CN105552307B - 一种锂硫电池负极材料及其制备方法 - Google Patents
一种锂硫电池负极材料及其制备方法 Download PDFInfo
- Publication number
- CN105552307B CN105552307B CN201610075911.XA CN201610075911A CN105552307B CN 105552307 B CN105552307 B CN 105552307B CN 201610075911 A CN201610075911 A CN 201610075911A CN 105552307 B CN105552307 B CN 105552307B
- Authority
- CN
- China
- Prior art keywords
- solvent
- lithium
- binding agent
- agent
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000000463 material Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title abstract description 11
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 48
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000011230 binding agent Substances 0.000 claims abstract description 30
- 239000002904 solvent Substances 0.000 claims abstract description 30
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000843 powder Substances 0.000 claims abstract description 24
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002077 nanosphere Substances 0.000 claims abstract description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 17
- 239000010439 graphite Substances 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 12
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 12
- 238000004513 sizing Methods 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- 239000006258 conductive agent Substances 0.000 claims description 9
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 claims description 8
- 229920002873 Polyethylenimine Polymers 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 7
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 7
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 7
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 4
- 239000012046 mixed solvent Substances 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 3
- 230000001804 emulsifying effect Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical group CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000011268 mixed slurry Substances 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 19
- 230000008901 benefit Effects 0.000 description 11
- 239000011148 porous material Substances 0.000 description 8
- 239000011888 foil Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000001291 vacuum drying Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 241000143432 Daldinia concentrica Species 0.000 description 4
