[go: up one dir, main page]

CN105550670A - Target object dynamic tracking and measurement positioning method - Google Patents

Target object dynamic tracking and measurement positioning method Download PDF

Info

Publication number
CN105550670A
CN105550670A CN201610054348.8A CN201610054348A CN105550670A CN 105550670 A CN105550670 A CN 105550670A CN 201610054348 A CN201610054348 A CN 201610054348A CN 105550670 A CN105550670 A CN 105550670A
Authority
CN
China
Prior art keywords
image
target object
background
target
positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610054348.8A
Other languages
Chinese (zh)
Other versions
CN105550670B (en
Inventor
赵宏
郭哲
包广斌
刘诗钊
张乐
侯春宁
曹昶
韩泽宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University of Technology
Original Assignee
Lanzhou University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University of Technology filed Critical Lanzhou University of Technology
Priority to CN201610054348.8A priority Critical patent/CN105550670B/en
Publication of CN105550670A publication Critical patent/CN105550670A/en
Application granted granted Critical
Publication of CN105550670B publication Critical patent/CN105550670B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/46Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • G06V10/247Aligning, centring, orientation detection or correction of the image by affine transforms, e.g. correction due to perspective effects; Quadrilaterals, e.g. trapezoids

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

一种目标物体动态跟踪与测量定位方法,该方法利用两个摄像头采集监控区域图像,通过监控区域背景动态更新和目标物体提取,利用双目识别定位原理,生成视角区域三维点云;结合目标物体提取和双目识别定位原理,动态跟踪定位目标物体。本发明将视觉测距与目标跟踪在视频监控领域相结合,通过目标动态跟踪,确定目标所在图像的像素坐标,结合视觉测距生成的三维点云,锁定目标物体,并确定其三维坐标。当目标物体进入警戒区域,系统便可发出警报,达到实时预警的目的;捕捉到的目标物体的位置信息给后台工作人员的实际操控提供科学依据。

A dynamic tracking and measurement positioning method for a target object, which uses two cameras to collect images of a monitoring area, dynamically updates the background of the monitoring area and extracts the target object, and uses the principle of binocular recognition and positioning to generate a three-dimensional point cloud of the viewing angle area; combined with the target object Extraction and binocular recognition positioning principle, dynamic tracking and positioning of target objects. The present invention combines visual ranging and target tracking in the field of video surveillance, determines the pixel coordinates of the image where the target is located through dynamic tracking of the target, combines the three-dimensional point cloud generated by visual ranging, locks the target object, and determines its three-dimensional coordinates. When the target object enters the warning area, the system can issue an alarm to achieve the purpose of real-time early warning; the captured position information of the target object provides a scientific basis for the actual manipulation of the background staff.

Description

一种目标物体动态跟踪与测量定位方法A method for dynamic tracking, measurement and positioning of target objects

技术领域technical field

本发明涉及视频安防与人机交互技术领域,尤其涉及一种视频监控领域目标物体动态跟踪与测量定位方法。The invention relates to the technical field of video security and human-computer interaction, in particular to a method for dynamic tracking, measurement and positioning of a target object in the field of video surveillance.

背景技术Background technique

目前,视频监控应用日益普遍,在安防领域给人们的工作带来了不可估量的作用,然而现有的监控技术智能化程度低,仍依赖于大量的人力资源来对视频内容识别,以应对危险及突发事件。大多数传统的视频监控系统仅能够采集监控区域的视频信息,该监控方式依赖于人工持续工作以检测监控区域突发及危险状况,缺乏对监控区域内的危险信息进行智能预警,实际运行需投入大量人力进行实时或者事后分析,且该视频监控方式传回的图像不能提供目标物体精确的位置信息,操控人员仅能够根据经验推测目标物体的大致位置,使得目标物体的跟踪与定位不准确且缺乏智能性。At present, the application of video surveillance is becoming more and more common, which has brought immeasurable effects to people's work in the field of security. However, the existing surveillance technology is low in intelligence and still relies on a large number of human resources to identify video content to deal with dangers. and emergencies. Most traditional video surveillance systems can only collect video information in the monitoring area. This monitoring method relies on manual continuous work to detect sudden and dangerous situations in the monitoring area, and lacks intelligent early warning of dangerous information in the monitoring area. The actual operation requires investment A large amount of manpower is used for real-time or post-event analysis, and the images returned by this video surveillance method cannot provide accurate location information of the target object. Operators can only guess the approximate location of the target object based on experience, making the tracking and positioning of the target object inaccurate and lacking intelligence.

发明内容Contents of the invention

本发明提供一种目标物体动态跟踪与测量定位方法,弥补传统视频监控传回的画面不能提供目标物体精确位置的不足,改善其依赖大量人力资源的现状,提高视频监控系统的智能化水平。The invention provides a method for dynamic tracking, measurement and positioning of a target object, which makes up for the deficiency that the pictures returned by traditional video monitoring cannot provide the precise position of the target object, improves the current situation of relying on a large number of human resources, and improves the intelligence level of the video monitoring system.

为此,所采用的技术方案为:For this reason, the adopted technical scheme is:

一种目标物体动态跟踪与测量定位方法,该方法利用两个摄像头采集监控区域图像,通过监控区域背景动态更新和目标物体提取,利用双目识别定位原理,生成视角区域三维点云;结合目标物体提取和双目识别定位原理,动态跟踪定位目标物体。A dynamic tracking and measurement positioning method for a target object, which uses two cameras to collect images of a monitoring area, dynamically updates the background of the monitoring area and extracts the target object, and uses the principle of binocular recognition and positioning to generate a three-dimensional point cloud of the viewing angle area; combined with the target object Extraction and binocular recognition positioning principle, dynamic tracking and positioning of target objects.

