CN105555112A - Electromagnetic shielding composite material - Google Patents
Electromagnetic shielding composite material Download PDFInfo
- Publication number
- CN105555112A CN105555112A CN201610044032.0A CN201610044032A CN105555112A CN 105555112 A CN105555112 A CN 105555112A CN 201610044032 A CN201610044032 A CN 201610044032A CN 105555112 A CN105555112 A CN 105555112A
- Authority
- CN
- China
- Prior art keywords
- electromagnetic
- electromagnetic wave
- composite material
- reflection
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0088—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/009—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Textile Engineering (AREA)
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明公开了一种电磁屏蔽复合材料。采用电磁波吸收层和电磁波反射层交替叠加作为电磁屏蔽功能体;电磁波吸收层采用基体树脂、纤维载体与电磁吸收功能体复合而成;电磁波反射层采用基体树脂、电磁梯度反射功能体复合而成;叠加的电磁波反射层中短切碳纤维质量百分含量沿电磁波入射方向梯度升高。本发明电磁屏蔽复合材料使得入射的电磁波产生多重反射,增加了电磁波在材料中的传播路径,多重反射损耗和吸收损耗的增加使得材料的屏蔽效能变大;且梯度结构的反射层使得电磁波不会因反射而过快的逃出屏蔽材料,可以更多的进入下一屏蔽单元,进一步提高了材料的屏蔽效能。The invention discloses an electromagnetic shielding composite material. The electromagnetic wave absorbing layer and the electromagnetic wave reflecting layer are alternately stacked as the electromagnetic shielding functional body; the electromagnetic wave absorbing layer is composed of matrix resin, fiber carrier and electromagnetic absorbing functional body; the electromagnetic wave reflecting layer is composed of matrix resin and electromagnetic gradient reflecting functional body; The mass percentage of chopped carbon fibers in the superimposed electromagnetic wave reflecting layer increases gradiently along the electromagnetic wave incident direction. The electromagnetic shielding composite material of the present invention causes multiple reflections of incident electromagnetic waves, increases the propagation path of electromagnetic waves in the material, and the increase in multiple reflection losses and absorption losses increases the shielding effectiveness of the material; and the reflective layer with a gradient structure prevents electromagnetic waves from If the shielding material escapes too quickly due to reflection, more can enter the next shielding unit, further improving the shielding effectiveness of the material.
Description
技术领域technical field
本发明属于复合材料领域,具体涉及一种电磁屏蔽复合材料。The invention belongs to the field of composite materials, and in particular relates to an electromagnetic shielding composite material.
背景技术Background technique
传统的电磁屏蔽材料多采用金属及其合金薄板、薄片、薄带、薄网等材料。上述传统屏蔽材料要耗费较多的金属资源、加工能耗大、成本高。随着金属的锈蚀,屏蔽效能也会降低。屏蔽效能的可设计性也较差,屏蔽机理主要是反射,不利于降低电磁污染,在许多需要更高屏蔽效能的场所适用性较差。Traditional electromagnetic shielding materials mostly use metal and its alloy sheets, thin sheets, thin strips, thin nets and other materials. The above-mentioned traditional shielding materials consume more metal resources, consume a lot of energy for processing, and have high costs. As the metal corrodes, the shielding effectiveness also decreases. The designability of shielding effectiveness is also poor. The shielding mechanism is mainly reflection, which is not conducive to reducing electromagnetic pollution. It has poor applicability in many places that require higher shielding effectiveness.
电磁屏蔽复合材料的研制和开发越来越引起人们的关注,新型屏蔽材料层出不穷。先进的纤维增强聚合物基复合材料,采用导电纤维、添加导电填料、在非导电纤维表面镀金属膜等技术方法,可以制得电磁屏蔽复合材料。然而单元的屏蔽功能体屏蔽效能较低,可设计性不足。更进一步的发展方向是多元的屏蔽功能体组成的电磁屏蔽复合材料。The research and development of electromagnetic shielding composite materials has attracted more and more people's attention, and new shielding materials have emerged in an endless stream. Advanced fiber-reinforced polymer-based composite materials can produce electromagnetic shielding composite materials by using conductive fibers, adding conductive fillers, and plating metal films on the surface of non-conductive fibers. However, the shielding effectiveness of the shielding body of the unit is low, and the designability is insufficient. The further development direction is the electromagnetic shielding composite material composed of multiple shielding functional bodies.