- 239000005864 Sulphur Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910021385 hard carbon Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005518 electrochemistry Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Inorganic materials [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- -1 methyl ethyl carbonate Ester Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明涉及一种锂硫电池负极材料及其制备方法,其中负极材料以质量份数计,由以下原料组合物组成:5‑10份稳态锂粉、3‑7份碳材料、1份粘结剂和溶剂。本发明特别选用了稳态锂粉以及炭纳米球、碳纳米管和介孔碳按照质量比为5:2:1混合而成的混合物作为负极中的碳材料制备负极混合浆料,使得该锂硫电池负极材料具有更优异的性能,本发明的制备方法制得的电池表现出较小的阻抗,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规金属锂箔表现出更好的循环性能和倍率性能。
Description
技术领域
本发明属于电极材料制备领域,尤其涉及一种锂硫电池电极材料及利用该种电极材料制备锂硫电池的方法。
背景技术
锂离子电池(Lithium-ion battery, LIB),又称为锂二次电池,是一种可循环充电的移动电源设备。LIB具有高能量密度、高功率密度、循环寿命长、清洁无毒和无记忆效应等诸多优点,自从上世纪90年代索尼公司将LIB商业化以来,LIB得到了迅速而广泛的发展。目前LIB己经成为大多数移动电子设备的电源。近几年,人们对LIB进行了深入和广泛的研究。在LIB中,负极材料对电池的性能有着很大的影响,发展优异的负极材料也是提高LIB性能的关键因素之一。碳材料是最主要的一种LIB负极材料,目前己经有上百种拥有不同结构的碳材料被用作锂离子电池负极,这些材料包括天然石墨、人工石墨、焦炭、碳纤维、中间相碳微球、碳黑等。
单质硫无毒、全球储量丰富,而且有着较高的理论比容量(1675mAh/g)。金属锂有着低密度(0.534g/cm³)、低电势(-3.045v)和高比容量(3861mAh/g),因此锂硫电池可以达到较高的能量密度,从而可在能量存储、再生能源利用等方面发挥重要作用。然而,锂硫电池商业化过程中存在诸多问题,如金属锂化学性质不稳定,使用时存在潜在的危险;当负极采用金属锂箔时,电池经过多次充放电后,金属锂箔表面易形成枝晶。枝晶的不断生长导致电池容量下降,且枝晶生长可能刺穿隔膜,造成电池短路,引发安全问题。
硬碳是高分子聚合物的热解碳,即使在高温下也难以石墨化。硬碳的可逆容量能较高,循环性能也很好。但是硬碳也存在电极电位过高、电位滞后(即嵌锂电位小于脱锂电位)以及首次循环不可逆容量大等缺点。
目前,大部分锂硫电池都采用金属锂作为负极。锂作为负极在多次充放电过程中会由十电流密度不均导致枝品的形成。枝品会导致隔膜穿透,进而使电池发生短路,是主要的安全隐患来源。如果在负极中添加石墨烯,负极的比表面积变大,面电流密度减小,同时,疏松的石墨烯提供了锂沉积的空间,从而使锂枝品的生长越来越困难。针对锂负极存在的问题,科研工作者进行的改进和研究较少。归结起来主要包括两个方面:一是从电解液添加剂进行改性,通过加入不同的添加剂,如LiNO3和PEO等,促使锂负极表面在充放电过程中快速形成更为稳定的SEI膜,希望能抑制锂枝晶和提高循环性能。然而添加剂在充放电过程中逐渐被消耗,影响电池的稳定性和连续性。二是从锂电极的制备工艺入手,通过使用锂化合物包覆锂粉或者电沉积金属锂,锂箔表面增加保护层等方法,提高了循环效率和循环寿命,但操作过程也较为复杂。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种由稳态锂粉和特殊配比碳材料制备而成的负极浆料,以及由该浆料制备而成的锂硫电池,其解决了现有技术中采用硬碳等材料带来的技术缺陷、并且解决了锂电池负极改进的中存在的稳定性和连续性差以及操作复杂等技术问题。
一种锂硫电池负极材料,其特征在于包括:以质量份数计,由以下原料组合物组成:5-10份稳态锂粉、3-7份碳材料、1份粘结剂和溶剂。
进一步,所述的稳态锂粉由滴液乳化技术(DET)制成,锂粉直径为60μm-90μm。
进一步,所述的碳材料为炭纳米球、碳纳米管和介孔碳按照质量比为5:2:1混合而成的混合物。
进一步,所述粘结剂为聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的粘结剂;所述溶剂为碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成的混合溶剂。
一种锂硫电池的制备方法,采用上述负极材料作为负极,其特征在于包括如下步骤:
(1)将含硫的正极浆料涂在集流体制成正极片;
(2)把稳态锂粉、碳材料和粘结剂按照质量比称量,以碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1的混合而成的混合物为溶剂;先把所述粘结剂溶解于所述溶剂中,而后把稳态锂粉和碳材料倒入上述溶液中,混合均匀后涂抹于泡沫镍中从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把负极片压平待用;
(3)将正极、负极、隔膜组装成纽扣电池。
进一步,步骤(1)中所述的含硫的正极浆料包含:升华硫、导电剂、粘结剂和溶剂;所述的导电剂由纳米碳纤维和膨胀石墨按照质量比为1:1组合而成,所述粘结剂中的聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成;所述溶剂由碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成;先将粘结剂溶解于的混合溶剂中,再将升华硫与导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料,然后将正极浆料均匀涂抹在集流体,制成正极片。