其具体步骤如下:The specific steps are as follows:

步骤1,目标物体提取:动态建立背景图库并实时更新,给不同动态程度的背景赋予不同的阈值,根据当前图像和背景图库中图像的差分运算结果,区分当前图像中的前景与背景部分,并将背景部分更新到背景图库中;Step 1, target object extraction: dynamically establish a background library and update it in real time, assign different thresholds to backgrounds with different dynamic degrees, and distinguish the foreground and background parts in the current image according to the difference calculation results between the current image and the image in the background library, and Update the background part to the background gallery;

步骤2,双目测距:Step 2, binocular ranging:

(1)消除图像畸变与摄像头校正:利用泰勒级数展开并结合添加校正因子,校正所采集图像畸变;采用1612棋盘作为标定物对摄像头进行标定,通过距离最小化、投影最大化原则来确保棋盘图像中的特征点均匀分布,利用棋盘特征点和图像特征点的几何关系得出坐标点对方程,从而求解摄像头内外参数,通过内参数校正畸变图像,得出更加真实自然的图像;通过外参数调整两副图像相对棋盘的角度和位置,输出行对准的校正图像;(1) Eliminate image distortion and camera correction: Use Taylor series expansion and add correction factors to correct the collected image distortion; use 16 12 The checkerboard is used as a calibration object to calibrate the camera, and the principle of distance minimization and projection maximization is used to ensure that the feature points in the checkerboard image are evenly distributed, and the geometric relationship between the checkerboard feature points and image feature points is used to obtain the coordinate point pair equation to solve The internal and external parameters of the camera correct the distorted image through the internal parameters to obtain a more realistic and natural image; adjust the angle and position of the two images relative to the chessboard through the external parameters, and output the corrected image for line alignment;

(2)图像匹配:同时在不同视场拍摄目标物体的多幅图像,查找左右摄像头在同一时刻不同视场所拍摄图像的相同特征,分析其中的差异,输出同一特征点在左右图像上的像素坐标差值;(2) Image matching: Take multiple images of the target object in different fields of view at the same time, find the same features of the images captured by the left and right cameras at the same time and different fields of view, analyze the differences, and output the pixel coordinates of the same feature point on the left and right images difference;

(3)重投影:将左右图像相同特征点像素坐标差分结果通过三角测量法转化成距离,输出视角图像的三维点云;(3) Reprojection: convert the pixel coordinate difference result of the same feature point in the left and right images into a distance by triangulation, and output the 3D point cloud of the perspective image;

步骤3,目标跟踪定位:将左右摄像头所拍摄图像中的任意一幅当前帧图像和相应背景图像作差分,动态锁定图像中的目标,并提取其在当前帧的像素坐标,结合双目测距生成的三维点云信息,确定该目标的三维点云,求得目标物体在世界坐标系中的坐标。Step 3, target tracking and positioning: make a difference between any current frame image and the corresponding background image in the images captured by the left and right cameras, dynamically lock the target in the image, and extract its pixel coordinates in the current frame, combined with binocular distance measurement The generated 3D point cloud information determines the 3D point cloud of the target and obtains the coordinates of the target object in the world coordinate system.

所述步骤1中使用混合高斯模型,减弱图像中类似于树叶晃动的干扰因素,以减少前景与背景的相互干扰;根据动态阈值有效分离当前帧前景及背景图像,并将当前图像的背景部分更新到背景图库中;依据提取的前景图像,确定前景所处图像的像素坐标,为计算前景图像的三维世界坐标提供科学依据。In the step 1, the mixed Gaussian model is used to weaken the interference factors similar to the shaking of leaves in the image to reduce the mutual interference between the foreground and the background; effectively separate the foreground and background images of the current frame according to the dynamic threshold, and update the background part of the current image to the background gallery; according to the extracted foreground image, determine the pixel coordinates of the image where the foreground is located, and provide a scientific basis for calculating the three-dimensional world coordinates of the foreground image.

本发明将视觉测距与目标跟踪在视频监控领域相结合,通过目标动态跟踪,确定目标所在图像的像素坐标,结合视觉测距生成的三维点云,锁定目标物体,并确定其三维坐标。当目标物体进入警戒区域,系统便可发出警报,达到实时预警的目的;捕捉到的目标物体的位置信息给后台工作人员的实际操控提供科学依据。The present invention combines visual ranging and target tracking in the field of video surveillance, determines the pixel coordinates of the image where the target is located through dynamic tracking of the target, combines the three-dimensional point cloud generated by visual ranging, locks the target object, and determines its three-dimensional coordinates. When the target object enters the warning area, the system can issue an alarm to achieve the purpose of real-time early warning; the captured position information of the target object provides a scientific basis for the actual manipulation of the background staff.

综上,本发明与现有的视频监控相比,具有以下优点:(1)通过建立的动态背景图库模型,经图像处理,可动态锁定进入监控区域的目标物体,为安防领域的实时预警提供支撑。(2)采用双目测距原理,结合目标物体的前景提取,可准确获取目标物体的位置信息,弥补传统视频监控不能提供目标物体精确位置信息的不足,提高视频监控的智能化水平。To sum up, compared with the existing video surveillance, the present invention has the following advantages: (1) Through the established dynamic background gallery model, through image processing, the target objects entering the monitoring area can be dynamically locked, providing real-time early warning in the security field support. (2) Using the principle of binocular ranging, combined with the foreground extraction of the target object, it can accurately obtain the position information of the target object, make up for the lack of accurate position information of the target object that traditional video surveillance cannot provide, and improve the intelligence level of video surveillance.

附图说明Description of drawings

图1为本发明总体原理示意图;Fig. 1 is a schematic diagram of the general principle of the present invention;

图2为本发明目标物体测量定位流程图Fig. 2 is a flow chart of target object measurement and positioning in the present invention

图3为摄像头成像模型图;Figure 3 is a camera imaging model diagram;

图4为三角测量法原理图。Figure 4 is a schematic diagram of the triangulation method.

具体实施方式detailed description

下面结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.

本发明的总体原理示意如图1所示,通过USB接口的左右摄像头采集双目图像信息,经ARM11开发板对图像进行处理,捕捉目标物体位置和几何大小信息,为自动预警以及后台工作人员采取相应措施提供依据。The overall principle of the present invention is schematically shown in Figure 1. The left and right cameras of the USB interface are used to collect binocular image information, and the ARM11 development board processes the image to capture the position and geometric size information of the target object for automatic early warning and background staff. provide the basis for corresponding measures.

本发明中目标物体测量定位流程如图2所示,通过左右摄像头采集双目图像信息,以1612棋盘为标定物,采用距离最小化、投影最大化原则立体标定摄像头,求得摄像头参数并校正畸变图像,匹配左右图像特征点,并通过三角测量法生成图像的三维点云;动态设置相似度阈值以便准确提取目标物体,获取目标物体像素坐标,结合已生成的三维点云,捕捉目标物体位置和几何大小信息,为人机交互和智能预警提供依据。具体方法如下:In the present invention, the measurement and positioning process of the target object is shown in Figure 2, and the binocular image information is collected by the left and right cameras, and 16 12 The checkerboard is the calibration object, and the camera is calibrated stereoscopically using the principle of minimizing the distance and maximizing the projection, obtaining the camera parameters and correcting the distorted image, matching the feature points of the left and right images, and generating a 3D point cloud of the image through triangulation; dynamically setting the similarity The threshold is used to accurately extract the target object, obtain the pixel coordinates of the target object, combine the generated 3D point cloud, capture the position and geometric size information of the target object, and provide a basis for human-computer interaction and intelligent early warning. The specific method is as follows:

步骤1,目标物体提取:动态建立背景图库并实时更新,对不同的动态程度的背景赋予不同的阈值,将当前图像和背景图库中图像作差分,当差分结果超过设定的阈值时,即可确定当前图像和背景图像差分结果超过阈值部分为背景,其余部分则为前景。图像的背景部分需要更新到背景图库中。Step 1, target object extraction: dynamically establish a background library and update it in real time, assign different thresholds to different dynamic backgrounds, and make a difference between the current image and the image in the background library. When the difference result exceeds the set threshold, you can It is determined that the part of the difference between the current image and the background image exceeding the threshold is the background, and the rest is the foreground. The background part of the image needs to be updated into the background gallery.

步骤2,双目测距:Step 2, binocular ranging:

(1)消除图像畸变与摄像头校正:理想摄像头成像模型是针孔模型,如图3所示,摄像头在实际生产时为了增加透光量,使用了透镜,但透镜在制造和安装中会产生误差,导致摄像头采集的图像发生畸变。为了尽量减少图像畸变对图像分析的影响,选择采用1612棋盘作为标定物对摄像头进行标定,求解摄像头内外参数。通过内参数校正畸变图像,使图像更加真实自然;通过外参数调整两副图像相对棋盘的角度和位置,输出行对准图像。(1) Elimination of image distortion and camera correction: The ideal camera imaging model is a pinhole model, as shown in Figure 3, in order to increase the amount of light transmitted during actual production, the camera uses a lens, but the lens will produce errors in manufacturing and installation , resulting in distortion of the image captured by the camera. In order to minimize the influence of image distortion on image analysis, 16 The 12 chessboard is used as a calibration object to calibrate the camera and solve the internal and external parameters of the camera. The distorted image is corrected by internal parameters to make the image more realistic and natural; the angle and position of the two images relative to the checkerboard are adjusted by external parameters, and the output row alignment image is obtained.

(2)图像匹配:同时在不同视场拍摄目标物体的多幅图像,查找左右摄像头在同一时刻不同视场所拍摄图像的相同特征,输出同一特征点在左右图像上的像素坐标差值。(2) Image matching: Take multiple images of the target object in different fields of view at the same time, find the same features of the images captured by the left and right cameras at different fields of view at the same time, and output the pixel coordinate difference of the same feature point on the left and right images.

(3)重投影:将左右图像相同特征点像素坐标差分结果通过三角测量法转化成距离,输出视角图像的三维点云。(3) Reprojection: The difference result of the pixel coordinates of the same feature points in the left and right images is converted into a distance by triangulation, and the 3D point cloud of the perspective image is output.

步骤3,目标跟踪定位:将左右摄像头所拍摄图像中的任意一幅当前帧图像和相应背景图像作差分,动态锁定图像中的目标,并提取其在当前帧的像素坐标,结合双目测距生成的三维点云信息,确定该目标物体的三维点云,求得目标物体在世界坐标系中的坐标值。Step 3, target tracking and positioning: make a difference between any current frame image and the corresponding background image in the images captured by the left and right cameras, dynamically lock the target in the image, and extract its pixel coordinates in the current frame, combined with binocular distance measurement The generated 3D point cloud information determines the 3D point cloud of the target object, and obtains the coordinate value of the target object in the world coordinate system.

(1)关于步骤1中目标物体提取作详细说明(1) Detailed description of the target object extraction in step 1

视频监控中,动态的目标物体往往是人们关注的焦点,目标物体提取是智能监控的核心步骤。基于背景模型,需要分析当前帧图像与背景图库中图像的差异,以便提取出当前帧图像的前景部分;然而,实际提取中,背景图像往往受光照或者复杂场景的影响,使得用于区分当前帧图像前景与背景部分的阈值不能固定,因此,需要实时更新背景模型,不断调整区分图像前景与背景部分的阈值。本发明引入混合高斯模型来减弱图像中类似于树叶晃动等干扰因素,以减少前景与背景的相互干扰。利用背景模型与当前帧图像的匹配结果s,动态调整匹配相似度阈值K。匹配结果s及阈值K的关系如下:In video surveillance, dynamic target objects are often the focus of people's attention, and target object extraction is the core step of intelligent surveillance. Based on the background model, it is necessary to analyze the difference between the current frame image and the image in the background gallery in order to extract the foreground part of the current frame image; however, in actual extraction, the background image is often affected by lighting or complex scenes, so that it is used to distinguish the current frame The threshold of the foreground and background parts of the image cannot be fixed. Therefore, the background model needs to be updated in real time, and the threshold for distinguishing the foreground and background parts of the image needs to be adjusted continuously. The present invention introduces a mixed Gaussian model to weaken the interference factors in the image such as shaking leaves, so as to reduce the mutual interference between the foreground and the background. Using the matching result s between the background model and the current frame image, dynamically adjust the matching similarity threshold K. The relationship between the matching result s and the threshold K is as follows:

其中a、b、m是固定参数;当背景发生变化时,阈值K会适当调整以适应背景扰动。Among them, a, b, and m are fixed parameters; when the background changes, the threshold K will be adjusted appropriately to adapt to the background disturbance.

(2)关于步骤2中双目测距作详细说明(2) Explain in detail about binocular ranging in step 2

双目测距涉及两大部分的重要内容:摄像头标定和双目测距。Binocular distance measurement involves two important parts: camera calibration and binocular distance measurement.

在介绍摄像头标定之前首先介绍双目测距的基本原理。理想的双目测距模型如图4所示的三角测量法。图4中,像素行对准的两副图像光轴严格平行(光轴是投影中心朝主点c方向引出的射线)分别为左右投影中心,分别为两个摄像头的焦距且相等,主点在左右图像上具有相同的像素坐标,特征点X在左右图像上的成像点分别为在各自像素坐标系中水平位移分别为,视差为:,设f为摄像头的焦距,利用相似三角形原理,可推出物体离摄像头镜头的距离Z的方程如下所示:Before introducing the camera calibration, first introduce the basic principle of binocular ranging. The ideal binocular ranging model is triangulation as shown in Fig. 4. In Figure 4, the optical axes of the two images aligned with the pixel rows are strictly parallel (the optical axis is the ray drawn from the projection center toward the principal point c) and are the left and right projection centers, respectively, and are the focal lengths of the two cameras and are equal, the principal point and With the same pixel coordinates on the left and right images, the imaging points of the feature point X on the left and right images are respectively and , and The horizontal displacements in the respective pixel coordinate system are and , the disparity is: , let f be the focal length of the camera, using the principle of similar triangles, the equation of the distance Z between the object and the camera lens can be deduced as follows:

为了建立理想的双目测距平台,需要对摄像头进行立体标定,摄像头的成像模型如图3所示。以1612黑白格交叉的棋盘作为摄像头标定物,以黑白格交叉点为特征点,通过矩阵平移、旋转等变换建立棋盘特征点和图像特征点之间联系,建立方程,利用最小二乘等算法求解摄像头的焦距、畸变系数等参数。In order to establish an ideal binocular ranging platform, it is necessary to perform stereo calibration on the camera. The imaging model of the camera is shown in Figure 3. to 16 12 The checkerboard with crossed black and white grids is used as the camera calibration object, and the intersection points of black and white grids are used as feature points, and the checkerboard feature points are established through transformations such as matrix translation and rotation and image feature points The connection between them, the establishment of equations, and the use of algorithms such as least squares to solve the camera's focal length, distortion coefficient and other parameters.

传统的摄像头标定采用96黑白格交叉的棋盘作为标定物,该棋盘一共有54个校正特征点,校正特征点较少,导致部分畸变区域校正时存在盲区,影响视觉测距精度。本发明采用密集棋盘(1612)作为摄像头标定物,同时采用距离最小化、投影最大化原则,具有如下优点:单位面积图像中存在较多校正特征点,可以求得准确度更高的畸变系数;距离最小化、投影最大化原则使得棋盘图像在视角区域的屏占比最大化,可保证视角区域特征点均匀分布,提高标定精度。这种近距多点摄像头标定方式能提高摄像头标定精度,改善图像的鱼眼现象,促进双目匹配效率,提高视觉测距精度。Traditional camera calibration uses 9 6. The checkerboard with crossed black and white grids is used as the calibration object. The checkerboard has a total of 54 correction feature points, and the number of correction feature points is small, resulting in blind spots in the correction of some distorted areas, which affects the accuracy of visual distance measurement. The present invention adopts dense checkerboard (16 12) As a camera calibration object, it adopts the principle of minimizing the distance and maximizing the projection, which has the following advantages: there are more correction feature points in the image per unit area, and the distortion coefficient with higher accuracy can be obtained; the distance is minimized and the projection is maximized The principle of maximizing the screen-to-body ratio of the checkerboard image in the viewing area can ensure the uniform distribution of feature points in the viewing area and improve the calibration accuracy. This short-range multi-point camera calibration method can improve the camera calibration accuracy, improve the fisheye phenomenon of the image, promote the efficiency of binocular matching, and improve the accuracy of visual distance measurement.

下面通过具体的应用场景进一步说明本发明的效果:The effect of the present invention is further illustrated through specific application scenarios below:

场景1:视频监控安防领域实时预警。传统的监控方式需要工作人员长时间查看监控视频以达到实时监控的目的,依赖于大量的人力资源,监控的效率以及智能化水平较低。本发明动态建立背景模型并实时更新,通过图像差分运算提取前景图像,结合双目识别定位原理,动态跟踪并定位目标物体,实现实时预警。本发明将传统视频监控中的大量人力资源从实际工作中解脱出来,提高监控系统的智能化水平。Scenario 1: Real-time early warning in the field of video surveillance and security. The traditional monitoring method requires the staff to watch the monitoring video for a long time to achieve the purpose of real-time monitoring, which relies on a large number of human resources, and the monitoring efficiency and intelligence level are low. The invention dynamically establishes a background model and updates it in real time, extracts a foreground image through image differential calculation, and combines binocular recognition and positioning principles to dynamically track and locate target objects to realize real-time early warning. The invention frees a large number of human resources in traditional video monitoring from actual work, and improves the intelligence level of the monitoring system.

场景2:视觉测距。常见的测距方法有激光测距、红外测距、超声波测距、雷达测距等,本发明所采用的视觉测距与这几种测距方法相比,测量时不需向被测物体发出任何信号,原理简单、成本低,可在复杂环境下测得目标物体位置。同时,若通过鼠标选定空间中的特征点,利用勾股定理、正余弦定理等便可计算出特征点间距离及相对位置关系,进一步计算出目标物体的几何大小信息。Scenario 2: Visual distance measurement. Common ranging methods include laser ranging, infrared ranging, ultrasonic ranging, radar ranging, etc. Compared with these ranging methods, the visual ranging used in the present invention does not need to send out a signal to the measured object during measurement. Any signal, simple in principle and low in cost, can measure the position of the target object in a complex environment. At the same time, if the feature points in the space are selected by the mouse, the distance and relative position relationship between feature points can be calculated by using the Pythagorean theorem and the sine-cosine theorem, and the geometric size information of the target object can be further calculated.

场景3:物体边缘检测。常见的图像边缘检测算法,往往通过分析图像灰度变化的一阶或二阶导数获取物体的轮廓信息,该类型边缘检测算法,不能对复杂场景中目标物体轮廓信息进行有效提取。本发明依据视觉测量生成三维点云的深度信息,通过绘图函数,可绘出不同深度物体的轮廓,实现在多个前景物体中准确提取指定目标物体轮廓。该方法可用于机器人的自主智能操作及视觉导航等领域。Scenario 3: Object edge detection. Common image edge detection algorithms often obtain the contour information of objects by analyzing the first-order or second-order derivatives of image grayscale changes. This type of edge detection algorithm cannot effectively extract the contour information of target objects in complex scenes. The invention generates the depth information of the three-dimensional point cloud according to the visual measurement, and can draw the contours of objects with different depths through the drawing function, so as to realize the accurate extraction of the contours of the specified target objects among multiple foreground objects. This method can be used in the fields of autonomous intelligent operation and visual navigation of robots.

场景4:人机交互。大多数传统的视频监控系统仅采集监控区域的视频信息,该监控方式为工作人员提供的交互信息量不足,工作人员需结合自己的经验判断和推测目标物体的大致位置,工作量大,精度低。本发明依据双目识别定位原理,得出视角区域的三维点云,结合目标物体提取,确定目标物体的位置信息,为工作人员的决策提供依据。Scenario 4: Human-computer interaction. Most traditional video surveillance systems only collect video information in the monitoring area. This monitoring method provides insufficient interactive information for the staff. The staff needs to judge and speculate the approximate location of the target object based on their own experience. The workload is heavy and the accuracy is low. . According to the principle of binocular recognition and positioning, the present invention obtains the three-dimensional point cloud of the viewing angle area, combines with the extraction of the target object, determines the position information of the target object, and provides the basis for the staff's decision-making.

综上,本发明模拟人眼处理景物的方式,部分代替人脑对自然界的事物进行理解和认识,基于双目测距原理生成视角区域的三维点云;基于动态更新的背景图库模型,通过图像差分运算,获取目标物体图像像素坐标;结合视角区域的三维点云信息和目标物体图像像素坐标,实现目标物体的动态跟踪和定位。In summary, the present invention simulates the way the human eye handles the scene, partially replaces the human brain to understand and recognize things in nature, and generates a three-dimensional point cloud of the viewing angle area based on the principle of binocular ranging; based on the dynamically updated background gallery model, through the image The differential operation obtains the pixel coordinates of the target object image; combined with the 3D point cloud information of the viewing angle area and the pixel coordinates of the target object image, the dynamic tracking and positioning of the target object is realized.

Claims (3)

1.一种目标物体动态跟踪与测量定位方法,其特征在于:该方法利用两个摄像头采集监控区域图像,通过监控区域背景动态更新和目标物体提取,利用双目识别定位原理,生成视角区域三维点云;结合目标物体提取和双目识别定位原理,动态跟踪定位目标物体。1. A method for dynamic tracking and measurement positioning of a target object, characterized in that: the method utilizes two cameras to collect images of the monitoring area, dynamically updates the background of the monitoring area and extracts the target object, and utilizes the principle of binocular recognition and positioning to generate a three-dimensional perspective area Point cloud; combined with the principle of target object extraction and binocular recognition and positioning, it can dynamically track and locate the target object. 2.根据权利要求1所述的一种目标物体动态跟踪与测量定位方法,该方法具体如下:2. a kind of target object dynamic tracking and measurement positioning method according to claim 1, the method is specifically as follows: 步骤1,目标物体提取:动态建立背景图库并实时更新,给不同动态程度的背景赋予不同的阈值,根据当前图像和背景图库中图像的差分运算结果,区分当前图像中的前景与背景部分,并将背景部分更新到背景图库中;Step 1, target object extraction: dynamically establish a background library and update it in real time, assign different thresholds to backgrounds with different dynamic degrees, and distinguish the foreground and background parts in the current image according to the difference calculation results between the current image and the image in the background library, and Update the background part to the background gallery; 步骤2,双目测距:Step 2, binocular ranging: (1)消除图像畸变与摄像头校正:利用泰勒级数展开并结合添加校正因子,校正所采集图像畸变;采用16*12棋盘作为标定物对摄像头进行标定,通过距离最小化、投影最大化原则来确保棋盘图像中的特征点均匀分布,利用棋盘特征点和图像特征点的几何关系得出坐标点对方程,从而求解摄像头内外参数,通过内参数校正畸变图像,得出更加真实自然的图像;通过外参数调整两副图像相对棋盘的角度和位置,输出行对准的校正图像;(1) Eliminate image distortion and camera correction: use Taylor series expansion and add correction factors to correct the collected image distortion; use 16*12 chessboard as the calibration object to calibrate the camera, and use the principle of minimizing distance and maximizing projection Ensure that the feature points in the checkerboard image are evenly distributed, and use the geometric relationship between the checkerboard feature points and image feature points to obtain the coordinate point pair equation, thereby solving the internal and external parameters of the camera, correcting the distorted image through internal parameters, and obtaining a more realistic and natural image; through The external parameters adjust the angle and position of the two images relative to the checkerboard, and output the corrected image for row alignment; (2)图像匹配:同时在不同视场拍摄目标物体的多幅图像,查找左右摄像头在同一时刻不同视场所拍摄图像的相同特征,分析其中的差异,输出同一特征点在左右图像上的像素坐标差值;(2) Image matching: Take multiple images of the target object in different fields of view at the same time, find the same features of the images captured by the left and right cameras at the same time and different fields of view, analyze the differences, and output the pixel coordinates of the same feature point on the left and right images difference; (3)重投影:将左右图像相同特征点像素坐标差分结果通过三角测量法转化成距离,输出视角图像的三维点云;(3) Reprojection: convert the pixel coordinate difference result of the same feature point in the left and right images into a distance by triangulation, and output the 3D point cloud of the perspective image; 步骤3,目标跟踪定位:将左右摄像头所拍摄图像中的任意一幅当前帧图像和相应背景图像作差分,动态锁定图像中的目标,并提取其在当前帧的像素坐标,结合双目测距生成的三维点云信息,确定该目标的三维点云,求得目标物体在世界坐标系中的坐标。Step 3, target tracking and positioning: make a difference between any current frame image and the corresponding background image in the images captured by the left and right cameras, dynamically lock the target in the image, and extract its pixel coordinates in the current frame, combined with binocular distance measurement The generated 3D point cloud information determines the 3D point cloud of the target and obtains the coordinates of the target object in the world coordinate system. 3.根据权利要求2所述的一种目标物体动态跟踪与测量定位方法,其特征在于:所述步骤1中使用混合高斯模型,减弱图像中类似于树叶晃动的干扰因素,以减少前景与背景的相互干扰;根据动态阈值有效分离当前帧前景及背景图像,并将当前图像的背景部分更新到背景图库中;依据提取的前景图像,确定前景所处图像的像素坐标,为计算前景图像的三维世界坐标提供科学依据。3. A kind of target object dynamic tracking and measurement location method according to claim 2, it is characterized in that: use mixed Gaussian model in described step 1, weaken the disturbing factor similar to the shaking of leaves in the image, to reduce foreground and background mutual interference; effectively separate the foreground and background images of the current frame according to the dynamic threshold, and update the background part of the current image to the background gallery; determine the pixel coordinates of the image where the foreground is located according to the extracted foreground image, in order to calculate the 3D of the foreground image World coordinates provide scientific basis.
CN201610054348.8A 2016-01-27 2016-01-27 A kind of target object dynamically track and measurement and positioning method Expired - Fee Related CN105550670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610054348.8A CN105550670B (en) 2016-01-27 2016-01-27 A kind of target object dynamically track and measurement and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610054348.8A CN105550670B (en) 2016-01-27 2016-01-27 A kind of target object dynamically track and measurement and positioning method

