CN105545498B - Method and system for engine temperature control - Google Patents
Method and system for engine temperature control Download PDFInfo
- Publication number
- CN105545498B CN105545498B CN201510690168.4A CN201510690168A CN105545498B CN 105545498 B CN105545498 B CN 105545498B CN 201510690168 A CN201510690168 A CN 201510690168A CN 105545498 B CN105545498 B CN 105545498B
- Authority
- CN
- China
- Prior art keywords
- cylinder
- engine
- exhaust
- during
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D17/00—Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
- F02D17/02—Cutting-out
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0087—Selective cylinder activation, i.e. partial cylinder operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P9/00—Electric spark ignition control, not otherwise provided for
- F02P9/002—Control of spark intensity, intensifying, lengthening, suppression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS
本申请要求2014年10月22日提交的标题为“用于发动机温度控制的方法和系统(METHOD AND SYSTEM FOR ENGINE TEMPERATURE CONTROL)”的美国临时专利申请号62/067,354的优先权,为了所有目的,其整个内容通过引用被并入本文。This application claims priority to US Provisional Patent Application No. 62/067,354, filed October 22, 2014, entitled "METHOD AND SYSTEM FOR ENGINE TEMPERATURE CONTROL," and for all purposes, Its entire contents are incorporated herein by reference.
技术领域technical field
本申请涉及用于维持发动机温度和/或排气催化剂温度以控制来自被配置为执行跳跃点火燃烧的发动机系统的微粒物质排放的方法和系统。The present application relates to methods and systems for maintaining engine temperature and/or exhaust catalyst temperature to control particulate matter emissions from an engine system configured to perform skip-ignition combustion.
背景技术Background technique
在发动机冷启动之后,排气排放和燃料消耗趋向于更高。这是因为冷的燃烧表面导致差的燃料蒸发,从而导致燃料膜即使在燃烧事件已经发生之后也存在于燃烧表面上。在膜上面的浓燃料区域和在火焰已经消散之后从该膜上蒸发的燃料会导致增加的碳氢化合物和微粒物质(PM)排放。此外,冷的发动机机油导致增加的摩擦损失。After an engine cold start, exhaust emissions and fuel consumption tend to be higher. This is because a cold combustion surface results in poor fuel evaporation, resulting in a fuel film that exists on the combustion surface even after a combustion event has occurred. Fuel-rich regions above the membrane and fuel vaporized from the membrane after the flame has dissipated can lead to increased hydrocarbon and particulate matter (PM) emissions. Furthermore, cold engine oil results in increased frictional losses.
近年来,火花点火式燃烧发动机已经被配置为在可变数量的激活的或被停用的汽缸的情况下运转以增加燃料经济性,同时任选地将总排气混合物空燃比维持在化学计量比附近。这样的发动机能够通过以索引的汽缸点火模式(也被称为“跳跃点火”模式)跳跃到某些汽缸的燃料的输送来改变发动机的有效排量。例如,如由Tripath等人在US 8,651,091中示出的,发动机燃料控制器可以使哪些特定汽缸被供给燃料、哪些汽缸被跳过以及该模式针对多少汽缸事件被继续而连续轮换。此外,每个汽缸的个别气门机构可以被选择性地停用。通过跳跃到所选的汽缸的燃料输送,激活的汽缸能够接近其最佳效率运转,从而增加发动机的总运转效率。In recent years, spark ignition combustion engines have been configured to operate with a variable number of cylinders activated or deactivated to increase fuel economy, while optionally maintaining the overall exhaust mixture air-fuel ratio at stoichiometric than nearby. Such engines are capable of changing the effective displacement of the engine by skipping the delivery of fuel to certain cylinders in an indexed cylinder firing mode (also known as a "skip fire" mode). For example, as shown by Tripath et al in US 8,651,091, the engine fuel controller may continuously rotate which particular cylinders are fueled, which cylinders are skipped, and for how many cylinder events the mode is continued. Additionally, individual valve trains for each cylinder may be selectively deactivated. By skipping fuel delivery to selected cylinders, the activated cylinders are able to operate near their optimum efficiency, thereby increasing the overall operating efficiency of the engine.
发明内容SUMMARY OF THE INVENTION
发明人在此已经认识到被选择性停用的汽缸的可单独控制的气门可以被用来改善在驱动循环期间汽缸升温的速率。具体地,由于发动机负荷在下一个循环将不被点火的汽缸的气门运转可以被控制以将热排气保持在汽缸中,由此更快地加热燃烧室表面。在一个示例中,上述问题中的一些可以通过一种在汽缸停用期间增加发动机升温的速率的方法来解决,该方法包含:选择用于停用的汽缸;以及在停用立即之前的燃烧循环,在汽缸的排气冲程期间维持所选的汽缸的排气门被关闭。以此方式,快速响应的个别汽缸气门机构能够被用来增加燃烧表面温度。The inventors herein have recognized that individually controllable valves for selectively deactivated cylinders can be used to improve the rate at which cylinders warm up during a drive cycle. Specifically, valve operation of cylinders that will not be fired in the next cycle due to engine load may be controlled to keep hot exhaust gas in the cylinders, thereby heating the combustion chamber surfaces faster. In one example, some of the above problems may be addressed by a method of increasing the rate at which the engine warms up during cylinder deactivation, the method comprising: selecting cylinders for deactivation; and a combustion cycle immediately prior to deactivation , maintaining the exhaust valve of the selected cylinder closed during the cylinder's exhaust stroke. In this way, fast-response individual cylinder valve trains can be used to increase combustion surface temperatures.
作为一示例,响应于发动机负荷的下降,发动机控制器可以选择用于选择性停用的机构的个别汽缸的汽缸模式。其中,控制器可以选择要被停用的汽缸的数目和标识。被选择用于停用并且在下一个发动机循环将不被点火的汽缸可以具有在停用立即之前的点火循环的排气冲程期间被保持关闭的其排气门。具体地,代替排出燃烧过的气体,通过不打开排气门而将热气体保持在汽缸中。排气然后被保持在汽缸中,而该汽缸在下一个循环被停用。As an example, in response to a drop in engine load, the engine controller may select cylinder modes for individual cylinders of the mechanism for selective deactivation. Among other things, the controller may select the number and identification of the cylinders to be deactivated. Cylinders that are selected for deactivation and will not be fired for the next engine cycle may have their exhaust valves held closed during the exhaust stroke of the firing cycle immediately prior to deactivation. Specifically, instead of exhausting the combusted gases, the hot gases are kept in the cylinder by not opening the exhaust valve. Exhaust gas is then held in the cylinder, which is deactivated on the next cycle.
以此方式,通过在下一个循环将热排气保持在汽缸中,燃烧室表面被更快地加热。因而,整个发动机也被更快地加热。另外,将燃烧过的气体保持在被停用的汽缸中更长时间改善保持在燃烧室中的碳氢化合物的继续氧化,从而导致针对该循环的改善的排放。总的来说,发动机性能得以改善。In this way, the combustion chamber surfaces are heated faster by keeping the hot exhaust gas in the cylinder for the next cycle. Thus, the entire engine is also heated faster. Additionally, maintaining the combusted gases in the deactivated cylinders longer improves the continued oxidation of hydrocarbons remaining in the combustion chambers, resulting in improved emissions for the cycle. Overall, engine performance is improved.
其他气门运转仍然可以在各种组合中被用来改善发动机加热,并且允许加快的催化剂升温。例如,有待被停用的汽缸可以在停用之前的发动机循环被正常地点火并且被正常地排气。可替代地,汽缸可以被配置为吸入空气但不吸入燃料,并排出新鲜充气。在又一示例中,汽缸可以吸入空气并点火,但不排气。通过决定吸入并经过空气,被排出的空气能够与来自稍微浓运行的其他汽缸的排气混合,以在排气催化剂处提供燃料和空气。燃料与空气在排气催化剂处的反应产生导致快速的催化剂起燃的热。其他替代可以包括在吸气或压缩冲程吸入空气并供给燃料但不发火,以向催化剂提供燃料空气混合物。此外,空气可以被吸入汽缸、被压缩,但不被供给燃料,直至排气冲程,即,作为后喷射。该后者的方法还可以包括接近排气冲程的发火和到排气阶段内的燃烧,以为排气催化剂提供热通量。以此方式,点火、不点火、在后喷射期间的点火、在一些汽缸中的浓运行同时利用其他汽缸泵送空气等的各种组合可以在各种组合中被使用,同时以这样的方式将已知的扭矩脉冲引入发动机系统内,以便提供可接受的NVH特性。此外,已经正常燃烧的汽缸(激活的汽缸)可以在更高的负荷下运转,从而使它们更稳定并且更容许额外的花火延迟。额外的火花延迟可以在这些状况下被有利地用来向发动机和排气催化剂增添更多的热通量。Other valve operations can still be used in various combinations to improve engine heating and allow for accelerated catalyst warming. For example, the cylinders to be deactivated may be normally fired and normally exhausted for the engine cycle prior to deactivation. Alternatively, the cylinders may be configured to draw in air but not fuel, and discharge fresh charge. In yet another example, the cylinders may draw in air and fire, but not exhaust. By deciding to take in and pass air, the expelled air can mix with exhaust from other cylinders operating slightly richer to provide fuel and air at the exhaust catalyst. The reaction of fuel and air at the exhaust catalyst generates heat that results in rapid catalyst light-off. Other alternatives may include sucking in air and supplying fuel without misfiring during the intake or compression stroke to provide a fuel-air mixture to the catalyst. Additionally, air may be drawn into the cylinder, compressed, but not fueled, until the exhaust stroke, ie, as a post injection. The latter method may also include ignition near the exhaust stroke and combustion into the exhaust phase to provide heat flux to the exhaust catalyst. In this way, various combinations of firing, misfiring, firing during post injection, rich operation in some cylinders while pumping air with other cylinders, etc., may be used in various combinations, while in such a manner Known torque pulses are introduced into the engine system in order to provide acceptable NVH characteristics. Additionally, cylinders that are already firing normally (active cylinders) can be operated at higher loads, making them more stable and more tolerant of additional spark retard. Additional spark retard can be used advantageously to add more heat flux to the engine and exhaust catalyst under these conditions.
应当理解,提供以上概述是为了以简化的形式介绍一些概念,这些概念在具体实施方式中被进一步描述。这并不意味着确定所要求保护的主题的关键或基本特征,要求保护的主题的范围被随附于具体实施方式的权利要求唯一地限定。此外,要求保护的主题不限于解决在上面或在本公开的任何部分中提及的任何缺点的实施方式。It should be understood that the above summary is provided to introduce some concepts in a simplified form that are further described in the Detailed Description. This is not intended to identify key or essential features of the claimed subject matter, the scope of which is defined solely by the claims appended to the Detailed Description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
附图说明Description of drawings
图1示出发动机系统布局的示例实施例。FIG. 1 shows an example embodiment of an engine system layout.
图2示出部分的发动机视图。Figure 2 shows a partial view of the engine.
图3示出用于在汽缸停用期间和之前调整汽缸气门运转以加快发动机加热的高级别流程图。3 shows a high-level flow diagram for adjusting cylinder valve operation to accelerate engine heating during and before cylinder deactivation.
图4示出在转变为跳跃点火运转模式期间以减少PM排放的示例汽缸气门调整。FIG. 4 illustrates example cylinder valve adjustments to reduce PM emissions during a transition to a skip-fire operating mode.
具体实施方式Detailed ways
提供了用于当使被配置为用于选择性汽缸停用(在本文中也称为跳跃点火运转)的发动机(诸如图1-2的发动机系统)运转时调整汽缸气门廓线的方法和系统。控制器可以调整被选择用于选择性停用的汽缸的排气门的运转。例如,控制器可以执行程序(诸如图3的示例程序)来保持在随后的发动机循环有待被停用的汽缸的排气门关闭。通过在停用期间将热排气保持在汽缸中,压缩表面温度能够被升高,从而加快发动机加热。参考图4示出示例调整。以此方式,可以减少来自冷汽缸的微粒物质排放。Methods and systems are provided for adjusting cylinder valve profiles when operating an engine, such as the engine system of FIGS. 1-2 , configured for selective cylinder deactivation (also referred to herein as skip-fire operation) . A controller may adjust operation of exhaust valves of cylinders selected for selective deactivation. For example, the controller may execute a routine, such as the example routine of FIG. 3 , to keep the exhaust valves of cylinders to be deactivated for subsequent engine cycles closed. By keeping hot exhaust gas in the cylinder during deactivation, the compression surface temperature can be raised, thereby speeding up engine heating. An example adjustment is shown with reference to FIG. 4 . In this manner, particulate matter emissions from cold cylinders may be reduced.
图1示出具有第一汽缸组15a和第二汽缸组15b的示例发动机10。在所描述的示例中,发动机10是带有第一和第二汽缸组的V8发动机,每个汽缸组具有四个汽缸。发动机10具有带有节气门20的进气歧管16和耦接至排放控制系统30的排气歧管18。排放控制系统30包括诸如关于图2描述的一个或更多个催化剂和空燃比传感器。作为一个非限制性示例,发动机10能够被包括作为用于客车的推进系统的一部分。FIG. 1 shows an
发动机系统10可以具有带有可选择性停用的进气门50和可选择性停用的排气门56的汽缸14。在一个示例中,进气门50和排气门56被配置为用于经由电子的个别汽缸气门致动器的电子气门致动(EVA)。虽然所描述的示例示出了每个汽缸具有单个进气门和单个排气门,但是在替代示例中,如在图2处所详细描述的,每个汽缸可以具有多个可选择性停用的进气门和/或多个可选择性停用的排气门。
在所选的状况期间,诸如当不需要发动机的全部扭矩能力时,发动机10的一个或更多个汽缸可以被选择用于选择性停用(在本文中也被称为个别汽缸停用)。这可以包括选择性地停用仅第一汽缸组15a上的一个或更多个汽缸、仅第二汽缸组15b上的一个或更多个汽缸、或第一和第二汽缸组中的每个汽缸组上的一个或更多个汽缸。每个汽缸组上的被停用的汽缸的数目和标识可以是对称的或不对称的。During selected conditions, such as when the full torque capacity of the engine is not required, one or more cylinders of
在停用期间,所选的汽缸可以通过关闭个别汽缸气门机构(诸如进气门机构、排气门机构、或两者的组合)来停用。汽缸气门可以经由液压致动的挺柱(例如,耦接至气门推杆的挺柱)、经由不具有升程的凸轮凸角用于被停用的气门的凸轮廓线变换机构、或经由耦接至每个汽缸的电动致动的汽缸气门机构而被选择性地停用。此外,到被停用的汽缸的燃料流和火花可以诸如通过停用汽缸燃料喷射器来停止。During deactivation, selected cylinders may be deactivated by closing individual cylinder valve trains, such as intake valve trains, exhaust valve trains, or a combination of both. Cylinder valves may be via hydraulically actuated tappets (eg, tappets coupled to valve lifters), via cam lobes with no lift, cam profile shifting mechanisms for deactivated valves, or via coupling The electrically actuated cylinder valve trains connected to each cylinder are selectively deactivated. Additionally, fuel flow and spark to deactivated cylinders may be stopped, such as by deactivating cylinder fuel injectors.
在一些示例中,发动机系统10可以具有可选择性停用的(直接的)燃料喷射器,并且所选的汽缸可以通过切断相应的燃料喷射器同时维持进气和排气门的运转来停用,使得空气可以继续被泵送通过汽缸。In some examples,
虽然所选的汽缸被禁用,但是其余启用的或激活的汽缸继续在燃料喷射器和汽缸气门机构激活和运转的情况下执行燃烧。为了满足扭矩要求,发动机在激活的汽缸上产生相同量的扭矩。这需要更高的歧管压力,从而导致更低的泵送损失和增加的发动机效率。而且,暴露于燃烧的(来自仅被启用的汽缸的)更低有效的表面积减少发动机热损失,从而改善发动机的热效率。While the selected cylinder is disabled, the remaining enabled or activated cylinders continue to perform combustion with fuel injectors and cylinder valve trains activated and operating. To meet the torque request, the engine produces the same amount of torque on the activated cylinders. This requires higher manifold pressure, resulting in lower pumping losses and increased engine efficiency. Also, the lower effective surface area exposed to combustion (from only activated cylinders) reduces engine heat loss, thereby improving engine thermal efficiency.
汽缸可以被停用,以基于指定的控制算法提供特定的点火(或跳跃点火)模式。更具体地,所选的“跳跃的”工作循环不被点火,而其他“激活的”工作循环被点火。可选地,与所选的工作室的所选的点火相关联的火花正时也可以基于所选的工作室的点火顺序或点火历史来调整。发动机控制器12可以被配置为具有如下所述的用于基于发动机工况确定汽缸停用(或跳跃点火)模式的合适逻辑。Cylinders may be deactivated to provide specific firing (or skip firing) patterns based on specified control algorithms. More specifically, selected "jumped" duty cycles are not fired, while other "active" duty cycles are fired. Optionally, the spark timing associated with the selected firing of the selected working chamber may also be adjusted based on the firing order or firing history of the selected working chamber. The
发动机10可以以可以经由燃料系统8输送的多种物质运转。发动机10可以由包括控制器12的控制系统至少部分地控制。控制器12可以接收来自耦接至发动机10(并且参照图2描述)的传感器17的各种信号,并且向耦接至发动机和/或车辆(并且参照图2描述)的各种致动器81发送控制信号。各种传感器可以包括例如各种温度、压力和空燃比传感器。
发动机控制器可以包括用于基于在当前的发动机工况下的期望的发动机输出确定汽缸模式的驱动脉冲产生器和顺序器。例如,驱动脉冲产生器可以使用自适应预测性控制来动态地计算指示哪些汽缸要被点火并且以什么间隔来获得期望的输出(即,汽缸点火/跳跃点火模式)的驱动脉冲信号。汽缸点火模式可以被调整,以提供期望的输出而不在发动机内产生过度或不适当的振动。因此,汽缸模式可以基于发动机的构造(诸如基于发动机是否为V-发动机、直列式发动机,存在于发动机中的发动机汽缸的数量等)来选择。基于所选的汽缸模式,所选的汽缸的个别汽缸气门机构可以被关闭,同时到该汽缸的燃料流和火花被停止。The engine controller may include a drive pulse generator and sequencer for determining a cylinder mode based on a desired engine output under current engine operating conditions. For example, the drive pulse generator may use adaptive predictive control to dynamically calculate drive pulse signals that indicate which cylinders are to be fired and at what intervals to achieve the desired output (ie, cylinder firing/skip firing patterns). Cylinder firing patterns may be adjusted to provide the desired output without creating excessive or undue vibration within the engine. Thus, the cylinder mode may be selected based on the configuration of the engine (such as based on whether the engine is a V-engine, an inline engine, the number of engine cylinders present in the engine, etc.). Based on the selected cylinder mode, individual cylinder valve trains for the selected cylinder may be closed while fuel flow and spark to that cylinder are stopped.
由于给定汽缸的最佳效率是几乎全部的输出,因此可以选择更低频率的点火事件以减少输出。例如,平均起来,跳跃每一个其他汽缸将产生一半的功率。尽可能均匀地间隔开点火事件趋向于最小化由于变化的扭矩输出而引起的振动。不论所有汽缸是否都被包括,跳跃点火模式都可以取决于期望的输出部分、包括汽缸温度的其他考虑。Since the optimum efficiency for a given cylinder is nearly full output, lower frequency firing events can be selected to reduce output. For example, on average, jumping every other cylinder will produce half the power. Spaced out firing events as evenly as possible tends to minimize vibration due to varying torque output. Whether or not all cylinders are included, the skip fire mode may depend on the desired output fraction, other considerations including cylinder temperature.
以此方式,通过调整个别汽缸气门机构和个别汽缸燃料喷射器的汽缸模式,期望的发动机输出能够通过使更少的汽缸更有效率地运转来提供,由此改善燃料经济性。In this way, by adjusting the cylinder patterns of individual cylinder valve trains and individual cylinder fuel injectors, desired engine output can be provided by operating fewer cylinders more efficiently, thereby improving fuel economy.
图2描述了内燃发动机10的燃烧室或汽缸的示例实施例。发动机10可以接收来自包括控制器12的控制系统的控制参数和经由输入装置132来自车辆操作者130的输入。在这个示例中,输入装置132包括加速器踏板和用于产生成比例的踏板位置信号PP的踏板位置传感器134。发动机10的汽缸(在本中也被称为“燃烧室”)14可以包括燃烧室壁136,活塞138被设置在燃烧室壁136中。活塞138可以被耦接至曲轴140,使得活塞的往复运动被转换为曲轴的旋转运动。曲轴140可以经由变速器系统耦接至客车的至少一个驱动轮。另外,启动器马达可以经由飞轮耦接至曲轴140,以实现发动机10的启动运转。FIG. 2 depicts an example embodiment of a combustion chamber or cylinder of
汽缸14能够经由一系列进气空气通道142、144和146接收进气空气。进气空气通道146可以与发动机10的除了汽缸14之外的其他汽缸连通。在一些实施例中,一个或更多个进气通道可以包括升压装置,诸如涡轮增压器或机械增压器。例如,图2示出被配置为具有涡轮增压器的发动机10,其中涡轮增压器包括在进气通道142和144之间布置的压缩机174和沿排气通道148布置的排气涡轮176。排气涡轮176可以经由轴180至少部分地为压缩机174提供动力,在此情况下升压装置被配置为涡轮增压器。然而,在另一些示例中,诸如在发动机10配备有机械增压器的情况下,排气涡轮176可以可选地被省略,在此情况下压缩机174可以由来自马达或发动机的机械输入提供动力。包括节流板164的节气门20可以沿发动机的进气通道提供,用于改变提供给发动机汽缸的进气空气的流率和/或压力。例如,如在图2中示出的,节气门20被布置在压缩机174的下游,或可替代地,可以被提供在压缩机174的上游。
排气通道148可以从发动机10的除了汽缸14之外的其他汽缸接收排气。排气氧传感器128被示为耦接至排放控制装置178上游的排气通道148。传感器128可以选自用于提供排气空燃比指示的各种合适的传感器之中,例如线性氧传感器或UEGO(通用或宽域排气氧)、双态氧传感器或EGO(如图所示)、HEGO(加热型EGO)、NOx、HC或CO传感器。排放控制装置178可以是三元催化剂(TWC)、NOx捕集器、各种其他排放控制系统或其组合。
排气温度可以由位于排气通道48中的一个或更多个温度传感器(未示出)测量。可替代地,排气温度可以基于发动机工况(例如为转速、负荷、空燃比(AFR)、花火延迟等)推断。另外,排气温度可以通过一个或更多个排气氧传感器128计算。可以认识到,排气温度可以可替代地通过在本文中所列出的温度估计方法中的任意组合进行估计。Exhaust temperature may be measured by one or more temperature sensors (not shown) located in exhaust passage 48 . Alternatively, the exhaust gas temperature may be inferred based on engine operating conditions (eg, speed, load, air-fuel ratio (AFR), spark retard, etc.). Additionally, exhaust gas temperature may be calculated by one or more exhaust
发动机10的每个汽缸可以包括一个或更多个进气门和一个或更多个排气门。例如,汽缸14被示为包括位于汽缸14的上部区域的至少一个进气提升气门150和至少一个排气提升气门156。在一些实施例中,发动机10的每个汽缸(包括汽缸14)可以包括位于汽缸的上部区域的至少两个进气提升气门和至少两个排气提升气门。Each cylinder of
进气门150可以由控制器12通过凸轮致动系统151控制。类似地,排气门156可以由控制器12通过凸轮致动系统153控制。凸轮致动系统151和153均可以包括一个或更多个凸轮,并且可以使用可以由控制器12运转的凸轮轮廓线变换(CPS)、可变凸轮正时(VCT)、可变气门正时(VVT)和/或可变气门升程(VVL)系统中的一个或更多个,以改变气门运转。进气门150和排气门156的运转可以分别由气门位置传感器(未示出)和/或曲轴位置传感器155和157确定。在可替代的实施例中,进气门和/或排气门可以由电气门致动来控制。例如,汽缸14可以可替代地包括经由电气门致动控制的进气门和经由包括CPS和/或VCT系统的凸轮致动控制的排气门。在另一实施例中,进气门和排气门可以由共同的气门致动器或者致动系统或可变气门正时致动器或者致动系统来控制。
汽缸14能够具有压缩比,其为活塞138在上止点时与在下止点时的体积之比。通常地,压缩比在9:1至13:1的范围内。然而,在一些使用不同燃料的示例中,可以增大压缩比。例如,当使用更高的辛烷燃料或具有更高的潜在蒸发焓的燃料时,这种情况可以发生。如果使用直接喷射,由于其对发动机爆震的影响,也可以增大压缩比。
在一些实施例中,发动机10的每个汽缸可以包括用于使燃烧开始的火花塞192。在所选的运转模式下,响应于来自控制器12的火花提前信号SA,点火系统190能够经由火花塞192向燃烧室14提供点火火花。In some embodiments, each cylinder of
在一些实施例中,发动机10的每个汽缸可以被配置为具有用于向汽缸输送燃料的一个或更多个喷射器。作为一个非限制性示例,汽缸14被示为包括两个燃料喷射器166和170。燃料喷射器166和170可以被配置为经由高于燃料泵和燃料轨道输送从燃料系统8接收的燃料。可替代地,燃料在较低压力下通过单级燃料泵被输送,在这种情况下,直接燃料喷射的正时在压缩冲程期间会比使用高压燃料系统的情况下更受限制。另外,燃料箱可以具有向控制器12提供信号的压力传感器。In some embodiments, each cylinder of
燃料喷射器166被示为直接耦接至汽缸14,用于经由电子驱动器168与从控制器12接收的信号FPW-1的脉冲宽度成比例地将燃料直接喷射进汽缸中。以此方式,燃料喷射器166提供到燃烧汽缸14内的所谓的燃料直接喷射(在下文中被称为“DI”)。虽然图2示出设置在汽缸14一侧的喷射器166,但可代替地,它可以位于活塞的顶部,诸如靠近火花塞192的位置。当由于一些醇基燃料的更低的挥发性而以醇基燃料使发动机运转时,这种位置可以改善混合与燃烧。可替代地,喷射器可以位于顶部并靠近进气门,以改善混合。Fuel injector 166 is shown coupled directly to
燃料喷射器170被示为以如下构造布置在进气通道146中,而不是在汽缸14中,该构造提供到汽缸14上游的进气道中的所谓的燃料的进气道喷射(在下文中被称为“PFI”)。燃料喷射器170可以经由电子驱动器171与从控制器12接收的信号FPW-2的脉冲宽度成比例地喷射从燃料系统8接收的燃料。注意,单个驱动器168或171可以用于两个燃料喷射系统,或如所描述的那样使用多个驱动器(例如,用于燃料喷射器166的示例驱动器168和用于燃料喷射器170的驱动器171)。
燃料喷射器166和170可以具有不同的特征。这些包括包括尺寸的差别,例如,一个喷射器可以具有比另一个更大的喷射孔。其他差别包括但不限于不同的喷射角度、不同的运转温度、不同的目标、不同的喷射正时、不同的喷雾特性、不同的位置等。而且,取决于喷射器170与166之间的喷射燃料的分配比,可以实现不同的效果。
在汽缸的单个循环期间,燃料可以通过两个喷射器被输送至汽缸。例如,每个喷射器可以输送在汽缸14中被燃烧的总燃料喷射的一部分。因此,甚至对于单个燃烧事件而言,可以从进气道喷射器和直接喷射器以不同的正时喷射所要喷射的燃料。此外,对于单个燃烧事件而言,可以在每个循环执行所输送的燃料的多次喷射。可以在压缩冲程、进气冲程或其任何适当的组合期间执行多次喷射。During a single cycle of the cylinder, fuel may be delivered to the cylinder through two injectors. For example, each injector may deliver a portion of the total fuel injection combusted in
如在上文中所描述的,图2仅示出多缸发动机中的一个汽缸。同样地,每个汽缸可以类似地包括其自己的一组进气门/排气门、燃料喷射器(多个燃料喷射器)、火花塞等。应认识到,发动机10可以包括任何合适数量的汽缸,包括2个、3个、4个、5个、6个、8个、10个、12个或更多个汽缸。另外,这些汽缸中的每一个均能够包括通过图2参照汽缸14描述并描绘的各种部件中的一些或全部。As described above, FIG. 2 shows only one cylinder of a multi-cylinder engine. Likewise, each cylinder may similarly include its own set of intake/exhaust valves, fuel injector(s), spark plugs, and the like. It should be appreciated that
发动机可以进一步包括一个或更多个排气再循环通道,用于将一部分排气从发动机排气装置再循环到发动机进气装置。因此,通过再循环一些排气,可以影响发动机稀释,这可以通过减少发动机爆震、峰值汽缸燃烧温度和压力、节流损失和NOx排放来改善发动机性能。在所描述的实施例中,排气可以经由EGR通道141从排气通道148被再循环到进气通道144。向进气通道144提供的EGR量可以由控制器12经由EGR阀143来改变。另外,EGR传感器145可以被布置在EGR通道内,并且可以提供排气的压力、温度和浓度中的一个或更多个的指示。The engine may further include one or more exhaust gas recirculation passages for recirculating a portion of the exhaust gas from the engine exhaust to the engine intake. Thus, by recirculating some of the exhaust gas, engine dilution can be affected, which can improve engine performance by reducing engine knock, peak cylinder combustion temperatures and pressures, throttling losses, and NOx emissions. In the depicted embodiment, exhaust gas may be recirculated from
控制器12在图2中被示为微型计算机,其包括微处理器单元(CPU)106、输入/输出端口(I/O)108、在这个具体示例中作为只读存储器芯片(ROM)110示出的用于可执行程序和校准数值的电子存储介质、随机存取存储器(RAM)112、保活存取器(KAM)114和数据总线。控制器12可以接收来自耦接至发动机10的传感器的各种信号,除了之前所讨论的那些信号外,还包括:来自质量空气流量传感器122的所引入的质量空气流量(MAF)的测量值;来自耦接至冷却套筒118的温度传感器116的发动机冷却液温度(ECT);来自耦接至曲轴140的霍尔效应传感器120(或其他类型)的表面点火感测信号(PIP);来自节气门位置传感器的节气门位置(TP);以及来自传感器124的歧管绝对压力信号(MAP)。发动机转速信号RPM可以由控制器12根据信号PIP产生。来自歧管压力传感器的歧管压力信号MAP可以被用来提供进气歧管内的真空或压力的指示。其他传感器可以包括耦接至燃料系统的(一个或多个)燃料箱的燃料水平传感器和燃料成分传感器。The
存储介质只读存储器110能够用计算机可读数据编程,该计算机可读数据代表可由处理器106执行的指令,用于执行以下所述方法以及期望但没有具体列出的其他变体。控制器12接收来自图1-图2的各种传感器的信号,并且基于接收的信号和存储在控制器的存储器上的指令采用图1-图2的各种致动器来调整发动机运转。Storage medium read-
以此方式,图1-图2的系统实现一种用于发动机的方法,其包含:选择用于停用的汽缸;以及在停用立即之前的燃烧循环,在汽缸的排气冲程期间维持所选的汽缸的排气门被关闭。在一个示例中,所选的汽缸是第一汽缸,该方法还包含选择用于停用的第二不同的汽缸,以及在停用立即之前的燃烧循环,在第二汽缸的排气冲程期间打开关闭的第二汽缸的排气门。可以响应于发动机负荷的下降而执行停用。在排气温度高于阈值温度之后执行维持。In this manner, the system of FIGS. 1-2 implements a method for an engine comprising: selecting a cylinder for deactivation; and maintaining all of the cylinders during the exhaust stroke of the combustion cycle immediately prior to deactivation The exhaust valve of the selected cylinder is closed. In one example, the selected cylinder is the first cylinder, the method further includes selecting a second, different cylinder for deactivation, and the combustion cycle immediately preceding the deactivation, opening during the exhaust stroke of the second cylinder Close the exhaust valve of the second cylinder. Deactivation may be performed in response to a drop in engine load. The maintenance is performed after the exhaust gas temperature is higher than the threshold temperature.
在另一示例中,一种用于发动机的方法包含:停用个别汽缸机构的汽缸模式,所述汽缸模式包括第一被停用的汽缸和第二激活的汽缸,其中响应于用于第一汽缸的停用的命令,第一汽缸的排气门在第一汽缸的停用立即之前的点火循环的排气冲程被保持关闭。In another example, a method for an engine includes deactivating a cylinder mode of an individual cylinder mechanism, the cylinder mode including a first deactivated cylinder and a second activated cylinder, wherein in response to a first deactivated cylinder Deactivation of the cylinder is commanded, the exhaust valve of the first cylinder is held closed for the exhaust stroke of the ignition cycle immediately prior to the deactivation of the first cylinder.
图3示出用于在汽缸停用期间响应于发动机温度、排气温度和/或排气催化剂的温度而调整个别汽缸气门机构的程序300的示例。该方法允许排气被捕集在被停用的汽缸中,由此使汽缸的燃烧表面在停用期间维持热。通过降低被停用的汽缸的冷却,降低汽缸重新激活的频率,同时还减少来自被重新激活的汽缸的PM排放。用于执行方法300的指令可以由控制器基于存储在控制器的存储器上的指令并结合从发动机系统的传感器(诸如在上面参考图1-图2描述的传感器)接收的信号来执行。控制器可以采用发动机系统的发动机致动器(诸如参考图1-图2描述的致动器)根据下述的方法来调整发动机运转。FIG. 3 shows an example of a routine 300 for adjusting individual cylinder valve trains in response to engine temperature, exhaust gas temperature, and/or exhaust catalyst temperature during cylinder deactivation. This method allows exhaust gas to be trapped in deactivated cylinders, thereby maintaining the combustion surfaces of the cylinders hot during deactivation. By reducing cooling of deactivated cylinders, the frequency of cylinder reactivation is reduced while also reducing PM emissions from reactivated cylinders. Instructions for performing
在302处,该程序包括估计和/或测量发动机工况。估计的状况可以包括例如发动机转速、驾驶员扭矩需求、发动机温度、环境状况(诸如环境温度、湿度和大气压力)、升压水平等。在304处,基于估计的状况,可以确定汽缸停用状况是否已经被满足。在一个示例中,如果发动机负荷低于阈值、或驾驶员扭矩需求低于阈值,那么汽缸停用状况可以被认为满足。如果汽缸停用状况不满足,那么然后在305处,该程序包括维持所有发动机汽缸激活。At 302 , the routine includes estimating and/or measuring engine operating conditions. Estimated conditions may include, for example, engine speed, driver torque demand, engine temperature, ambient conditions (such as ambient temperature, humidity, and barometric pressure), boost levels, and the like. At 304 , based on the estimated conditions, it may be determined whether cylinder deactivation conditions have been met. In one example, a cylinder deactivation condition may be considered satisfied if the engine load is below a threshold, or if the driver torque demand is below a threshold. If the cylinder deactivation conditions are not met, then at 305 the routine includes maintaining activation of all engine cylinders.
如果汽缸停用状况被满足,那么然后在306处,控制器可以基于发动机负荷选择汽缸模式。汽缸停用模式可以基于发动机转速、车速、发动机温度、发动机NVH和变速器档位选择(例如,发动机当前是在具有第一更低的齿轮比的第一变速器档位还是在具有第二更高的齿轮比的第二变速器档位)中的一个或更多个被进一步选择。确定汽缸模式包括确定有待被停用的汽缸的数目和标识,并且进一步确定停用的持续时间。例如,控制器可以确定在其期间维持所选的汽缸被停用的燃烧事件或发动机循环的次数。被停用的/激活的汽缸的总数量可以取决于发动机汽缸的总实际数量和驾驶员需求扭矩。作为非限制性示例,对于四缸发动机来说两个汽缸可以被停用,对于六缸发动机来说三个汽缸可以被停用,而对于八缸发动机来说四个汽缸可以被停用。在一些示例中,每当汽缸停用状况被满足时,相同组的汽缸可以被选择用于停用,而在另一些示例中,每当汽缸停用状况被满足时,被停用的汽缸的标识可以被改变。If the cylinder deactivation conditions are met, then at 306 , the controller may select the cylinder mode based on engine load. The cylinder deactivation mode may be selected based on engine speed, vehicle speed, engine temperature, engine NVH, and transmission gear selection (eg, whether the engine is currently in a first transmission gear with a first lower gear ratio or a second higher gear ratio). One or more of the gear ratios (second transmission gears) are further selected. Determining the cylinder mode includes determining the number and identification of cylinders to be deactivated, and further determining a duration of deactivation. For example, the controller may determine the number of combustion events or engine cycles during which the selected cylinders are maintained deactivated. The total number of deactivated/activated cylinders may depend on the total actual number of engine cylinders and driver demand torque. As non-limiting examples, two cylinders may be deactivated for a four-cylinder engine, three cylinders may be deactivated for a six-cylinder engine, and four cylinders may be deactivated for an eight-cylinder engine. In some examples, the same group of cylinders may be selected for deactivation whenever a cylinder deactivation condition is met, while in other examples, whenever a cylinder deactivation condition is met, the deactivated cylinder's The logo can be changed.
作为一示例,控制器可以从存储在控制器的存储器中的查询表检索模式。汽缸模式可以在查询表中被存储为针对给定发动机构造的发动机负荷的函数。在一个示例中,在较低的发动机负荷下,汽缸模式可以包括每一个第二或第三汽缸的点火。作为一示例,在具有被标记为1至4的汽缸并且具有1-3-4-2的汽缸点火模式的直列式四缸发动机中,在正常的工况下,当没有汽缸被停用并且所有汽缸都激活时,汽缸可以以134213421342等点火。响应于汽缸停用状况被满足,为了提供燃料经济性益处,控制器可以将发动机运转转变为每一个第三汽缸被点火从而导致模式1xx2xx4xx3xx1xx的汽缸模式,其中x表示被跳跃的汽缸。As an example, the controller may retrieve the schema from a look-up table stored in the controller's memory. The cylinder mode may be stored in a look-up table as a function of engine load for a given engine configuration. In one example, at lower engine loads, the cylinder mode may include firing of each of the second or third cylinders. As an example, in an inline four-cylinder engine with cylinders labeled 1 through 4 and having a cylinder firing pattern of 1-3-4-2, under normal operating conditions, when no cylinders are deactivated and all When both cylinders are activated, the cylinders can fire at 134213421342 etc. In response to the cylinder deactivation condition being met, to provide fuel economy benefits, the controller may transition engine operation to a cylinder mode where each third cylinder is fired resulting in mode 1xx2xx4xx3xx1xx, where x represents the skipped cylinder.
在308处,可以确定汽缸冷却或发动机冷却是否被期望。在一个示例中,当发动机以低到非常轻的发动机负荷运转延长的时间量(例如,以低于阈值负荷允许长于阈值持续时间,或在汽缸停用的情况下运转长于阈值持续时间)时,可以期望一些发动机冷却。在另一示例中,如果车辆正在具有负坡度的道路上行进(即,下坡行进),则可以期望发动机冷却。在另一示例中,如果环境温度低,则可以期望发动机冷却。作为又一示例,如果发动机温度相对低并且松加速器踏板事件发生,可以发生发动机冷却。因此,当汽缸随后被重新激活时,发动机汽缸冷却能够导致退化的排气排放。此外,当在更冷的汽缸的情况下运转时,燃料消耗会更高。如果汽缸冷却不被期望,那么然后在310处,该程序包括转变为使发动机以在306处确定的汽缸模式运转。At 308 , it may be determined whether cylinder cooling or engine cooling is desired. In one example, when the engine is operating at a low to very light engine load for an extended amount of time (eg, allowing longer than a threshold duration at a load below a threshold, or longer than a threshold duration with cylinder deactivation), Some engine cooling can be expected. In another example, engine cooling may be desired if the vehicle is traveling on a road with a negative gradient (ie, traveling downhill). In another example, engine cooling may be desired if the ambient temperature is low. As yet another example, engine cooling may occur if the engine temperature is relatively low and a tip-out event occurs. Therefore, engine cylinder cooling can result in degraded exhaust emissions when the cylinders are subsequently reactivated. Also, fuel consumption will be higher when operating with cooler cylinders. If cylinder cooling is not desired, then at 310 the routine includes transitioning to operating the engine in the cylinder mode determined at 306 .