进一步,所述正极片需在真空干燥箱中加热去除水分和溶剂,然后将其表面刮平和压平;所述的真空干燥箱中的温度为50℃,干燥时间为10h。
进一步,所述的含硫的正极浆料中的升华硫、导电剂与粘结剂的质量比为9:7:1。
进一步,步骤(2)中所述负极片需在40℃-70℃加热8h-11h以去除溶剂,而后压平待用。
进一步,步骤(2)和(3)中的操作均在充满氩气的真空手套箱中完成。
本发明制备得到的锂硫电池负极材料以及锂硫电池具有如下有益效果:
(1)本发明制备得到的锂硫电池负极材料由稳态锂粉和特定配比的碳材料制作的负极与普通锂箔电极相比,比表面积更大,孔隙率更高,与电解液接触更完全,从而有效放电面积更大,阻抗更小,且能有效抑制锂枝晶的生长,可表现出较好的循环性能和倍率性能。
(2)本发明制备得到的锂硫电池负极材料中采用碳纳米球材料,碳纳米球具有独特的形貌结构,在电化学表现上有独特的优势:a、球状的外形可以实现最紧密的堆积,使锂离子电池具有更高的体积能量密度;b、球状的石墨片层结构使Li+可以从球的各个方向进行嵌入和脱嵌,克服了石墨由于各向异性过高而引发的石墨片层溶涨、塌陷和不能快速充放电的问题;c、球状颗粒的外形更便于电极的加工。其又充分结合了碳纳米管和介孔碳的结构优势,高度有序介孔碳具有比表面积大、孔径均匀、孔隙体积非常高、相互关联的多孔结构和高导电性等特点;而碳纳米管又具有良好的取向,可与集流体形成良好的接触并形成高效定向导电骨架,有效提高锂硫电池电极材料中骨架导电性,而其内部的规则孔道也有利十多硫化物的储存。本发明充分利用这三者结构的优势,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规电极表现出更好的循环性能和倍率性能。
(3)在正极的导电添加剂方面,本发明添加纳米碳纤维和膨胀石墨,前者可形成三维导电网络,既能增加极片中的远程导电能力,又不易被允放电过程中形成的产物完全覆盖,从而改善了极片的表面结构;后者利用膨胀石墨的丰富网络空隙结构及良好吸附性能,也可提高单质硫的利用率和循环性能。
(4)本发明还特别选用了采用聚乙烯吡咯烷酮和聚乙烯亚胺的混合体系作为粘结剂,从而跟有力的保持硫正极在循环过程中的多孔结构。
(5)本发明选用了三种物质的混合体系作为溶剂,经过实验,该溶剂能更好的保持各种极片的原材料的结构特征以及优势,使得最终制备得到的产品具有更好的稳定性和更高的品质。
具体实施方式
实施例一:
一种锂硫电池及其制备方法如下:
1、正极片的制备:以升华硫为正极活性物质、纳米碳纤维和膨胀石墨按照质量比为1:1组合而成的混合物为导电剂,聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的混合体系为粘结剂。
含硫的正极浆料中的升华硫、纳米碳纤维和膨胀石墨按照质量比为1:1组合而成的导电剂与粘结剂的质量比为9:7:1。把混合体粘结剂溶于碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成的混合溶剂中制成溶液,其中,按照质量计算,按照固体含量为30%的比例称取溶剂,固体为升华硫、纳米碳纤维和膨胀石墨。再将升华硫与纳米碳纤维和膨胀石墨按照质量比为1:1组合而成的导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料。
然后将得到的浆料均匀涂布在泡沫镍集流体。再置于真空干燥箱中干燥,除去溶剂和水分,真空干燥箱中的温度为50℃,干燥时间为10h,用刀片将泡沫镍表面的浆料刮除干净,再以一定压力把正极片压平。而后把正极片置于真空干燥箱中再次干燥。以上操作均在真空手套箱中完成。
2、负极片制备:把稳态锂粉、碳材料和聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的混合体系粘结剂按照质量比称量,以碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1的混合而成的混合物为溶剂,其中,按照质量计算,按照固体含量为30%的比例称取溶剂,固体为稳态锂粉和碳材料。
先把粘结剂溶解于溶剂中,而后把稳态锂粉和碳材料倒入上述溶液中,混合均匀后涂抹于泡沫镍集流体中从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把负极片压平待用;其中,稳态锂粉、碳材料和粘结剂的质量比为10: 7:1;加热片上加热的温度为70℃,加热时间为8h。以上操作均在真空手套箱中完成。
3、电池组装:使用上述正极片和上述负极片的组装成电池。
电池组装与测试:纽扣式电池在充满氩气的手套箱中装配。以上述负极片为负极,采用Celgard2400隔膜和2025型纽扣式电池。电解液为1M LiClO4、0.15M LiNO3溶于DOL:DME(体积比1:1)。电池置于蓝电测试系统(CT2001A)进行恒流测试。充放电电压范围为1.5-3.0V,测试温度为室温。
实施例二:
与实施例一相比,实施例二在负极片制备过程中,改变稳态锂粉、碳材料和粘结剂的质量比为7:4:1,加热片上加热的温度为40℃,加热时间为11h。其余操作和说明同实施例一。
实施例三:
与实施例一相比,实施例二在负极片制备过程中,改变稳态锂粉、碳材料和粘结剂的质量比为5:5:1,加热片上加热的温度为60℃,加热时间为9h。其余操作和说明同实施例一。
相比对普通锂箔电极,当实施例一、二和三的负极使用稳态锂粉和混合碳材料时,本发明的锂硫电池可表现出更好的首次充放电比容量,同时100次循环后容量保持率均在95.2%以上。
各实施例的纽扣电池静置24小时后做交流阻抗对比实验。实验结果显示,当实施例一、二和三使用稳态锂粉和混合碳材料后,相比对普通锂箔电极,本发明的锂硫电池的阻抗大大减小,原因在于稳态锂粉的比表面积大、与电解液接触完全,可表现出更快的电子传递和转移。
同时,本发明制备得到的锂硫电池负极材料中采用碳纳米球材料,碳纳米球具有独特的形貌结构,在电化学表现上有独特的优势:(a)球状的外形可以实现最紧密的堆积,使锂离子电池具有更高的体积能量密度;(b)球状的石墨片层结构使Li+可以从球的各个方向进行嵌入和脱嵌,克服了石墨由于各向异性过高而引发的石墨片层溶涨、塌陷和不能快速充放电的问题;(c)球状颗粒的外形更便于电极的加工。