Publications (2)

Publication Number Publication Date
CN105550670A true CN105550670A (en) 2016-05-04
CN105550670B CN105550670B (en) 2019-07-12

Family

ID=55829853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610054348.8A Expired - Fee Related CN105550670B (en) 2016-01-27 2016-01-27 A kind of target object dynamically track and measurement and positioning method

Country Status (1)

Country Link
CN (1) CN105550670B (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106447680A (en) * 2016-11-23 2017-02-22 湖南华诺星空电子技术有限公司 Method for radar and vision fused target detecting and tracking in dynamic background environment
CN107122770A (en) * 2017-06-13 2017-09-01 驭势(上海)汽车科技有限公司 Many mesh camera systems, intelligent driving system, automobile, method and storage medium
CN107246696A (en) * 2017-06-27 2017-10-13 上海卓思智能科技股份有限公司 A kind of vent cabinet windowing area measuring method and system and a kind of controller
CN107367767A (en) * 2017-06-27 2017-11-21 上海卓思智能科技股份有限公司 A kind of vent cabinet window foreign matter detecting method and system and a kind of controller
WO2018014420A1 (en) * 2016-07-21 2018-01-25 深圳曼塔智能科技有限公司 Light-emitting target recognition-based unmanned aerial vehicle tracking control system and method
CN107773248A (en) * 2017-09-30 2018-03-09 优视眼动科技(北京)有限公司 Eye tracker and image processing method
CN107884767A (en) * 2017-10-31 2018-04-06 暨南大学 A kind of method of binocular vision system measurement ship distance and height
CN107992820A (en) * 2017-11-29 2018-05-04 北京伟景智能科技有限公司 Counter automatic selling method based on binocular vision
CN108090922A (en) * 2016-11-21 2018-05-29 中国科学院沈阳计算技术研究所有限公司 Intelligent Target pursuit path recording method
CN108087208A (en) * 2016-11-21 2018-05-29 北京金风科创风电设备有限公司 Wind generator set blade follower method and device based on unmanned plane
CN108537094A (en) * 2017-03-03 2018-09-14 株式会社理光 Image processing method, device and system
CN108664841A (en) * 2017-03-27 2018-10-16 郑州宇通客车股份有限公司 A kind of sound state object recognition methods and device based on laser point cloud
CN108731587A (en) * 2017-04-14 2018-11-02 中交遥感载荷(北京)科技有限公司 A kind of the unmanned plane dynamic target tracking and localization method of view-based access control model
CN108829116A (en) * 2018-10-09 2018-11-16 上海岚豹智能科技有限公司 Barrier-avoiding method and equipment based on monocular cam
CN108961155A (en) * 2018-07-13 2018-12-07 惠州市德赛西威汽车电子股份有限公司 A kind of projective invariant bearing calibration of high-fidelity
CN108989686A (en) * 2018-09-05 2018-12-11 深圳技威时代科技有限公司 Captured in real-time device and control method based on humanoid tracking
CN109051321A (en) * 2018-09-14 2018-12-21 山东上拓教育咨询有限公司 A kind of fresh commodities circulating cases of the low temperature that intelligence follows automatically
CN109523592A (en) * 2018-10-19 2019-03-26 天津大学 A kind of interior flame localization method based on camera
CN109934873A (en) * 2019-03-15 2019-06-25 百度在线网络技术(北京)有限公司 Mark image acquiring method, device and equipment
CN110298293A (en) * 2019-06-25 2019-10-01 重庆紫光华山智安科技有限公司 One kind anti-wander away method, apparatus, readable storage medium storing program for executing and electric terminal
CN110342134A (en) * 2019-07-23 2019-10-18 珠海市一微半导体有限公司 A kind of garbage classification identifying system and its method based on binocular vision
CN110595443A (en) * 2019-08-22 2019-12-20 苏州佳世达光电有限公司 Projection device
CN110673607A (en) * 2019-09-25 2020-01-10 优地网络有限公司 Feature point extraction method and device in dynamic scene and terminal equipment
CN111583334A (en) * 2020-05-26 2020-08-25 广东电网有限责任公司培训与评价中心 Three-dimensional space positioning method, device and equipment for transformer substation personnel
CN111640300A (en) * 2020-04-28 2020-09-08 武汉万集信息技术有限公司 Vehicle detection processing method and device
CN112348493A (en) * 2021-01-07 2021-02-09 北京电信易通信息技术股份有限公司 Intelligent conference recording system and method
CN112819770A (en) * 2021-01-26 2021-05-18 中国人民解放军陆军军医大学第一附属医院 Iodine contrast agent allergy monitoring method and system
CN113077511A (en) * 2020-01-06 2021-07-06 初速度(苏州)科技有限公司 Multi-camera target matching and tracking method and device for automobile
CN113221909A (en) * 2021-05-12 2021-08-06 佛山育脉科技有限公司 Image processing method, image processing apparatus, and computer-readable storage medium
CN113327291A (en) * 2020-03-16 2021-08-31 天目爱视(北京)科技有限公司 Calibration method for 3D modeling of remote target based on continuous shooting
CN113688724A (en) * 2021-08-24 2021-11-23 桂林电子科技大学 A method for monitoring drowning in swimming pool based on binocular vision
CN113781534A (en) * 2018-03-05 2021-12-10 华为技术有限公司 Distance measuring method and device
CN113923420A (en) * 2021-11-18 2022-01-11 京东方科技集团股份有限公司 Area adjustment method and device, camera and storage medium
CN113965733A (en) * 2021-12-07 2022-01-21 中国联合网络通信集团有限公司 Binocular video monitoring method, system, computer equipment and storage medium
CN114267155A (en) * 2021-11-05 2022-04-01 国能大渡河革什扎水电开发有限公司 A Geological Hazard Monitoring and Early Warning System Based on Video Recognition Technology
CN114283119A (en) * 2021-12-02 2022-04-05 上海韦地科技集团有限公司 Irradiation-resistant camera control system
CN114757423A (en) * 2022-04-20 2022-07-15 中国科学院大学 Method and device for planning and scheduling network path based on video stream through learning
CN114993244A (en) * 2022-05-09 2022-09-02 深圳供电局有限公司 Target ranging device and method for power transformation operation area
CN115086606A (en) * 2018-12-05 2022-09-20 深圳阿科伯特机器人有限公司 Moving target monitoring method, device and system, storage medium and robot
CN115683106A (en) * 2022-09-20 2023-02-03 东风越野车有限公司 A security defense method and device for a complex space area
CN118918183A (en) * 2024-07-04 2024-11-08 国网江苏省电力有限公司淮安供电分公司 Substation target ranging method based on multiple cameras

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868460A (en) * 2014-03-13 2014-06-18 桂林电子科技大学 Parallax optimization algorithm-based binocular stereo vision automatic measurement method
CN103903279A (en) * 2014-03-21 2014-07-02 上海大学 Parallel tracking system and method based on bionic binocular vision onboard platform
CN104463906A (en) * 2014-11-11 2015-03-25 广东中星电子有限公司 Object tracking device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868460A (en) * 2014-03-13 2014-06-18 桂林电子科技大学 Parallax optimization algorithm-based binocular stereo vision automatic measurement method
CN103903279A (en) * 2014-03-21 2014-07-02 上海大学 Parallel tracking system and method based on bionic binocular vision onboard platform
CN104463906A (en) * 2014-11-11 2015-03-25 广东中星电子有限公司 Object tracking device and method

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018014420A1 (en) * 2016-07-21 2018-01-25 深圳曼塔智能科技有限公司 Light-emitting target recognition-based unmanned aerial vehicle tracking control system and method
CN108087208A (en) * 2016-11-21 2018-05-29 北京金风科创风电设备有限公司 Wind generator set blade follower method and device based on unmanned plane
CN108090922A (en) * 2016-11-21 2018-05-29 中国科学院沈阳计算技术研究所有限公司 Intelligent Target pursuit path recording method
CN106447680B (en) * 2016-11-23 2019-09-17 湖南华诺星空电子技术有限公司 The object detecting and tracking method that radar is merged with vision under dynamic background environment
CN106447680A (en) * 2016-11-23 2017-02-22 湖南华诺星空电子技术有限公司 Method for radar and vision fused target detecting and tracking in dynamic background environment
CN108537094A (en) * 2017-03-03 2018-09-14 株式会社理光 Image processing method, device and system
CN108664841B (en) * 2017-03-27 2021-05-11 郑州宇通客车股份有限公司 Dynamic and static target object identification method and device based on laser point cloud
CN108664841A (en) * 2017-03-27 2018-10-16 郑州宇通客车股份有限公司 A kind of sound state object recognition methods and device based on laser point cloud
CN108731587A (en) * 2017-04-14 2018-11-02 中交遥感载荷(北京)科技有限公司 A kind of the unmanned plane dynamic target tracking and localization method of view-based access control model
CN107122770B (en) * 2017-06-13 2023-06-27 驭势(上海)汽车科技有限公司 Multi-camera system, intelligent driving system, automobile, method and storage medium
CN107122770A (en) * 2017-06-13 2017-09-01 驭势(上海)汽车科技有限公司 Many mesh camera systems, intelligent driving system, automobile, method and storage medium
CN107367767A (en) * 2017-06-27 2017-11-21 上海卓思智能科技股份有限公司 A kind of vent cabinet window foreign matter detecting method and system and a kind of controller
CN107246696A (en) * 2017-06-27 2017-10-13 上海卓思智能科技股份有限公司 A kind of vent cabinet windowing area measuring method and system and a kind of controller
CN107773248B (en) * 2017-09-30 2024-10-29 优视眼动科技(北京)有限公司 Eye movement instrument and image processing method
CN107773248A (en) * 2017-09-30 2018-03-09 优视眼动科技(北京)有限公司 Eye tracker and image processing method
CN107884767A (en) * 2017-10-31 2018-04-06 暨南大学 A kind of method of binocular vision system measurement ship distance and height
CN107992820A (en) * 2017-11-29 2018-05-04 北京伟景智能科技有限公司 Counter automatic selling method based on binocular vision
CN113781534A (en) * 2018-03-05 2021-12-10 华为技术有限公司 Distance measuring method and device
CN108961155A (en) * 2018-07-13 2018-12-07 惠州市德赛西威汽车电子股份有限公司 A kind of projective invariant bearing calibration of high-fidelity
CN108961155B (en) * 2018-07-13 2023-06-27 惠州市德赛西威汽车电子股份有限公司 High-fidelity fisheye lens distortion correction method
CN108989686B (en) * 2018-09-05 2021-02-19 深圳技威时代科技有限公司 Real-time shooting device based on human shape tracking and control method
CN108989686A (en) * 2018-09-05 2018-12-11 深圳技威时代科技有限公司 Captured in real-time device and control method based on humanoid tracking
CN109051321A (en) * 2018-09-14 2018-12-21 山东上拓教育咨询有限公司 A kind of fresh commodities circulating cases of the low temperature that intelligence follows automatically
CN108829116A (en) * 2018-10-09 2018-11-16 上海岚豹智能科技有限公司 Barrier-avoiding method and equipment based on monocular cam
CN109523592A (en) * 2018-10-19 2019-03-26 天津大学 A kind of interior flame localization method based on camera
CN115086606A (en) * 2018-12-05 2022-09-20 深圳阿科伯特机器人有限公司 Moving target monitoring method, device and system, storage medium and robot
CN109934873A (en) * 2019-03-15 2019-06-25 百度在线网络技术(北京)有限公司 Mark image acquiring method, device and equipment
CN110298293A (en) * 2019-06-25 2019-10-01 重庆紫光华山智安科技有限公司 One kind anti-wander away method, apparatus, readable storage medium storing program for executing and electric terminal
CN110342134A (en) * 2019-07-23 2019-10-18 珠海市一微半导体有限公司 A kind of garbage classification identifying system and its method based on binocular vision
CN110595443A (en) * 2019-08-22 2019-12-20 苏州佳世达光电有限公司 Projection device
CN110673607A (en) * 2019-09-25 2020-01-10 优地网络有限公司 Feature point extraction method and device in dynamic scene and terminal equipment
CN113077511A (en) * 2020-01-06 2021-07-06 初速度(苏州)科技有限公司 Multi-camera target matching and tracking method and device for automobile
CN113327291A (en) * 2020-03-16 2021-08-31 天目爱视(北京)科技有限公司 Calibration method for 3D modeling of remote target based on continuous shooting