发明内容Contents of the invention
本发明目的在于提供一种新型结构的电磁屏蔽复合材料,该屏蔽材料具有较高屏蔽效能和良好可设计性。The purpose of the present invention is to provide a novel structure of electromagnetic shielding composite material, which has high shielding effectiveness and good designability.
为达到上述目的,采用技术方案如下:In order to achieve the above purpose, the following technical solutions are adopted:
一种电磁屏蔽复合材料,由表及里采用电磁波吸收层和电磁波反射层交替叠加;一层电磁波吸收层和下方的一层电磁波反射层构成一个屏蔽单元;An electromagnetic shielding composite material, which alternately stacks electromagnetic wave absorbing layers and electromagnetic wave reflecting layers from the surface to the inside; one layer of electromagnetic wave absorbing layer and the lower layer of electromagnetic wave reflecting layer constitute a shielding unit;
所述电磁波吸收层采用基体树脂、纤维载体与电磁吸收功能体复合而成;The electromagnetic wave absorbing layer is composed of matrix resin, fiber carrier and electromagnetic absorbing functional body;
所述电磁波反射层采用基体树脂、电磁反射功能体复合而成;所述电磁反射功能体为短切碳纤维和短切玻璃纤维混合的混合毡;其中,叠加的电磁波反射层中短切碳纤维质量百分含量沿电磁波入射方向梯度升高。The electromagnetic wave reflective layer is made of matrix resin and electromagnetic reflective functional body; the electromagnetic reflective functional body is a mixed mat mixed with chopped carbon fiber and chopped glass fiber; wherein, the mass of chopped carbon fiber in the superimposed electromagnetic wave reflective layer is 100%. The component content increases gradiently along the incident direction of electromagnetic wave.
按上述方案,所述屏蔽单元为3-5个。According to the above scheme, there are 3-5 shielding units.
按上述方案,所述电磁吸收功能体为羰基铁粉、导电炭黑、石墨或碳化硅。According to the above solution, the electromagnetic absorbing functional body is carbonyl iron powder, conductive carbon black, graphite or silicon carbide.
按上述方案,所述基体树脂为不饱和聚酯树脂、乙烯基酯树脂、环氧树脂、酚醛树脂、双马来酰亚胺树脂或聚酰亚胺树脂。According to the above scheme, the matrix resin is unsaturated polyester resin, vinyl ester resin, epoxy resin, phenolic resin, bismaleimide resin or polyimide resin.
按上述方案,所述纤维载体为玻璃纤维毡;纤维长度为6mm,单丝直径为6~7μm,面密度为30±3g/m2。According to the above scheme, the fiber carrier is a glass fiber mat; the fiber length is 6 mm, the single filament diameter is 6-7 μm, and the surface density is 30±3 g/m 2 .
按上述方案,所述电磁屏蔽复合材料最底层的电磁波反射层中反射功能体为100wt%的短切碳纤维。According to the above solution, the reflective functional body in the electromagnetic wave reflective layer at the bottom of the electromagnetic shielding composite material is 100wt% chopped carbon fiber.
按上述方案,所述短切碳纤维长度为5~8mm,单丝直径为6~7μm;所述短切玻璃纤维长度为5~8mm,单丝直径为9~13μm。According to the above scheme, the length of the chopped carbon fiber is 5-8 mm, and the diameter of the monofilament is 6-7 μm; the length of the chopped glass fiber is 5-8 mm, and the diameter of the monofilament is 9-13 μm.
按上述方案,所述电磁波梯度反射层沿电磁波入射方向短切碳纤维在混合毡中的质量百分数梯度分布为:5%、10%、15%和100%。According to the above scheme, the mass percentage gradient distribution of the chopped carbon fiber in the mixed felt along the electromagnetic wave incident direction of the electromagnetic wave gradient reflection layer is: 5%, 10%, 15% and 100%.
按上述方案,所述电磁波梯度反射层沿电磁波入射方向短切碳纤维在混合毡中的质量百分数梯度分布为:3%、8%、13%和100%。According to the above scheme, the mass percentage gradient distribution of the chopped carbon fiber in the mixed felt along the electromagnetic wave incident direction of the electromagnetic wave gradient reflection layer is: 3%, 8%, 13% and 100%.
按上述方案,所述电磁波梯度反射层沿电磁波入射方向短切碳纤维在混合毡中的质量百分数梯度分布为:4%、9%、14%和100%。According to the above scheme, the mass percentage gradient distribution of the chopped carbon fiber in the mixed felt along the electromagnetic wave incident direction of the electromagnetic wave gradient reflection layer is: 4%, 9%, 14% and 100%.
相对于现有技术,本发明有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
本发明结合了多层结构材料和梯度结构材料的优点,具备相对于这两种材料更优异的性能。对于多层吸收和梯度反射电磁屏蔽复合材料,由于材料吸收层与反射层之间的阻抗不匹配,入射的电磁波会产生多重反射,增加了电磁波在材料中的传播路径,多重反射损耗和吸收损耗的增加使得材料的屏蔽效能变大;而梯度结构的反射层,降低了反射层与吸收层间的阻抗差异,使得电磁波不会因反射而过快的逃出屏蔽材料,可以更多的进入下一屏蔽单元,进一步提高了材料的屏蔽效能。具有较好的屏蔽性能。The invention combines the advantages of the multi-layer structure material and the gradient structure material, and has better performance than these two materials. For multi-layer absorption and gradient reflection electromagnetic shielding composite materials, due to the impedance mismatch between the material absorption layer and the reflection layer, the incident electromagnetic wave will produce multiple reflections, increasing the propagation path of the electromagnetic wave in the material, multiple reflection loss and absorption loss The increase of the shielding effect of the material increases; and the reflective layer of the gradient structure reduces the impedance difference between the reflective layer and the absorbing layer, so that the electromagnetic wave will not escape the shielding material too quickly due to reflection, and can enter more A shielding unit further improves the shielding performance of the material. It has good shielding performance.
通过改变电磁波吸收层的碳黑含量、厚度,电磁波梯度反射层的碳纤维含量、厚度,以及屏蔽单元的叠加数都可以进一步调整屏蔽材料的屏蔽性能,使其满足特定频段对屏蔽性能的需求。具有良好的可设计性。By changing the carbon black content and thickness of the electromagnetic wave absorbing layer, the carbon fiber content and thickness of the electromagnetic wave gradient reflection layer, and the number of superimposed shielding units, the shielding performance of the shielding material can be further adjusted to meet the shielding performance requirements of specific frequency bands. It has good designability.
附图说明Description of drawings
图1:四单元电磁屏蔽复合材料的示意图;Figure 1: Schematic diagram of a four-unit electromagnetic shielding composite;
图2:本发明电磁屏蔽复合材料对电磁波的屏蔽功能示意图。Figure 2: Schematic diagram of the electromagnetic shielding function of the electromagnetic shielding composite material of the present invention.
具体实施方式detailed description
以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。The following examples further illustrate the technical solutions of the present invention, but are not intended to limit the protection scope of the present invention.
电磁屏蔽复合材料,由表及里采用电磁波吸收层和电磁波反射层交替叠加;一层电磁波吸收层和下方的一层电磁波反射层构成一个屏蔽单元;参照附图1所示。The electromagnetic shielding composite material is alternately stacked with electromagnetic wave absorbing layers and electromagnetic wave reflecting layers from the surface to the inside; one layer of electromagnetic wave absorbing layer and the lower layer of electromagnetic wave reflecting layer constitute a shielding unit; refer to Figure 1.
电磁波吸收层(1a、2a、3a、4a)采用基体树脂、纤维载体与电磁吸收功能体复合而成;电磁波反射层(1r、2r、3r、4r)采用基体树脂、电磁反射功能体复合而成;所述电磁反射功能体为短切碳纤维和短切玻璃纤维混合的混合毡;其中,叠加的电磁波反射层中短切碳纤维质量百分含量沿电磁波入射方向梯度升高。The electromagnetic wave absorbing layer (1a, 2a, 3a, 4a) is made of matrix resin, fiber carrier and electromagnetic absorbing functional body; the electromagnetic wave reflecting layer (1r, 2r, 3r, 4r) is made of matrix resin and electromagnetic reflecting functional body ; The electromagnetic reflective function body is a mixed mat mixed with chopped carbon fiber and chopped glass fiber; wherein, the mass percentage of chopped carbon fiber in the superimposed electromagnetic wave reflective layer increases along the gradient of the electromagnetic wave incident direction.
其中,短切碳纤维长度为5~8mm,单丝直径为6~7μm;短切玻璃纤维长度为5~8mm,单丝直径为9~13μm。Among them, the length of the chopped carbon fiber is 5-8 mm, and the diameter of the single filament is 6-7 μm; the length of the chopped glass fiber is 5-8 mm, and the diameter of the single filament is 9-13 μm.
优选的纤维载体为玻璃纤维毡,纤维长度为6mm,单丝直径为6~7μm,面密度为30±3g/m2。The preferred fiber carrier is a glass fiber mat with a fiber length of 6 mm, a single filament diameter of 6-7 μm, and an area density of 30±3 g/m 2 .
电磁吸收功能体为羰基铁粉、导电炭黑、石墨或碳化硅。优选的电磁吸收功能体为导电碳黑,粒径为10~100nm。The electromagnetic absorbing functional body is carbonyl iron powder, conductive carbon black, graphite or silicon carbide. The preferred electromagnetic absorbing functional body is conductive carbon black with a particle size of 10-100 nm.
基体树脂主要起粘接、成型的作用。可以为不饱和聚酯树脂、乙烯基酯树脂、环氧树脂、酚醛树脂、双马来酰亚胺树脂或聚酰亚胺树脂。优选的树脂为环氧树脂,环氧值为0.51。环氧树脂具有密度小、附着力强、良好的耐辐射性等优点。The matrix resin mainly plays the role of bonding and molding. It may be unsaturated polyester resin, vinyl ester resin, epoxy resin, phenolic resin, bismaleimide resin or polyimide resin. A preferred resin is epoxy resin with an epoxy value of 0.51. Epoxy resin has the advantages of low density, strong adhesion, and good radiation resistance.
优化的方案中,在每个屏蔽单元中,表层为电磁波吸收层,底层为电磁波反射层;且最底层电磁波反射层中混合毡为100wt%的短切碳纤维,不含有短切玻璃纤维。进一步优化方案,电磁波梯度反射层中的混合毡短切碳纤维质量百分含量依次为5%、10%、15%和100%。In the optimized scheme, in each shielding unit, the surface layer is an electromagnetic wave absorbing layer, and the bottom layer is an electromagnetic wave reflecting layer; and the mixed mat in the bottom electromagnetic wave reflecting layer is 100wt% chopped carbon fiber, and does not contain chopped glass fiber. Further optimizing the scheme, the mass percentages of the mixed mat chopped carbon fibers in the electromagnetic wave gradient reflection layer are 5%, 10%, 15% and 100% in sequence.
本发明电磁屏蔽复合材料的制备过程:The preparation process of the electromagnetic shielding composite material of the present invention:
将环氧树脂、固化剂、碳黑按质量比100:24:6混合,搅拌均匀后采用真空辅助成型导入玻璃纤维毡中,浸润后于室温(25℃)固化,脱模得到单层电磁波吸收层;Mix epoxy resin, curing agent, and carbon black at a mass ratio of 100:24:6, stir evenly, introduce vacuum-assisted molding into the glass fiber mat, soak and cure at room temperature (25°C), and demould to obtain a single-layer electromagnetic wave absorption layer;
将短切碳纤维和短切玻璃纤维分别按质量比5:95、10:90、15:85和0:100;在打浆机中混合均匀,制得不同碳纤维含量的混合毡,碳纤维含量分别为5%、10%、15%和100%。将环氧树脂、固化剂按质量比100:24混合,搅拌均匀后采用真空辅助成型分别导入到4种碳纤维含量的混合纤维毡中,浸润后于室温(25℃)固化,脱模得到4种单层电磁波反射层;Chopped carbon fibers and chopped glass fibers were mixed in a beater at a mass ratio of 5:95, 10:90, 15:85 and 0:100, respectively, to obtain mixed mats with different carbon fiber contents, and the carbon fiber contents were 5 %, 10%, 15%, and 100%. Mix epoxy resin and curing agent at a mass ratio of 100:24, stir evenly, and introduce them into mixed fiber mats with 4 kinds of carbon fiber content respectively by vacuum-assisted molding. Single-layer electromagnetic wave reflection layer;
将4层电磁波吸收层和4层电磁波反射层交替叠加,沿着电磁波入射方向,混合毡,碳纤维含量分别为5%、10%、15%和100%,电磁波反射层用环氧树脂将它们粘结起来,在室温(25℃)下模压固化,得到电磁屏蔽复合材料。Alternately stack 4 layers of electromagnetic wave absorbing layers and 4 layers of electromagnetic wave reflecting layers, along the incident direction of electromagnetic waves, mix felt, carbon fiber content is 5%, 10%, 15% and 100%, respectively, and glue them with epoxy resin for electromagnetic wave reflecting layers Combined, molded and solidified at room temperature (25° C.), to obtain an electromagnetic shielding composite material.
得到的各层电磁波吸收层厚度为0.18mm,各层电磁波反射层厚度为0.26mm,屏蔽材料厚度为1.82mm,在3.22到4.6GHz时,该材料的屏蔽效能可达60dB以上。因而,该屏蔽材料具有较高的屏蔽效能。The thickness of each electromagnetic wave absorbing layer obtained is 0.18mm, the thickness of each electromagnetic wave reflecting layer is 0.26mm, and the thickness of the shielding material is 1.82mm. When the frequency ranges from 3.22 to 4.6GHz, the shielding effectiveness of the material can reach more than 60dB. Therefore, the shielding material has high shielding effectiveness.
参照附图2所示,本发明多层吸收和梯度反射电磁屏蔽复合材料,由于材料吸收层与反射层之间的阻抗不匹配,入射的电磁波会产生多重反射,增加了电磁波在材料中的传播路径,多重反射损耗和吸收损耗的增加使得材料的屏蔽效能变大;而梯度结构的反射层,降低了反射层与吸收层间的阻抗差异,使得电磁波不会因反射而过快的逃出屏蔽材料,可以更多的进入下一屏蔽单元,进一步提高了材料的屏蔽效能。因而,该结构的屏蔽材料具有较好的屏蔽性能。Referring to the accompanying drawing 2, the multilayer absorption and gradient reflection electromagnetic shielding composite material of the present invention, because the impedance between the material absorption layer and the reflection layer does not match, the incident electromagnetic wave will produce multiple reflections, which increases the propagation of electromagnetic waves in the material The increase of path, multiple reflection loss and absorption loss increases the shielding effectiveness of the material; while the reflective layer with gradient structure reduces the impedance difference between the reflective layer and the absorbing layer, so that the electromagnetic wave will not escape the shield too quickly due to reflection The material can enter the next shielding unit more, which further improves the shielding effectiveness of the material. Therefore, the shielding material of this structure has better shielding performance.
通过改变电磁波吸收层的碳黑含量、厚度,电磁波梯度反射层的碳纤维含量、厚度,以及屏蔽单元的叠加数都可以进一步调整屏蔽材料的屏蔽性能,使其满足特定频段对屏蔽性能的需求。因而,该屏蔽材料具有良好的可设计性。By changing the carbon black content and thickness of the electromagnetic wave absorbing layer, the carbon fiber content and thickness of the electromagnetic wave gradient reflection layer, and the number of superimposed shielding units, the shielding performance of the shielding material can be further adjusted to meet the shielding performance requirements of specific frequency bands. Therefore, the shielding material has good designability.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610044032.0A CN105555112B (en) | 2016-01-22 | 2016-01-22 | A kind of electromagnetic shielding composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610044032.0A CN105555112B (en) | 2016-01-22 | 2016-01-22 | A kind of electromagnetic shielding composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105555112A true CN105555112A (en) | 2016-05-04 |
CN105555112B CN105555112B (en) | 2018-09-18 |
Family
ID=55833964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610044032.0A Expired - Fee Related CN105555112B (en) | 2016-01-22 | 2016-01-22 | A kind of electromagnetic shielding composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105555112B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106473261A (en) * | 2016-11-17 | 2017-03-08 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106473260A (en) * | 2016-11-17 | 2017-03-08 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106490710A (en) * | 2016-11-17 | 2017-03-15 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106490711A (en) * | 2016-11-17 | 2017-03-15 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106566226A (en) * | 2016-10-21 | 2017-04-19 | 中国科学院宁波材料技术与工程研究所 | Thermoplastic polyurethane/graphene foam material and preparation method and application thereof |
CN106690478A (en) * | 2016-11-17 | 2017-05-24 | 无锡市长安曙光手套厂 | Detachable inserting-plate anti-radiation garment |
CN106723456A (en) * | 2016-11-17 | 2017-05-31 | 无锡市长安曙光手套厂 | A kind of exposure suit |
CN106739321A (en) * | 2016-11-30 | 2017-05-31 | 航天科工武汉磁电有限责任公司 | A kind of structural wave-absorbing material and preparation method thereof |
CN107034569A (en) * | 2016-11-17 | 2017-08-11 | 无锡市长安曙光手套厂 | A kind of radiation resistant fiber fabric |
CN107034568A (en) * | 2016-11-17 | 2017-08-11 | 无锡市长安曙光手套厂 | A kind of radiation resistant fiber fabric |
CN108638619A (en) * | 2018-03-14 | 2018-10-12 | 华南理工大学 | Impact-resistant electromagnetic shielding laminate of one kind and the preparation method and application thereof |
CN109401206A (en) * | 2018-12-24 | 2019-03-01 | 张冬生 | A kind of Epocryl base shielding material |
CN109664577A (en) * | 2019-01-09 | 2019-04-23 | 中国建筑材料科学研究总院有限公司 | Electromagnetic shielding composite material and preparation method thereof |
CN110278702A (en) * | 2019-06-04 | 2019-09-24 | 江南石墨烯研究院 | A kind of high stretching high resiliency electromagnetic shielding composite material and preparation method thereof |
CN110958827A (en) * | 2018-09-27 | 2020-04-03 | Tdk株式会社 | Noise suppression sheet |
CN111031776A (en) * | 2019-12-31 | 2020-04-17 | 深圳德邦界面材料有限公司 | Heat conduction wave-absorbing gasket |
CN112250464A (en) * | 2020-10-26 | 2021-01-22 | 西安工程大学 | Foam carbon composite material for electromagnetic shielding and preparation method thereof |
CN112743945A (en) * | 2020-12-30 | 2021-05-04 | 中国科学院长春应用化学研究所 | Multilayered electromagnetic shielding composite material based on bicontinuous structure and preparation method and application thereof |
CN112793269A (en) * | 2020-12-30 | 2021-05-14 | 中国科学院长春应用化学研究所 | Electromagnetic shielding composite material with multi-layer structure and preparation method and application thereof |
CN112848586A (en) * | 2020-12-30 | 2021-05-28 | 中国科学院长春应用化学研究所 | Multilayer electromagnetic shielding composite material based on isolation structure and preparation method and application thereof |
CN113429743A (en) * | 2021-07-13 | 2021-09-24 | 郑州佛光发电设备有限公司 | Electromagnetic shielding material and preparation method thereof |
CN113795133A (en) * | 2021-09-13 | 2021-12-14 | 合肥工业大学 | Preparation method of layered magnetic orientation photosensitive resin-based electromagnetic wave absorber |
CN113831724A (en) * | 2021-10-25 | 2021-12-24 | 西华大学 | A kind of electromagnetic gradient asymmetric conductive composite material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101355866A (en) * | 2007-07-27 | 2009-01-28 | 佛山市顺德区顺达电脑厂有限公司 | Composite coating structure for absorbing and preventing electromagnetic wave |
CN102179965A (en) * | 2010-12-28 | 2011-09-14 | 中国航空工业集团公司北京航空材料研究院 | Three-layer composite wave-absorbing film and preparation method thereof |
CN102140186B (en) * | 2011-04-08 | 2013-04-10 | 青岛科技大学 | Natural rubber composite with electromagnetic shielding property and preparation method thereof |
CN104470344A (en) * | 2014-12-17 | 2015-03-25 | 广州三星通信技术研究有限公司 | Electromagnetic shielding composite material and preparation method thereof |
-
2016
- 2016-01-22 CN CN201610044032.0A patent/CN105555112B/en not_active Expired - Fee Related
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106566226B (en) * | 2016-10-21 | 2019-04-02 | 中国科学院宁波材料技术与工程研究所 | A kind of thermoplastic polyurethane/graphene foamed material and its preparation method and application |
CN106566226A (en) * | 2016-10-21 | 2017-04-19 | 中国科学院宁波材料技术与工程研究所 | Thermoplastic polyurethane/graphene foam material and preparation method and application thereof |
CN107034568A (en) * | 2016-11-17 | 2017-08-11 | 无锡市长安曙光手套厂 | A kind of radiation resistant fiber fabric |
CN106473261A (en) * | 2016-11-17 | 2017-03-08 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106490710A (en) * | 2016-11-17 | 2017-03-15 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106690478A (en) * | 2016-11-17 | 2017-05-24 | 无锡市长安曙光手套厂 | Detachable inserting-plate anti-radiation garment |
CN106473260A (en) * | 2016-11-17 | 2017-03-08 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106723456A (en) * | 2016-11-17 | 2017-05-31 | 无锡市长安曙光手套厂 | A kind of exposure suit |
CN107034569A (en) * | 2016-11-17 | 2017-08-11 | 无锡市长安曙光手套厂 | A kind of radiation resistant fiber fabric |
CN106490711A (en) * | 2016-11-17 | 2017-03-15 | 无锡市长安曙光手套厂 | A kind of detachable plate exposure suit |
CN106739321A (en) * | 2016-11-30 | 2017-05-31 | 航天科工武汉磁电有限责任公司 | A kind of structural wave-absorbing material and preparation method thereof |
CN108638619A (en) * | 2018-03-14 | 2018-10-12 | 华南理工大学 | Impact-resistant electromagnetic shielding laminate of one kind and the preparation method and application thereof |
CN108638619B (en) * | 2018-03-14 | 2024-01-02 | 华南理工大学 | Impact-resistant electromagnetic shielding laminated board and preparation method and application thereof |
CN110958827B (en) * | 2018-09-27 | 2021-11-02 | Tdk株式会社 | Noise suppression sheet |
CN110958827A (en) * | 2018-09-27 | 2020-04-03 | Tdk株式会社 | Noise suppression sheet |
CN109401206A (en) * | 2018-12-24 | 2019-03-01 | 张冬生 | A kind of Epocryl base shielding material |
CN109664577B (en) * | 2019-01-09 | 2021-05-14 | 中国建筑材料科学研究总院有限公司 | Electromagnetic shielding composite material and preparation method thereof |
CN109664577A (en) * | 2019-01-09 | 2019-04-23 | 中国建筑材料科学研究总院有限公司 | Electromagnetic shielding composite material and preparation method thereof |
CN110278702B (en) * | 2019-06-04 | 2021-02-19 | 江南石墨烯研究院 | High-stretch high-elasticity electromagnetic shielding composite material and preparation method thereof |
CN110278702A (en) * | 2019-06-04 | 2019-09-24 | 江南石墨烯研究院 | A kind of high stretching high resiliency electromagnetic shielding composite material and preparation method thereof |
CN111031776A (en) * | 2019-12-31 | 2020-04-17 | 深圳德邦界面材料有限公司 | Heat conduction wave-absorbing gasket |
CN112250464A (en) * | 2020-10-26 | 2021-01-22 | 西安工程大学 | Foam carbon composite material for electromagnetic shielding and preparation method thereof |
CN112743945B (en) * | 2020-12-30 | 2022-05-06 | 中国科学院长春应用化学研究所 | Multilayered electromagnetic shielding composite material based on bicontinuous structure and preparation method and application thereof |
CN112743945A (en) * | 2020-12-30 | 2021-05-04 | 中国科学院长春应用化学研究所 | Multilayered electromagnetic shielding composite material based on bicontinuous structure and preparation method and application thereof |