进而,本发明又充分结合了碳纳米管和介孔碳的结构优势,高度有序介孔碳具有比表面大、孔径均匀、孔隙体积非常高、相互关联的多孔结构和高导电性等特点;而碳纳米管又具有良好的取向,可与集流体形成良好的接触并形成高效定向导电骨架,有效提高锂硫电池电极材料中骨架导电性,而其内部的规则孔道也有利十多硫化物的储存。本发明充分利用这三者结构的优势,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规电极表现出更好的循环性能和倍率性能。
当利用各实施例的电极与普通锂箔电极的在不同倍率下进行充放电对比实验。实验结果显示,当采用本发明的电极时,锂硫电池在不同倍率下可表现出较高的比容量。尤其在大电流密度下,采用稳态锂粉和混合碳材料制备的锂硫电池比普通锂箔电极电池表现出明显的比容量提升。
在正极的导电添加剂方面,我们添加纳米碳纤维和膨胀石墨,前者可形成三维导电网络,既能增加极片中的远程导电能力,又不易被允放电过程中形成的产物完全覆盖,从而改善了极片的表面结构;后者利用膨胀石墨的丰富网络空隙结构及良好吸附性能,也可提高单质硫的利用率和循环性能。
本发明还特别选用了采用聚乙烯吡咯烷酮和聚乙烯亚胺的混合体系作为粘结剂,从而跟有力的保持硫正极在循环过程中的多孔结构。本发明选用了三种物质的混合体系最为溶剂,经过实验,该溶剂能更好的保持各种极片的原材料的结构特征以及优势,使得最终制备得到的产品具有更好的稳定性和更高的品质。
以上实施例显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,而不是以任何方式限制本发明的范围,在不脱离本发明范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的范围内。
Claims (1)
1.一种锂硫电池,其特征在于:包括包括正极片和负极片,
锂硫电池负极材料包括以质量份数计,由以下原料组合物组成:5-10份稳态锂粉、3-7份碳材料、1份粘结剂和溶剂;所述稳态锂粉由滴液乳化技术(DET)制成,锂粉直径为60μm-90μm;所述碳材料为炭纳米球、碳纳米管和介孔碳按照质量比为5:2:1混合而成的混合物;所述粘结剂为聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的粘结剂;所述溶剂为碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成的混合溶剂;把稳态锂粉、碳材料和粘结剂按照质量比称量,以碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1的混合而成的混合物为溶剂;先把所述粘结剂溶解于所述溶剂中,而后把稳态锂粉和碳材料倒入上述溶液中,混合均匀后涂抹于泡沫镍中从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把负极片压平待用;所述负极片需在40℃-70℃加热8h-11h以去除溶剂,而后压平待用;
将含硫的正极浆料涂在集流体制成正极片;所述的含硫的正极浆料包含:升华硫、导电剂、粘结剂和溶剂;所述的导电剂由纳米碳纤维和膨胀石墨按照质量比为1:1组合而成,所述粘结剂中的聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成;所述溶剂由碳酸丙烯酯(PC)、碳酸甲乙酯(EMC)和聚醚砜(PES)按照体积比为3:2:1混合而成;先将粘结剂溶解于的混合溶剂中,再将升华硫与导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料,然后将正极浆料均匀涂抹在集流体,制成所述正极片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610075911.XA CN105552307B (zh) | 2016-02-03 | 2016-02-03 | 一种锂硫电池负极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610075911.XA CN105552307B (zh) | 2016-02-03 | 2016-02-03 | 一种锂硫电池负极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105552307A CN105552307A (zh) | 2016-05-04 |
CN105552307B true CN105552307B (zh) | 2017-08-25 |
Family
ID=55831370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610075911.XA Active CN105552307B (zh) | 2016-02-03 | 2016-02-03 | 一种锂硫电池负极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105552307B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108470879A (zh) * | 2018-04-20 | 2018-08-31 | 南京邮电大学 | 一种锂铜复合金属负极片的规模化生产方法 |
CN108767250B (zh) * | 2018-06-28 | 2021-09-17 | 苏州清陶新能源科技有限公司 | 一种泡沫金属支撑结构锂负极片的制备方法以及在全固态锂离子电池中的应用 |