如果汽缸冷却被期望,那么然后在312处,可以首先确定排气温度是否足够热。具体地,可以确认排气温度高于提供排气催化剂的起燃的阈值。如果排气温度不足够热,那么在313处,该程序包括延迟汽缸停用直至排气温度足够热。这种延迟允许由于燃烧表面冷却引起的微粒物质排放得以减少。If cylinder cooling is desired, then at 312 it may first be determined whether the exhaust temperature is hot enough. Specifically, it can be confirmed that the exhaust gas temperature is higher than a threshold value that provides light-off of the exhaust catalyst. If the exhaust gas temperature is not hot enough, at 313 , the routine includes retarding cylinder deactivation until the exhaust gas temperature is hot enough. This delay allows particulate matter emissions due to combustion surface cooling to be reduced.
然而,将认识到,在一些示例中,即使当排气温度低于阈值时,控制器也可以进入到314,以停用一个或更多个发动机汽缸,同时依赖于本文中在318处描述的额外汽缸气门调整来升高排气温度并加快催化剂起燃。这样一来,能够在发动机运转的更长的持续时间内实现汽缸停用益处。It will be appreciated, however, that in some examples, the controller may proceed to 314 to deactivate one or more engine cylinders even when the exhaust gas temperature is below a threshold, while relying on the descriptions described herein at 318 Additional cylinder valve adjustment to increase exhaust temperature and accelerate catalyst light-off. In this way, cylinder deactivation benefits can be realized for longer durations of engine operation.
返回到312,如果排气温度足够热,那么然后在314处,该程序包括识别在下一个发动机循环有待被停用的一个或更多个汽缸(例如,基于在306处选择的汽缸模式)。即,基于发动机负荷在当前循环点火但是在下一个循环将不被点火的第一汽缸可以被识别。第一汽缸可以不同于在当前循环和下一个循环中的每个循环都点火的第二汽缸(激活的发动机汽缸)。在316处,被识别的(一个或多个)汽缸在当前循环在排气门在排气冲程被维持关闭的情况下运转。即,代替排出燃烧过的气体并且让汽缸马达在下一个循环内具有极少的充气或新鲜空气,通过在汽缸中的燃烧之后并且直至汽缸被重新激活才打开排气门而将燃烧过的气体保持在汽缸中。通过在下一个循环内将热排气保持在汽缸中(当该汽缸被停用时),给定汽缸的燃烧室表面可以更长时间保持热。通过对被安排有待被停用的一个或更多个其他汽缸类似地执行排气门停用,即使当汽缸被停用时也能实现汽缸加热。因此,这允许发动机被逐渐地加热。通过将燃烧过的气体保持在汽缸中更长的持续时间,也改善被保持在室中的碳氢化合物的继续氧化和排气,从而导致针对该循环的改善的排放。Returning to 312 , if the exhaust temperature is hot enough, then at 314 the routine includes identifying one or more cylinders to be deactivated in the next engine cycle (eg, based on the cylinder mode selected at 306 ). That is, the first cylinder that fires in the current cycle but will not fire in the next cycle may be identified based on engine load. The first cylinder may be different from the second cylinder (active engine cylinder) that fires in each of the current cycle and the next cycle. At 316 , the identified cylinder(s) are operating for the current cycle with the exhaust valve maintained closed on the exhaust stroke. That is, instead of venting the combusted gases and leaving the cylinder motor with very little charge or fresh air for the next cycle, the burned gases are retained by not opening the exhaust valve after combustion in the cylinder and until the cylinder is reactivated in the cylinder. By keeping hot exhaust gas in the cylinder during the next cycle (when the cylinder is deactivated), the combustion chamber surfaces of a given cylinder can remain hot longer. By similarly performing exhaust valve deactivation on one or more other cylinders scheduled to be deactivated, cylinder heating can be achieved even when the cylinder is deactivated. Thus, this allows the engine to be gradually heated. By keeping the combusted gases in the cylinder for a longer duration, the continued oxidation and exhaust of the hydrocarbons held in the chamber is also improved, resulting in improved emissions for the cycle.
在一个示例中,确定所选的汽缸模式包括确定所选的(一个或多个)汽缸在多个发动机循环将被停用。其中,维持所选的汽缸的的排气门被关闭响应于发动机循环的次数高于阈值次数。例如,当发动机循环的次数高于阈值次数时,停用能够导致显著的汽缸冷却,这能够在随后的重新激活期间需要更多的燃料。阈值次数可以基于发动机冷却液温度、环境温度和汽缸温度中的一个或更多个,阈值次数随着发动机冷却液温度、环境温度和汽缸温度中的任何一个的减小而减少。在本文中,通过保持排气门关闭,更多热被保持在有待被停用的汽缸中,并且被保持更长时间,从而减少停用的汽缸冷却影响。In one example, determining the selected cylinder mode includes determining that the selected cylinder(s) are to be deactivated over a number of engine cycles. Therein, maintaining the exhaust valve of the selected cylinder closed in response to the number of engine cycles being above a threshold number of times. For example, when the number of engine cycles is above a threshold number, deactivation can result in significant cylinder cooling, which can require more fuel during subsequent reactivations. The threshold number may be based on one or more of engine coolant temperature, ambient temperature, and cylinder temperature, the threshold number decreasing as any one of engine coolant temperature, ambient temperature, and cylinder temperature decreases. Here, by keeping the exhaust valve closed, more heat is retained in the cylinder to be deactivated, and for a longer time, thereby reducing the deactivated cylinder cooling effect.
应认识到,当给定汽缸随后被重新激活时,被重新激活的汽缸的排气门可以在(一个或多个)进气门被打开之前被打开,以允许保持被捕集在汽缸中的任何残余气体在将新鲜充气吸入汽缸之前被推出。这允许在重新激活期间的失火发生得以减少。例如,被重新激活的汽缸的排气门可以在重新激活立即之前的发动机循环的排气冲程期间被打开。在一个示例中,排气门可以在排气冲程的即将开始的时候被打开。因此,诸如如果需要稍后作出决定,排气门可以在排气冲程中较晚地被打开,然而,排气在排气冲程期间可能已经被压缩,从而当排气门随后被打开时导致功的损失。It should be appreciated that when a given cylinder is subsequently reactivated, the exhaust valve(s) of the reactivated cylinder may be opened before the intake valve(s) are opened to allow the trapped cylinders to remain Any residual gas is pushed out before fresh charge is drawn into the cylinder. This allows the occurrence of misfires during reactivation to be reduced. For example, the exhaust valve of the reactivated cylinder may be opened during the exhaust stroke of the engine cycle immediately preceding the reactivation. In one example, the exhaust valve may be opened just before the start of the exhaust stroke. Thus, the exhaust valve may be opened later in the exhaust stroke, such as if a decision needs to be made later, however, the exhaust gas may have been compressed during the exhaust stroke, resulting in work when the exhaust valve is opened later Loss.
可选地,在318处,连同被选择用于在下一个循环停用的汽缸的排气门的停用,有待被停用或保持激活的一个或更多个其他汽缸的气门运转可以被调整。因此,可以产生各种跳跃点火组合。例如,当第一汽缸被正常地点火和排气时,第二汽缸可以被配置为吸入空气但不吸入燃料,并排出新鲜充气。在又一示例中,来自这样的汽缸的空气可以与来自稍微浓于化学计量比的其他汽缸的排气混合,以向催化剂提供燃料和空气,从而反应并产生热,导致快速的催化剂起燃。其他替代可以包括在进气或压缩冲程吸入空气并供给燃料,但不提供火花,以便在排气催化剂处以期望的比率产生空气-燃料混合物。此外,吸入的空气可以被压缩,但不被供给燃料,直至提供后喷射的排气冲程。这可以与接近排气事件的火花正时相结合,以将燃烧提供到排气阶段内。这为排气催化剂提供额外的热通量。Optionally, at 318 , the valve operation of one or more other cylinders to be deactivated or remain activated may be adjusted in conjunction with the deactivation of the exhaust valves of the cylinders selected for deactivation in the next cycle. Therefore, various skip fire combinations can be produced. For example, when the first cylinder is normally fired and exhausted, the second cylinder may be configured to draw in air but not fuel, and discharge fresh charge. In yet another example, air from such a cylinder may be mixed with exhaust from other cylinders that is slightly richer than stoichiometric ratio to provide fuel and air to the catalyst to react and generate heat, resulting in rapid catalyst light-off. Other alternatives may include drawing in air and supplying fuel on the intake or compression stroke, but not providing spark, to produce an air-fuel mixture at the exhaust catalyst at the desired ratio. Additionally, the intake air may be compressed, but not fueled, until the exhaust stroke providing post injection. This can be combined with spark timing close to the exhaust event to provide combustion into the exhaust phase. This provides additional heat flux to the exhaust catalyst.
不同选项之间的选择可以基于NVH考虑以及激励脉冲。例如,浓燃烧事件可以将扭矩和/或扭矩脉冲增添到系统内。然而,在排气冲程的后喷射可以仅提供热而无到系统内的扭矩脉冲,由此导致不同的NVH特性。The choice between the different options can be based on NVH considerations and excitation pulses. For example, a rich burn event may add torque and/or torque pulses into the system. However, post injection in the exhaust stroke may only provide heat without a torque pulse into the system, thereby resulting in different NVH characteristics.
通过使用在318处讨论的各种组合同时将已知的扭矩脉冲引入发动机系统内,发动机和排气催化剂温度可以被更好地控制,同时提供可接受的NVH特性。此外,激活的汽缸可以在没有额外的火花延迟的情况下运转,以向排气催化剂增添更多的热通量。由于激活的汽缸在选择性的汽缸停用期间在更高的平均汽缸负荷下运转,因此它们可以更容许额外的火花延迟。By simultaneously introducing known torque pulses into the engine system using the various combinations discussed at 318 , engine and exhaust catalyst temperatures may be better controlled while providing acceptable NVH characteristics. Additionally, activated cylinders can be operated without additional spark retard to add more heat flux to the exhaust catalyst. Since activated cylinders operate at higher average cylinder loads during selective cylinder deactivation, they may be more tolerant of additional spark retard.
作为一个示例,第一汽缸可以被选择用于以汽缸模式的停用。该第一汽缸对于经确定的次数的发动机循环可以具有被禁用的进气门和/或排气门运转。此外,第二不同的汽缸可以被选择用于停用,对于经确定的次数的发动机循环中的至少一些发动机循环,在被停用的进气门、被停用的排气门、被停用的燃料喷射器和被延迟的火花中的一个或更多个的情况下运转第二汽缸。As one example, the first cylinder may be selected for deactivation in cylinder mode. The first cylinder may have intake valve and/or exhaust valve operation disabled for a determined number of engine cycles. Additionally, a second, different cylinder may be selected for deactivation, for at least some of the determined number of engine cycles, at deactivated intake valves, deactivated exhaust valves, deactivated The second cylinder is operated with one or more of the fuel injectors and retarded spark.
作为非限制性示例,发动机控制器可以使第二汽缸在进气门在进气冲程期间打开、燃料喷射器被停用、火花被停用并且排气门在排气冲程期间打开的第一模式下运转。可替代地,发动机控制器可以使第二汽缸在进气门在进气冲程期间打开、燃料喷射器被停用、火花被停用并且排气门在排气冲程期间打开的第二模式下运转。可替代地,发动机控制器可以使第二汽缸在进气门在进气冲程或压缩冲程期间打开、燃料喷射器被激活并且燃料在压缩冲程期间被输送、火花被停用并且排气门在排气冲程期间打开的第三模式下运转。可替代地,发动机控制器可以使第二汽缸在述进气门在进气冲程期间打开、燃料喷射器被激活、火花被延迟至排气冲程并且排气门在排气冲程期间打开的第四模式下运转。因此,气门、燃料和火花调整的各种组合实现有待被传递给发动机部件的不同热量。应认识到,除了在上面列出的那些之外的其他模式是可能的,以提供向发动机(例如,汽缸、排气催化剂等)输送期望的热量的气门、燃料和火花调整的组合。控制器可以基于发动机温度进一步选择用于第二汽缸的运转模式。As a non-limiting example, the engine controller may cause the second cylinder in a first mode in which the intake valve is open during the intake stroke, the fuel injectors are deactivated, the spark is deactivated, and the exhaust valve is open during the exhaust stroke run down. Alternatively, the engine controller may operate the second cylinder in a second mode in which the intake valve is open during the intake stroke, the fuel injectors are deactivated, the spark is deactivated, and the exhaust valve is open during the exhaust stroke . Alternatively, the engine controller may cause the second cylinder to have the intake valve open during the intake stroke or the compression stroke, the fuel injectors activated and fuel delivered during the compression stroke, the spark deactivated and the exhaust valve at the exhaust. Operates in a third mode turned on during the gas stroke. Alternatively, the engine controller may cause the second cylinder to be open during the fourth period in which the intake valve is open during the intake stroke, the fuel injector is activated, the spark is retarded to the exhaust stroke, and the exhaust valve is open during the exhaust stroke. operating in the mode. Thus, various combinations of valve, fuel, and spark adjustments achieve different amounts of heat to be transferred to engine components. It should be appreciated that other modes than those listed above are possible to provide a combination of valve, fuel and spark adjustments that deliver the desired heat to the engine (eg, cylinders, exhaust catalysts, etc.). The controller may further select the operating mode for the second cylinder based on the engine temperature.
因此,控制器可以以加热催化剂或加热发动机/发动机汽缸为目标。在一个示例中,控制器可以响应于第二汽缸需要比第一汽缸更多的加热(诸如当燃烧在第二汽缸中在某一持续时间内不发生,或当冷却系统失调时)或响应于第二汽缸被连接到除了第一汽缸之外的不同催化剂(诸如在V形发动机构造中)而选择除了第一模式之外的模式(诸如第二模式、第三模式、或第四模式中的一个),其中耦接至第二汽缸的催化剂需要额外的加热以被充分地激活。Therefore, the controller may target heating the catalyst or heating the engine/engine cylinders. In one example, the controller may respond to the second cylinder requiring more heating than the first cylinder (such as when combustion does not occur in the second cylinder for a certain duration, or when the cooling system is deregulated) or in response to The second cylinder is connected to a different catalyst than the first cylinder (such as in a V-engine configuration) and a mode other than the first mode (such as the second mode, the third mode, or the fourth mode is selected) a), where the catalyst coupled to the second cylinder requires additional heating to be fully activated.
作为又一示例,当使发动机汽缸以被停用的/激活的汽缸的所选的汽缸模式运转时,控制器可以使其余汽缸中的至少一个在火花激活和燃料加浓(例如,经由相对于在压缩冲程期间输送的化学计量比的浓燃料喷射)的情况下运转,而使其余汽缸中的至少另一个在火花激活和燃料变稀(例如,经由相对于在压缩冲程期间输送的化学计量比的稀燃料喷射)的情况下运转以使发动机温度升高至阈值之上。在本文中,浓汽缸将会在催化剂处提供一些将与通过稀汽缸向催化剂提供的氧气反应的CO和碳氢化合物。以此方式,来自加浓的汽缸的浓空燃比充气可以在发动机排气装置处(诸如在排气催化剂处)与来自变稀的汽缸的稀空燃比充气混合,从而在催化剂处产生放热反应。因此,这加快排气催化剂加热。As yet another example, when operating the engine cylinders in the selected cylinder mode of the deactivated/activated cylinders, the controller may cause at least one of the remaining cylinders to be spark activated and fuel rich (eg, via relative to operating with stoichiometric rich fuel injection delivered during the compression stroke) while at least one other of the remaining cylinders is spark activated and fuel lean (eg, via relative stoichiometric fuel injection delivered during the compression stroke) Lean fuel injection) to raise the engine temperature above the threshold. In this context, the rich cylinders will provide some CO and hydrocarbons at the catalyst that will react with the oxygen provided to the catalyst through the lean cylinders. In this way, the rich charge from the enriched cylinder may be mixed with the lean charge from the leaner cylinder at the engine exhaust, such as at the exhaust catalyst, thereby producing an exothermic reaction at the catalyst . Therefore, this accelerates exhaust catalyst heating.