CN113327291B (en) * 2020-03-16 2024-03-22 天目爱视(北京)科技有限公司 Calibration method for 3D modeling of remote target object based on continuous shooting
CN111640300A (en) * 2020-04-28 2020-09-08 武汉万集信息技术有限公司 Vehicle detection processing method and device
CN111640300B (en) * 2020-04-28 2022-06-17 武汉万集信息技术有限公司 Vehicle detection processing method and device
CN111583334B (en) * 2020-05-26 2023-03-14 广东电网有限责任公司培训与评价中心 Three-dimensional space positioning method, device and equipment for transformer substation personnel
CN111583334A (en) * 2020-05-26 2020-08-25 广东电网有限责任公司培训与评价中心 Three-dimensional space positioning method, device and equipment for transformer substation personnel
CN112348493A (en) * 2021-01-07 2021-02-09 北京电信易通信息技术股份有限公司 Intelligent conference recording system and method
CN112819770A (en) * 2021-01-26 2021-05-18 中国人民解放军陆军军医大学第一附属医院 Iodine contrast agent allergy monitoring method and system
CN113221909A (en) * 2021-05-12 2021-08-06 佛山育脉科技有限公司 Image processing method, image processing apparatus, and computer-readable storage medium
CN113688724A (en) * 2021-08-24 2021-11-23 桂林电子科技大学 A method for monitoring drowning in swimming pool based on binocular vision
CN113688724B (en) * 2021-08-24 2023-03-24 桂林电子科技大学 Swimming pool drowning monitoring method based on binocular vision
CN114267155A (en) * 2021-11-05 2022-04-01 国能大渡河革什扎水电开发有限公司 A Geological Hazard Monitoring and Early Warning System Based on Video Recognition Technology
CN113923420A (en) * 2021-11-18 2022-01-11 京东方科技集团股份有限公司 Area adjustment method and device, camera and storage medium
CN113923420B (en) * 2021-11-18 2024-05-28 京东方科技集团股份有限公司 Region adjustment method and device, camera and storage medium
CN114283119B (en) * 2021-12-02 2022-12-13 上海韦地科技集团有限公司 Irradiation-resistant camera control system
CN114283119A (en) * 2021-12-02 2022-04-05 上海韦地科技集团有限公司 Irradiation-resistant camera control system
CN113965733A (en) * 2021-12-07 2022-01-21 中国联合网络通信集团有限公司 Binocular video monitoring method, system, computer equipment and storage medium
CN114757423A (en) * 2022-04-20 2022-07-15 中国科学院大学 Method and device for planning and scheduling network path based on video stream through learning
CN114993244A (en) * 2022-05-09 2022-09-02 深圳供电局有限公司 Target ranging device and method for power transformation operation area
CN115683106A (en) * 2022-09-20 2023-02-03 东风越野车有限公司 A security defense method and device for a complex space area
CN118918183A (en) * 2024-07-04 2024-11-08 国网江苏省电力有限公司淮安供电分公司 Substation target ranging method based on multiple cameras

Also Published As

Publication number Publication date
CN105550670B (en) 2019-07-12

Similar Documents

Publication Publication Date Title
CN105550670B (en) A kind of target object dynamically track and measurement and positioning method
CN111414798B (en) Head posture detection method and system based on RGB-D image
CN103868460B (en) Binocular stereo vision method for automatic measurement based on parallax optimized algorithm
JP6295645B2 (en) Object detection method and object detection apparatus
CN108731587A (en) A kind of the unmanned plane dynamic target tracking and localization method of view-based access control model
CN109360240A (en) A Binocular Vision-Based Small UAV Localization Method
Wu et al. Passive measurement method of tree diameter at breast height using a smartphone
CN104036488B (en) Binocular vision-based human body posture and action research method
CN101996407B (en) A multi-camera color calibration method
CN102072706B (en) Multi-camera positioning and tracking method and system
CN109523595A (en) A kind of architectural engineering straight line corner angle spacing vision measuring method
CN106033614B (en) A kind of mobile camera motion object detection method under strong parallax
CN103971378A (en) Three-dimensional reconstruction method of panoramic image in mixed vision system
CN105160649A (en) Multi-target tracking method and system based on kernel function unsupervised clustering
CN106846375A (en) A kind of flame detecting method for being applied to autonomous firefighting robot
CN106203429A (en) Based on the shelter target detection method under binocular stereo vision complex background
CN111856436A (en) A joint calibration device and calibration method of multi-line laser radar and infrared camera
CN107560592A (en) A kind of precision ranging method for optronic tracker linkage target
CN114419259B (en) A visual positioning method and system based on physical model imaging simulation
CN104794717A (en) Depth information comparison method based on binocular vision system
CN108010125A (en) True scale three-dimensional reconstruction system and method based on line structure light and image information
Luo et al. A binocular camera calibration method in froth flotation based on key frame sequences and weighted normalized tilt difference
CN110909571B (en) High-precision face recognition space positioning method
Shibo et al. A new approach to calibrate range image and color image from Kinect
CN111914790B (en) Real-time human rotation angle recognition method in different scenarios based on dual cameras

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190712

Termination date: 20220127

CF01 Termination of patent right due to non-payment of annual fee