CN112271287A (zh) * | 2020-09-27 | 2021-01-26 | 天津师范大学 | 一种网格化锂金属负极及其制备方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100522694B1 (ko) * | 2003-08-23 | 2005-10-19 | 삼성에스디아이 주식회사 | 리튬 설퍼전지 |
CN101409338A (zh) * | 2007-10-10 | 2009-04-15 | 清华大学 | 锂离子电池负极,其制备方法和应用该负极的锂离子电池 |
CN104362294B (zh) * | 2014-12-05 | 2017-06-27 | 上海空间电源研究所 | 一种用于锂硫电池的多孔硫正极、其制备方法及锂硫电池 |
CN104868097B (zh) * | 2015-05-13 | 2018-03-30 | 北京化工大学 | 一种锂硫电池负极材料及其制备方法 |
-
2016
- 2016-02-03 CN CN201610075911.XA patent/CN105552307B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN105552307A (zh) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode | |
Liu et al. | Recent development in lithium metal anodes of liquid-state rechargeable batteries | |
CN107706360A (zh) | 一种锂离子电池复合负极材料的制备方法 | |
CN104126242A (zh) | 锂二次电池用负极及包含该负极的锂二次电池 | |
CN110010852A (zh) | 一种二次电池用金属锂负极、制备方法及其应用 | |
CN104868097B (zh) | 一种锂硫电池负极材料及其制备方法 | |
CN108321432B (zh) | 一种用于抑制锂枝晶生长的碳氮聚合物基准固态电解质及其制备方法和应用 | |
CN107959010A (zh) | 一种石墨复合材料及其制备方法 | |
CN105529490B (zh) | 一种锂硫电池的制备方法 | |
JP2016504739A (ja) | リチウム二次電池用負極、その製造方法、及びこれを含むリチウム二次電池 | |
Song et al. | Free-standing hollow carbon nanofibers scaffold with spherical nanocavities and lithiophilic N/ZnO heteroatoms as stable dendrite-free lithium metal anode | |
WO2021189161A1 (en) | All solid-state electrolyte composite based on functionalized metal-organic framework materials for li thoum secondary battery and method for manufacturing the same | |
CN103840130A (zh) | 一种防止过放电的锂电池碳负极 | |
CN105552307B (zh) | 一种锂硫电池负极材料及其制备方法 | |
CN106654266A (zh) | 一种纳米颗粒/碳复合材料的制备方法及其电极电池 | |
CN105514396B (zh) | 一种锂硫电池负极材料及其制备方法 | |
Li et al. | A liquid metal-fluoropolymer artificial protective film enables robust lithium metal batteries at sub-zero temperatures | |
CN105702944B (zh) | 一种锂硫电池 | |
CN105513827A (zh) | 一种(lmo-ncm-ac)/(lto-ac)混合电池电容电极材料及电极片 | |
CN106410283B (zh) | 一种锂硫电池的制备方法 | |
Feng et al. | Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery | |
CN115101724A (zh) | 增强锂离子电池锡负极活性物质与铜集流体结合强度的激光原位合金化方法 | |
CN111646472A (zh) | 一种原位制备多孔硅碳复合负极材料的方法 | |
CN110649208B (zh) | 一种锂硫电池复合隔膜及其制备方法 | |
CN108630993A (zh) | 一种用混合碳材料作正负极的锂双离子全电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Xi Liujiang Inventor before: Zong Ming |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20170801 Address after: 411100, Hunan province Xiangtan high tech Zone Board pond street shaking money village Liao Jiazu Applicant after: Hunan Rui Rui Power Materials Co., Ltd. Address before: 315040 Zhongshan East Road, Jiangdong District, Zhejiang, China, No. 455, No. Applicant before: NINGBO LIANGNENG NEW MATERIAL CO., LTD. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |