.01)
表3杂波边缘区域2(检测单元在杂波区域)各种检测器实际虚警概率(设定虚警概率Pfa=0.01)Table 3 The actual false alarm probability of various detectors in the clutter edge area 2 (the detection unit is in the clutter area) (set the false alarm probability Pfa=0.01)
附图说明Description of drawings
图1为均匀区域各CFAR检测器性能对比图,图中CA-CFAR为单元平均恒虚警检测、GO-CFAR为最大选择恒虚警检测、SO-CFAR为最小选择恒虚警检测、OS-CFAR为有序统计恒虚警检测、logt-CFAR为对数正态分布下的Log-t检测器;Figure 1 is a performance comparison chart of CFAR detectors in a uniform area. In the figure, CA-CFAR is the unit average CFAR detection, GO-CFAR is the maximum selection CFAR detection, SO-CFAR is the minimum selection CFAR detection, OS-CFAR CFAR is an ordered statistical constant false alarm detection, and logt-CFAR is a Log-t detector under a lognormal distribution;
图2为存在一个干扰目标均匀区域CFAR仿真性能对比图;Figure 2 is a CFAR simulation performance comparison diagram in a uniform area with an interference target;
图3为存在两个干扰目标均匀区域CFAR仿真性能对比图;Figure 3 is a CFAR simulation performance comparison diagram in a uniform area with two interference targets;
图4为相同实测虚警下均匀区域CFAR检测器性能对比图;Figure 4 is a performance comparison diagram of the uniform area CFAR detector under the same measured false alarm;
图5为杂波区域CFAR检测器性能对比图;Figure 5 is a performance comparison diagram of the CFAR detector in the clutter area;
图6为存在一个干扰目标杂波区域CFAR仿真性能对比图;Figure 6 is a CFAR simulation performance comparison diagram in an interference target clutter area;
图7为存在两个干扰目标杂波区域CFAR仿真性能对比图;Figure 7 is a CFAR simulation performance comparison diagram in two interference target clutter areas;
图8为相同实测虚警下杂波区域CFAR检测器性能对比图;Figure 8 is a performance comparison diagram of the CFAR detector in the clutter area under the same measured false alarm;
图9为杂波边缘区域1(检测单元在均匀区域)各种检测器性能图;Fig. 9 is a performance diagram of various detectors in the clutter edge area 1 (the detection unit is in the uniform area);
图10为本发明流程图;Fig. 10 is a flowchart of the present invention;
图11为KL散度分区简要流程图;Figure 11 is a brief flowchart of KL divergence partition;
图12为5*5的正方形参考滑窗示意图。Fig. 12 is a schematic diagram of a 5*5 square reference sliding window.
具体实施方式detailed description
具体实施方式一:结合图10说明本实施方式,本实施方式的一种基于杂波背景统计识别的CFAR检测方法,具体是按照以下步骤制备的:Specific embodiment 1: This embodiment is described in conjunction with FIG. 10. A CFAR detection method based on clutter background statistical recognition in this embodiment is specifically prepared according to the following steps:
步骤一、开始;Step 1. Start;
步骤二、输入数据RD谱;Step 2, input data RD spectrum;
步骤三、对步骤二中的RD谱进行KL散度(相对熵)分区,得到分区后的数据;Step 3, carry out KL divergence (relative entropy) partition to the RD spectrum in step 2, obtain the data after partition;
步骤四、对分区后的数据进行参数估计,得到估计的参数;Step 4, performing parameter estimation on the partitioned data to obtain estimated parameters;
步骤五、利用估计的参数将背景归一化转换成指数分布,得到归一化后的检测背景;Step 5, using the estimated parameters to normalize the background into an exponential distribution to obtain a normalized detection background;
步骤六、对归一化后的检测背景进行CFAR检测,得出CFAR检测结果。Step 6: Perform CFAR detection on the normalized detection background to obtain a CFAR detection result.
具体实施方式二:本实施方式与具体实施方式一不同的是:所述步骤二中输入数据RD谱;具体过程为:Specific embodiment two: the difference between this embodiment and specific embodiment one is: the input data RD spectrum in the step two; the specific process is:
用matlab软件载入数据RD谱。Load the data RD spectrum with matlab software.
其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as those in Embodiment 1.
具体实施方式三:本实施方式与具体实施方式一或二不同的是:所述步骤三中对步骤二中的RD谱进行KL散度(相对熵)分区,得到分区后的数据;如图11,具体过程为:Specific embodiment three: the difference between this embodiment and specific embodiment one or two is: the RD spectrum in the step 2 is carried out KL divergence (relative entropy) partition in the described step 3, obtains the data after the partition; As shown in Figure 11 , the specific process is:
KL散度是通过计算两个概率分布P和Q之间差异,实现对不同概率分布数据的区分;KL divergence is to distinguish the data of different probability distributions by calculating the difference between the two probability distributions P and Q;
对平方律检波,假设任何一个距离-多普勒单元服从指数分布,其PDF(概率密度函数)为For square-law detection, assuming that any range-Doppler unit obeys an exponential distribution, its PDF (probability density function) is
式中:p(x)为概率密度函数,β是幅度均值,x是距离-多普勒单元,α是中心偏移量;where: p(x) is the probability density function, β is the mean amplitude, x is the range-Doppler unit, and α is the center offset;
均值μx和方差通过下面的式子计算mean μ x and variance Calculated by the following formula
基于公式(1)、(2)、(3),利用测量的标准差σx来辨别背景分布类型(不同的背景分布类型的PDF不同);因此利用σx作为一个测度来分类背景;K-L散度定义为任意两种分布相异性量度,采用这一准则来衡量两个距离-多普勒单元的分布差异性;因此,同一参考滑窗中的服从不同分布的两个独立单元的定向距离定义为:Based on the formulas (1), (2), and (3), the standard deviation σ x of the measurement is used to identify the background distribution type (the PDF of different background distribution types is different); therefore, σ x is used as a measure to classify the background; KL scatter The degree is defined as the measure of the dissimilarity between any two distributions, and this criterion is used to measure the dissimilarity of the distributions of two range-Doppler units; thus, the directional range definition for:
式中,p1(x)是第i个距离-多普勒单元的概率密度函数,α1是第i个距离-多普勒单元的中心偏移量,β1是第i个距离-多普勒单元的幅度均值,p2(x)是第j个距离-多普勒单元的概率密度函数,α2是第j个距离-多普勒单元的中心偏移量,β2是第j个距离-多普勒单元的幅度均值,i、j取值为任意正整数;where p 1 (x) is the probability density function of the i-th range-Doppler unit, α 1 is the center offset of the i-th range-Doppler unit, and β 1 is the i-th range-Doppler The amplitude mean value of the Doppler unit, p 2 (x) is the probability density function of the j-th Range-Doppler unit, α 2 is the center offset of the j-th Range-Doppler unit, β 2 is the j-th range-Doppler unit amplitude mean value, i, j are any positive integer;
假设两个分布p1(x)和p2(x)有相同参数αi,KL表达式可以写成标准差的函数Assuming that two distributions p 1 (x) and p 2 (x) have the same parameter α i , the KL expression can be written as a function of the standard deviation
式中,I(p1(x),p2(x))是标准差的函数,σ1是分布p1(x)的标准差,σ2分布p2(x)的标准差;In the formula, I(p 1 (x), p 2 (x)) is a function of standard deviation, σ 1 is the standard deviation of distribution p 1 (x), σ 2 is the standard deviation of distribution p 2 (x);
在实际情况中,对每一个单元估计它的方差值是很困难的。因此,考虑到所有单元的分布是独立的,利用整个背景的估计方差和参考窗内所有单元的方差之间的距离来代替。In practice, it is very difficult to estimate the variance value of each unit. Therefore, considering that the distributions of all units are independent, the distance between the estimated variance of the entire background and the variance of all units within the reference window is used instead.
步骤三一、如图11,取RD谱数据中以每个距离-多普勒单元(P)为中心的正方形参考滑窗,取N*N(N为奇数,比如5*5或者9*9的滑窗,本专利中取5*5的滑窗),*为乘号;如图12;Step 31, as shown in Figure 11, take the square reference sliding window centered on each range-Doppler unit (P) in the RD spectrum data, and take N*N (N is an odd number, such as 5*5 or 9*9 The sliding window, the sliding window of 5*5 is taken in this patent), * is the multiplication sign; As shown in Figure 12;
步骤三二、计算正方形参考滑窗的方差(利用matlab函数std2计算),代替正方形参考滑窗中心单元的方差;Step 32, calculate the variance of the square reference sliding window (using matlab function std2 to calculate), replace the variance of the square reference sliding window center unit;
步骤三三、计算整个RD谱数据的方差;Step 33, calculating the variance of the entire RD spectral data;
步骤三四、根据步骤三二和步骤三三计算每一个距离-多普勒单元的KL散度;Steps three and four, calculating the KL divergence of each range-Doppler unit according to steps three and two and three and three;
步骤三五、当KL散度小于设定的阈值ξ,将这一区域称为杂波区域并标记,当KL散度大于设定的阈值ξ,将这一区域称为均匀区域并标记,将检测背景分为均匀区域和杂波区域。其它步骤及参数与具体实施方式一或二相同。Step 35. When the KL divergence is smaller than the set threshold ξ, this area is called a clutter area and marked, and when the KL divergence is greater than the set threshold ξ, this area is called a uniform area and marked, and the The detection background is divided into uniform area and clutter area. Other steps and parameters are the same as those in Embodiment 1 or Embodiment 2.
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:所述步骤四中对分区后的数据进行参数估计,得到估计的参数;具体过程为:Embodiment 4: This embodiment differs from Embodiment 1 to Embodiment 3 in that: in step 4, perform parameter estimation on the partitioned data to obtain estimated parameters; the specific process is:
利用最大似然估计方法得到不同区域的参数。The parameters of different regions are obtained by using the maximum likelihood estimation method.
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as those in Embodiments 1 to 3.
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:所述步骤五中利用估计的参数将背景归一化转换成指数分布,得到归一化后的检测背景;具体过程为:Specific embodiment five: the difference between this embodiment and one of the specific embodiments one to four is: in the step five, the estimated parameters are used to normalize the background and convert it into an exponential distribution to obtain the normalized detection background; the specific process for:
设随机变量(本专利指Weibull分布和Log-normal分布)X的累积分布函数为F,指数分布随机变量Y的累积分布函数为G,则G-1(F(X))服从指数分布;Let the cumulative distribution function of the random variable (this patent refers to Weibull distribution and Log-normal distribution) X be F, and the cumulative distribution function of the exponentially distributed random variable Y be G, then G -1 (F(X)) obeys the exponential distribution;
Weibull分布的累积分布函数如下:The cumulative distribution function of the Weibull distribution is as follows:
式中,F1(x)是Weibull分布的累积分布函数,B和C分别是Weibull分布的尺度参数和形状参数;In the formula, F 1 (x) is the cumulative distribution function of Weibull distribution, B and C are the scale parameter and shape parameter of Weibull distribution respectively;
Log-normal分布的累积分布函数如下:The cumulative distribution function of the Log-normal distribution is as follows:
其中,F2(x)是Log-normal分布的累积分布函数,erf是误差函数,μ和σ分别是Log-normal分布的尺度参数和形状参数;Among them, F 2 (x) is the cumulative distribution function of Log-normal distribution, erf is the error function, μ and σ are the scale parameter and shape parameter of Log-normal distribution, respectively;
指数分布的累积分布函数如下:The cumulative distribution function of the exponential distribution is as follows:
其中,F3(x)是指数分布的累积分布函数,β3为指数分布的均值参数;Among them, F 3 (x) is the cumulative distribution function of the exponential distribution, and β 3 is the mean parameter of the exponential distribution;
可通过公式(6)和公式(8)将Weibull分布归一化转换为指数分布,推导变换公式如下:The Weibull distribution can be normalized and transformed into an exponential distribution through formula (6) and formula (8), and the derivation transformation formula is as follows:
其中,xexp为雷达回波距离-多普勒幅度谱中的均匀区域数据单元经双参数归一化之后的幅度值,x1为检测背景中均匀区域数据,B1和C1分别表示均匀区域数据Weibull分布估计的尺度参数和形状参数,在实际转换中取β3=1。Among them, x exp is the amplitude value of the uniform area data unit in the radar echo distance-Doppler amplitude spectrum normalized by double parameters, x 1 is the uniform area data in the detection background, B 1 and C 1 represent the uniform area data respectively The scale parameters and shape parameters estimated by the Weibull distribution of regional data take β 3 =1 in actual conversion.
可通过公式(7)和公式(8)将Log-normal分布归一化转化为指数分布,推导变换公式如下:The Log-normal distribution can be normalized and transformed into an exponential distribution through formula (7) and formula (8), and the derivation transformation formula is as follows:
其中,xexp1为RD谱中杂波区域数据单元经双参数归一化之后的幅度值,x2为检测背景中的杂波区域数据单元,μ2和σ2分别表示杂波区域对数正态分布估计的尺度参数和形状参数,在实际转换中取β3=1;Among them, x exp1 is the amplitude value of the clutter area data unit in the RD spectrum after double-parameter normalization, x 2 is the clutter area data unit in the detection background, μ 2 and σ 2 represent the logarithm positive of the clutter area respectively. The scale parameters and shape parameters estimated by the state distribution, take β 3 =1 in the actual conversion;
把距离-多普勒幅度谱中均匀区域数据和杂波区域数据分别由Weibull(威布尔)分布和Log-normal(对数正态)分布转换归一化成为指数分布。The uniform area data and the clutter area data in the range-Doppler amplitude spectrum are transformed into exponential distribution by Weibull (Weibull) distribution and Log-normal (log-normal) distribution respectively.
其它步骤及参数与具体实施方式一至四之一相同。Other steps and parameters are the same as in one of the specific embodiments 1 to 4.
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:所述步骤六中对归一化后的检测背景进行CFAR检测,得出CFAR检测结果;具体过程为:Specific embodiment six: the difference between this embodiment and one of specific embodiments one to five is that: in the step six, CFAR detection is performed on the normalized detection background, and the CFAR detection result is obtained; the specific process is:
采用CA-CFAR(单元平均恒虚警检测)、GO-CFAR(最大选择恒虚警检测)、SO-CFAR(最小选择恒虚警检测)、OS-CFAR(有序统计恒虚警检测)中任意一种即可得出CFAR检测结果。Using CA-CFAR (unit average constant false alarm detection), GO-CFAR (maximum selection constant false alarm detection), SO-CFAR (minimum selection constant false alarm detection), OS-CFAR (ordered statistical constant false alarm detection) Any one can get the CFAR test result.
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the specific embodiments 1 to 5.
采用以下实施例验证本发明的有益效果:Adopt the following examples to verify the beneficial effects of the present invention:
实施例一:Embodiment one:
本实施例一种基于杂波背景统计识别的CFAR检测方法具体是按照以下步骤制备的:In this embodiment, a CFAR detection method based on clutter background statistical recognition is specifically prepared according to the following steps:
本实验利用实测数据处理得到的分布参数分别仿真均匀区(背景杂波服从Weibull分布),杂波区(背景杂波服从对数正态分布)以及杂波边缘(参考单元分布特性不同,一部分服从Weibull分布,另一部分服从对数正态分布)这三种情况,通过比较传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t和基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率、实际虚警概率以及实际虚警概率相同下的检测概率性能来验证算法。In this experiment, the distribution parameters obtained by processing the measured data are used to simulate the uniform area (the background clutter obeys the Weibull distribution), the clutter area (the background clutter obeys the lognormal distribution) and the clutter edge (the distribution characteristics of the reference units are different, and some of them obey the Weibull distribution, the other part obeys the lognormal distribution) in these three cases, by comparing the Log-t under the traditional CA, GO, SO, OS-CFAR, lognormal distribution and the CA, GO based on the statistical estimation of the detection background , SO, OS-CFAR detection probability, the actual false alarm probability and the detection probability performance under the same actual false alarm probability to verify the algorithm.
结果如图1至图9、表1至表3所示。在均匀区域,基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率优于传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t,并且基于检测背景统计估计的检测器能够保持在设定虚警,结果如图1、表1所示;存在干扰目标的情况下,只有基于检测背景统计估计的OS-CFAR能保持稳定的检测性能,基于检测背景统计估计的SO-CFAR其次,结果如图2至图3所示;在相同的虚警概率下,基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率和传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t相同,结果如图4所示。在杂波区域,虽然基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率相较于传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t没有改善,但是传统CA、GO、SO、OS-CFAR虚警概率较高,基于检测背景统计估计的CA、GO、SO、OS-CFAR能保持虚警在设定的值,结果如图5、表2所示;存在干扰目标的情况下,只有基于检测背景统计估计OS-CFAR能保持稳定的检测性能,基于检测背景统计估计SO-CFAR其次,结果如图6至图7所示;相同的虚警概率下,基于检测背景统计估计的CA、GO、SO、OS-CFAR的检测概率和传统CA、GO、SO、OS-CFAR、对数正态分布下的Log-t相同,结果如图8所示。在杂波边缘情况下,考虑两种情况,一是待检测单元在均匀区域,二是检测单元在杂波区域,当检测单元在均匀区域,基于检测背景统计估计的检测器的检测性能提高,在杂波区域,基于检测背景统计估计能很好的降低虚警概率,结果如图9、表3所示。通过仿真分析,当实际检测背景与检测器模型不匹配时,检测器的性能下降,基于背景统计估计将实际模型转换为检测器假定模型,实际虚警概率等于理论的虚警概率,保持恒虚警,具有很好的鲁棒性。因此基于杂波背景统计识别的CFAR检测达到最初设定的目标性能。The results are shown in Figures 1 to 9 and Tables 1 to 3. In the uniform area, the detection probability of CA, GO, SO, and OS-CFAR estimated based on the detection background statistics is better than the Log-t under the traditional CA, GO, SO, OS-CFAR, and lognormal distribution, and based on the detection background The statistically estimated detector can maintain the set false alarm, the results are shown in Figure 1 and Table 1; in the case of interference targets, only the OS-CFAR based on the statistical estimation of the detection background can maintain stable detection performance, and based on the detection background Statistically estimated SO-CFAR is second, and the results are shown in Figures 2 to 3; under the same false alarm probability, the detection probabilities of CA, GO, SO, and OS-CFAR estimated based on detection background statistics are comparable to traditional CA, GO, The Log-t under SO, OS-CFAR, and lognormal distribution are the same, and the results are shown in Figure 4. In the clutter area, although the detection probabilities of CA, GO, SO, and OS-CFAR estimated based on the detection background statistics are not improved compared with the Log-t under the traditional CA, GO, SO, OS-CFAR, and lognormal distribution , but traditional CA, GO, SO, and OS-CFAR have higher false alarm probability. CA, GO, SO, and OS-CFAR estimated based on detection background statistics can keep the false alarm at the set value. The results are shown in Figure 5 and Table 2 As shown; in the case of interfering targets, only OS-CFAR based on detection background statistics can maintain stable detection performance, and SO-CFAR based on detection background statistics is second. The results are shown in Figures 6 to 7; the same false alarm Under probability, the detection probabilities of CA, GO, SO, and OS-CFAR estimated based on detection background statistics are the same as the Log-t under traditional CA, GO, SO, OS-CFAR, and lognormal distribution. The results are shown in Figure 8 Show. In the case of clutter edges, two cases are considered. One is that the unit to be detected is in the uniform area, and the other is that the detection unit is in the clutter area. When the detection unit is in the uniform area, the detection performance of the detector based on the statistical estimation of the detection background is improved. In the clutter area, statistical estimation based on the detection background can reduce the false alarm probability very well, and the results are shown in Figure 9 and Table 3. Through simulation analysis, when the actual detection background does not match the detector model, the performance of the detector will decline. Based on the background statistical estimation, the actual model is converted into the detector assumption model. The actual false alarm probability is equal to the theoretical false alarm probability, and the constant false alarm is maintained. It has good robustness. Therefore, CFAR detection based on statistical recognition of clutter background achieves the originally set target performance.
表1均匀区域各种检测器实际虚警概率(设定虚警概率Pfa=0.01)Table 1 Actual false alarm probability of various detectors in uniform area (set false alarm probability Pfa=0.01)
表2杂波区域各种检测器实际虚警概率(设定虚警概率Pfa=0.01)Table 2 The actual false alarm probability of various detectors in the clutter area (set false alarm probability Pfa=0.01)
表3杂波边缘区域2(检测单元在杂波区域)各种检测器实际虚警概率(设定虚警概率Pfa=0.01)Table 3 The actual false alarm probability of various detectors in the clutter edge area 2 (the detection unit is in the clutter area) (set the false alarm probability Pfa=0.01)
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all Should belong to the scope of protection of the appended claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511023623.1A CN105572651A (en) | 2015-12-30 | 2015-12-30 | CFAR detection method based on clutter background statistical recognition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511023623.1A CN105572651A (en) | 2015-12-30 | 2015-12-30 | CFAR detection method based on clutter background statistical recognition |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105572651A true CN105572651A (en) | 2016-05-11 |
Family
ID=55883000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511023623.1A Pending CN105572651A (en) | 2015-12-30 | 2015-12-30 | CFAR detection method based on clutter background statistical recognition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105572651A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019391A (en) * | 2016-06-15 | 2016-10-12 | 中国人民解放军第四军医大学 | Omnidirectional biological radar-based two-dimensional CA-CFAR (cell average-constant false-alarm rate) human body random motion detection method |
CN106872957A (en) * | 2017-03-30 | 2017-06-20 | 安徽工程大学 | A kind of object detection method |
CN107340507A (en) * | 2016-08-04 | 2017-11-10 | 上海无线电设备研究所 | A kind of constant false alarm rate Subarea detecting method |
CN107678008A (en) * | 2017-09-07 | 2018-02-09 | 西安电子工程研究所 | A kind of plural clutter map CFAR detection method |
CN109143195A (en) * | 2018-09-19 | 2019-01-04 | 中国人民解放军国防科技大学 | Radar target detection method based on full KL divergence |
CN110596651A (en) * | 2019-09-06 | 2019-12-20 | 厦门大学 | A method of radar detection |
CN111562569A (en) * | 2020-04-21 | 2020-08-21 | 哈尔滨工业大学 | Weighted group sparse constraint-based multi-target constant false alarm detection method under Weibull background |
CN111624571A (en) * | 2020-05-19 | 2020-09-04 | 哈尔滨工业大学 | Non-uniform Weibull background statistical distribution parameter estimation method based on self-adaptive tight frame |
CN111693961A (en) * | 2020-06-15 | 2020-09-22 | 哈尔滨工业大学 | CFAR detector based on KL divergence unit screening |
WO2020191711A1 (en) * | 2019-03-28 | 2020-10-01 | Baidu.Com Times Technology (Beijing) Co., Ltd. | A camera-based low-cost lateral position calibration method for level-3 autonomous vehicles |
CN111948613A (en) * | 2020-08-25 | 2020-11-17 | 自然资源部第一海洋研究所 | Ship-borne ground wave radar target detection method based on self-adaptive background area selection |
CN111999715A (en) * | 2020-09-02 | 2020-11-27 | 中国人民解放军海军航空大学 | Target knowledge-assisted adaptive fusion detection method under heterogeneous clutter |
CN113189573A (en) * | 2021-04-21 | 2021-07-30 | 中国电子科技集团公司第五十四研究所 | Phased array search radar sea surface target detection method |
CN113552550A (en) * | 2021-07-16 | 2021-10-26 | 清华大学 | Intelligent constant false alarm detection method based on probability distribution difference |
CN113589251A (en) * | 2021-07-29 | 2021-11-02 | 上海无线电设备研究所 | Unit average constant false alarm detection method after Mean-Shift echo clustering |
CN114994628A (en) * | 2022-05-26 | 2022-09-02 | 哈尔滨工业大学 | Multi-strategy CFAR (computational fluid dynamics) detection method for beyond-the-horizon radar based on background perception |
JP2023519529A (en) * | 2021-01-15 | 2023-05-11 | ヂェァジァン ユニバーシティ | A Multi-Target Constant False Alarm Probability Detection Method Based on Signal Proxy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101329400A (en) * | 2008-07-30 | 2008-12-24 | 电子科技大学 | A Constant False Alarm Detection Method for Radar Targets Based on Goodness-of-Fitness Test |
JP2011122839A (en) * | 2009-12-08 | 2011-06-23 | Mitsubishi Electric Corp | Radar system |
CN102141610A (en) * | 2010-12-23 | 2011-08-03 | 哈尔滨工业大学 | Range-Doppler spectrum-based ionized layer clutter region identification method |
US20130201054A1 (en) * | 2012-02-02 | 2013-08-08 | Raytheon Canada Limited | Knowledge Aided Detector |
-
2015
- 2015-12-30 CN CN201511023623.1A patent/CN105572651A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101329400A (en) * | 2008-07-30 | 2008-12-24 | 电子科技大学 | A Constant False Alarm Detection Method for Radar Targets Based on Goodness-of-Fitness Test |
JP2011122839A (en) * | 2009-12-08 | 2011-06-23 | Mitsubishi Electric Corp | Radar system |
CN102141610A (en) * | 2010-12-23 | 2011-08-03 | 哈尔滨工业大学 | Range-Doppler spectrum-based ionized layer clutter region identification method |
US20130201054A1 (en) * | 2012-02-02 | 2013-08-08 | Raytheon Canada Limited | Knowledge Aided Detector |
Non-Patent Citations (4)
Title |
---|
YANG LI等: ""Switching variability index based multiple strategy CFAR detector"", 《JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS》 * |
冯瑞: ""基于Anderson+Darling拟合优度检验的杂波模型辨识技术研究"", 《中国优秀硕士学文论文全文数据库 信息科技辑》 * |
崔少鹏: ""基于时频分析的还杂波背景下的目标检测"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
杨易: ""复杂杂波背景下的多策略目标检测方法研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106019391B (en) * | 2016-06-15 | 2018-10-09 | 中国人民解放军第四军医大学 | A kind of detection method that the two-dimentional CA-CFAR human bodies based on omnidirectional's bioradar are moved with body |
CN106019391A (en) * | 2016-06-15 | 2016-10-12 | 中国人民解放军第四军医大学 | Omnidirectional biological radar-based two-dimensional CA-CFAR (cell average-constant false-alarm rate) human body random motion detection method |
CN107340507A (en) * | 2016-08-04 | 2017-11-10 | 上海无线电设备研究所 | A kind of constant false alarm rate Subarea detecting method |
CN107340507B (en) * | 2016-08-04 | 2020-10-02 | 上海无线电设备研究所 | Constant false alarm rate partition detection method |
CN106872957A (en) * | 2017-03-30 | 2017-06-20 | 安徽工程大学 | A kind of object detection method |
CN107678008A (en) * | 2017-09-07 | 2018-02-09 | 西安电子工程研究所 | A kind of plural clutter map CFAR detection method |
CN109143195A (en) * | 2018-09-19 | 2019-01-04 | 中国人民解放军国防科技大学 | Radar target detection method based on full KL divergence |
CN109143195B (en) * | 2018-09-19 | 2020-08-14 | 中国人民解放军国防科技大学 | Radar target detection method based on full KL divergence |
WO2020191711A1 (en) * | 2019-03-28 | 2020-10-01 | Baidu.Com Times Technology (Beijing) Co., Ltd. | A camera-based low-cost lateral position calibration method for level-3 autonomous vehicles |
CN110596651A (en) * | 2019-09-06 | 2019-12-20 | 厦门大学 | A method of radar detection |
CN111562569A (en) * | 2020-04-21 | 2020-08-21 | 哈尔滨工业大学 | Weighted group sparse constraint-based multi-target constant false alarm detection method under Weibull background |
CN111624571A (en) * | 2020-05-19 | 2020-09-04 | 哈尔滨工业大学 | Non-uniform Weibull background statistical distribution parameter estimation method based on self-adaptive tight frame |
CN111624571B (en) * | 2020-05-19 | 2022-10-28 | 哈尔滨工业大学 | Non-uniform Weibull background statistical distribution parameter estimation method based on self-adaptive tight frame |
CN111693961A (en) * | 2020-06-15 | 2020-09-22 | 哈尔滨工业大学 | CFAR detector based on KL divergence unit screening |
CN111948613A (en) * | 2020-08-25 | 2020-11-17 | 自然资源部第一海洋研究所 | Ship-borne ground wave radar target detection method based on self-adaptive background area selection |
CN111948613B (en) * | 2020-08-25 | 2023-11-10 | 自然资源部第一海洋研究所 | Ship-borne ground wave radar target detection method based on self-adaptive background area selection |
CN111999715B (en) * | 2020-09-02 | 2022-04-01 | 中国人民解放军海军航空大学 | Target knowledge auxiliary self-adaptive fusion detection method under heterogeneous clutter |
CN111999715A (en) * | 2020-09-02 | 2020-11-27 | 中国人民解放军海军航空大学 | Target knowledge-assisted adaptive fusion detection method under heterogeneous clutter |
JP2023519529A (en) * | 2021-01-15 | 2023-05-11 | ヂェァジァン ユニバーシティ | A Multi-Target Constant False Alarm Probability Detection Method Based on Signal Proxy |
JP7321613B2 (en) | 2021-01-15 | 2023-08-07 | ヂェァジァン ユニバーシティ | A Multi-Target Constant False Alarm Probability Detection Method Based on Signal Proxy |
CN113189573A (en) * | 2021-04-21 | 2021-07-30 | 中国电子科技集团公司第五十四研究所 | Phased array search radar sea surface target detection method |
CN113552550A (en) * | 2021-07-16 | 2021-10-26 | 清华大学 | Intelligent constant false alarm detection method based on probability distribution difference |
CN113552550B (en) * | 2021-07-16 | 2024-07-30 | 清华大学 | Intelligent constant false alarm detection method based on probability distribution difference |
CN113589251A (en) * | 2021-07-29 | 2021-11-02 | 上海无线电设备研究所 | Unit average constant false alarm detection method after Mean-Shift echo clustering |
CN113589251B (en) * | 2021-07-29 | 2024-01-05 | 上海无线电设备研究所 | Unit average constant false alarm detection method after Mean-Shift echo clustering |
CN114994628A (en) * | 2022-05-26 | 2022-09-02 | 哈尔滨工业大学 | Multi-strategy CFAR (computational fluid dynamics) detection method for beyond-the-horizon radar based on background perception |
CN114994628B (en) * | 2022-05-26 | 2024-09-20 | 哈尔滨工业大学 | Multi-strategy CFAR detection method for over-the-horizon radar based on background perception |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105572651A (en) | CFAR detection method based on clutter background statistical recognition | |
Ainur et al. | Sample size and non-normality effects on goodness of fit measures in structural equation models. | |
CN110658508B (en) | A Parameter Estimation Method of K-Distributed Sea Clutter Based on Feature Quantities | |
Wang et al. | Robust estimation using the Huber function with a data-dependent tuning constant | |
CN103076602B (en) | For the radar self-adaption constant false alarm rate fusion detection method of multiple goal background | |
CN104391290B (en) | A kind of CFAR detector being applicable under complicated non-homogeneous clutter | |
Wang et al. | A new predictive model for strip crown in hot rolling by using the hybrid AMPSO‐SVR‐based approach | |
CN110493742A (en) | A kind of indoor 3-D positioning method for ultra wide band | |
CN108802722A (en) | It is a kind of based on tracking before the Faint target detection virtually composed | |
CN107979431A (en) | The method, apparatus and equipment of frequency spectrum perception based on Riemann's intermediate value | |
CN111460597A (en) | Radar station distribution method based on improved multi-target particle swarm optimization algorithm | |
US20250181570A1 (en) | System and methods for data model detection and surveillance | |
CN107703495A (en) | A kind of Target Signal Detection and system | |
CN111352087A (en) | Passive MIMO radar multi-target positioning method based on DBSCAN | |
CN108022046A (en) | A kind of electric power system data method for evaluating quality, storage medium and equipment | |
Tabaa et al. | LOS and NLOS identification based on UWB stable distribution | |
CN104198998B (en) | Clustering treatment based CFAR (Constant False Alarm Rate) detection method under non-uniform background | |
CN111413682A (en) | Calculation method of detection threshold for synthetic extremely narrow pulse radar based on order statistics | |
CN103778342B (en) | A kind of Emitter Recognition based on interval number and evidence theory | |
CN114492540A (en) | Training method, device, computer equipment and storage medium for target detection model | |
CN111985826B (en) | Visual quality grading method and system for multi-index industrial products | |
CN113671482B (en) | Track initiation method based on multi-dimensional screening parallel Hough transformation | |
Coolen‐Maturi | Predictive inference for best linear combination of biomarkers subject to limits of detection | |
Tykierko | Using invariants to change detection in dynamical system with chaos | |
Wang et al. | Improved UWB-based indoor positioning system via NLOS classification and error mitigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160511 |