CN112793269A (en) * | 2020-12-30 | 2021-05-14 | 中国科学院长春应用化学研究所 | Electromagnetic shielding composite material with multi-layer structure and preparation method and application thereof |
CN112848586A (en) * | 2020-12-30 | 2021-05-28 | 中国科学院长春应用化学研究所 | Multilayer electromagnetic shielding composite material based on isolation structure and preparation method and application thereof |
CN112848586B (en) * | 2020-12-30 | 2022-06-07 | 中国科学院长春应用化学研究所 | Multilayer electromagnetic shielding composite material based on isolation structure and preparation method and application thereof |
CN113429743A (en) * | 2021-07-13 | 2021-09-24 | 郑州佛光发电设备有限公司 | Electromagnetic shielding material and preparation method thereof |
CN113795133A (en) * | 2021-09-13 | 2021-12-14 | 合肥工业大学 | Preparation method of layered magnetic orientation photosensitive resin-based electromagnetic wave absorber |
CN113795133B (en) * | 2021-09-13 | 2024-01-26 | 合肥工业大学 | Preparation method of layered magnetically oriented photosensitive resin-based electromagnetic wave absorber |
CN113831724A (en) * | 2021-10-25 | 2021-12-24 | 西华大学 | A kind of electromagnetic gradient asymmetric conductive composite material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105555112B (en) | 2018-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105555112B (en) | A kind of electromagnetic shielding composite material | |
CN104404814B (en) | Inhale ripple paper and its preparation method and application | |
CN109664577B (en) | Electromagnetic shielding composite material and preparation method thereof | |
CN102218867B (en) | Wave-absorbing material for assorted fibre reinforced resin base sandwich structure and preparation method thereof | |
CN101085842A (en) | Method for preparing electromagnetic shielding plastic master batch and composite plastic | |
CN112312754B (en) | A structural composite absorbing material and its preparation method | |
CN102229267B (en) | Hybrid fiber reinforced resin matrix sandwich structural absorbing material and its preparation method | |
CN115431605A (en) | X-band stealth/lightning protection skin and preparation method thereof | |
TW201625125A (en) | Electromagnetic wave shielding composite film | |
CN114919265A (en) | Light composite material for efficiently shielding low-frequency magnetic field | |
CN114851654B (en) | Fiber resin metamaterial with integrated high-speed impact resistance and wave absorbing function based on chopped fiber hybrid felt and preparation method thereof | |
CN113322453B (en) | A kind of preparation method of wood composite material | |
CN213172148U (en) | Electromagnetic shielding carbon fiber prepreg | |
WO2019227474A1 (en) | Thickness direction conductive laminated composite material and manufacturing method therefor | |
CN112706427B (en) | Lightning strike protection, electromagnetic shielding and bearing integrated aviation material and preparation method thereof | |
CN207931213U (en) | A kind of copper-clad plate | |
CN114261036B (en) | Thermoplastic electromagnetic shielding prepreg, preparation method and prepared composite material | |
CN117565491A (en) | Nano composite wave-absorbing plate and preparation method thereof | |
CN117956774A (en) | A composite wave absorbing material and preparation method thereof | |
CN118825634A (en) | Ultra-wideband wave-absorbing honeycomb sandwich structure and preparation method thereof | |
CN108215385A (en) | A kind of electromagnetic wave shield film of high-absorbable energy and preparation method thereof | |
CN102316711B (en) | Wave-absorbing stealthy material with active carbon-fiber felt screen (ACFFS) structure and preparation method thereof | |
CN202242152U (en) | Paper-based composite electromagnetic shielding material | |
CN211640271U (en) | Composite artificial board with electromagnetic shielding function | |
CN110315807A (en) | A kind of glued board and preparation method thereof with electromagnetic wave absorption function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180918 Termination date: 20220122 |
|
CF01 | Termination of patent right due to non-payment of annual fee |