在又一示例中,当使发动机汽缸以被停用的/激活的汽缸的所选的汽缸模式运转时,控制器可以使其余汽缸中的至少一个在火花被停用和汽缸被化学计量比地供给燃料的情况下运转,以加快催化剂加热。In yet another example, when operating the engine cylinders in the selected cylinder mode of the deactivated/activated cylinders, the controller may cause at least one of the remaining cylinders to be stoichiometrically stoichiometric when spark is deactivated Operates with fuel supplied to accelerate catalyst heating.
现在转向图4,映射图400示出用于具有沿着汽缸体(未示出)连续布置的汽缸1-4的四缸直列式发动机的示例排气门调整。汽缸1-4被配置为以顺序1-3-4-2点火。映射图400描述了关于在进气冲程(I)、排气冲程(E)、做功冲程(P)或压缩冲程(C)的发动机活塞位置的进气门正时(实线)和排气门正时(虚线)。映射图400进一步以星号403a-b、413b、423a-b、433a-b描述汽缸火花点火事件和以矩形402a-b、412b、422a-b、432b描述汽缸燃料喷射事件。Turning now to FIG. 4 ,
在所描述的示例中,在第一循环(循环_1),发动机以点火顺序1-3-4-2点火,其中发动机的每个汽缸点火一次。然后,在下一个循环(循环_2),进入跳跃点火模式,并且发动机根据汽缸模式1-x-4-x点火,其中x表示被跳跃的汽缸。在本文中,每一个交替的汽缸被点火,并且另一个交替的汽缸被跳跃,从而导致1/2点火模式。在这种情况下,汽缸3的点火在汽缸1的点火之后被跳跃,并且然后汽缸2的点火在汽缸4的点火之后被跳跃。In the depicted example, in the first cycle (Cycle_1), the engine fires in a firing sequence 1-3-4-2, where each cylinder of the engine fires once. Then, on the next cycle (Cycle_2), skip fire mode is entered and the engine fires according to the cylinder pattern 1-x-4-x, where x represents the cylinder being skipped. Here, each alternate cylinder is fired and the other alternate cylinder is skipped, resulting in a 1/2 firing pattern. In this case, the firing of cylinder 3 is skipped after the firing of
自图顶部的第一曲线图表示1号汽缸(汽缸1)的位置。并且,具体地,1号汽缸的冲程随着发动机曲轴旋转。汽缸1冲程根据发动机位置来进行标记。例如,汽缸1被示为首先在进气冲程(I),发动机旋转,并且1号汽缸进入由做功(P)冲程和排气(E)冲程紧随的压缩冲程(C)。用于汽缸1的汽缸循环然后重复。对于四冲程发动机,汽缸循环可以是720°,对于发动机的整个循环,曲轴间隔相同。The first graph from the top of the figure represents the position of cylinder number 1 (cylinder 1). And, specifically, the stroke of the No. 1 cylinder follows the rotation of the engine crankshaft.
同样地,自图顶部的第二曲线图表示3号汽缸(汽缸3)的位置,具体地,3号汽缸的冲程随着发动机曲轴旋转。汽缸3冲程根据发动机位置来进行标记。例如,汽缸3被示为首先在排气冲程(E),发动机旋转,并且3号汽缸进入由压缩(C)冲程和做功(P)冲程紧随的进气冲程(I)。该汽缸然后针对下一个燃烧循环(该燃烧循环将会在随后的进气冲程开始)被停用。同样地,自图顶部的第三曲线图表示4号汽缸(汽缸4)的位置,具体地,4号汽缸的冲程随着发动机曲轴旋转。汽缸4冲程根据发动机位置来进行标记。例如,汽缸4被示为首先在做功冲程(P),发动机旋转,并且4号汽缸进入由进气(I)冲程和压缩(C)冲程紧随的排气冲程(E)。用于汽缸4的汽缸循环然后重复。同样地,自图顶部的第四曲线图表示2号汽缸(汽缸2)的位置,具体地,2号汽缸的冲程随着发动机曲轴旋转。汽缸2冲程根据发动机位置来进行标记。例如,汽缸2被示为首先在压缩冲程(C),发动机旋转,并且2号汽缸进入由排气(E)冲程和进气(I)冲程紧随的做功冲程(P)。该汽缸然后针对下一个燃烧循环(循环_2)被停用。Likewise, the second graph from the top of the figure represents the position of cylinder number 3 (cylinder 3), specifically the stroke of cylinder number 3 as the engine crankshaft rotates. Cylinder 3 strokes are marked according to engine position. For example, cylinder 3 is shown first on the exhaust stroke (E), the engine spins, and cylinder number 3 enters the intake stroke (I) followed by the compression (C) and power (P) strokes. The cylinder is then deactivated for the next combustion cycle, which will begin on the subsequent intake stroke. Likewise, the third graph from the top of the figure represents the position of cylinder number 4 (cylinder 4), specifically the stroke of cylinder number 4 as the engine crankshaft rotates. Cylinder 4 strokes are marked according to engine position. For example, cylinder 4 is shown first on the power stroke (P), the engine spins, and cylinder number 4 enters the exhaust stroke (E) followed by the intake (I) stroke and compression (C) stroke. The cylinder cycle for cylinder 4 then repeats. Likewise, the fourth graph from the top of the figure represents the position of cylinder number 2 (cylinder 2), specifically the stroke of
参考第一汽缸,在401a-404a处示出第一汽缸事件,并且在401b-404b处示出汽缸1中的随后的汽缸事件。在第一和第二汽缸事件中的每个事件期间,进气门在进气冲程期间被打开(401a、401b),以向汽缸提供空气。燃料然后通过进气道喷射器或直接喷射器被喷射到发动机汽缸(402a、402b)。燃料与空气混合物在压缩冲程被压缩并且被点燃(403a、403b)。峰值汽缸压力可以在压缩冲程的上止点处或在膨胀冲程期间发生。排气然后通过在排气冲程期间打开排气门被释放(404a、404b)。在本文中,由于汽缸1在第一汽缸事件之后要保持激活,因此404a处的排气门运转如期望的那样继续。With reference to the first cylinder, a first cylinder event is shown at 401a-404a, and a subsequent cylinder event in
参考第四汽缸,在423a-424a处示出第一汽缸事件的结束,并且在421b-424b处示出汽缸4中的随后的汽缸事件。在第一和第二汽缸事件中的每个事件期间,进气门在进气冲程期间被打开(所示出的421b),以向汽缸提供空气。燃料然后通过进气道喷射器或直接喷射器被喷射到发动机汽缸(所示出的422b)。燃料与空气混合物在压缩冲程被压缩并且被点燃(423a、423b)。峰值汽缸压力可以在压缩冲程的上止点处或在膨胀冲程期间发生。排气然后通过在排气冲程期间打开排气门被释放(424a、424b)。在本文中,如同汽缸1,由于汽缸4在第一汽缸事件之后要保持激活,因此424a处的排气门运转如期望的那样继续。同样,由于汽缸4在第二汽缸事件之后要保持激活,因此424b处的排气门运转如期望的那样继续,并且在421c和422c处分别由另一进气门和燃料事件紧随。Referring to the fourth cylinder, the end of the first cylinder event is shown at 423a-424a, and the subsequent cylinder event in cylinder 4 is shown at 421b-424b. During each of the first and second cylinder events, the intake valve is opened during the intake stroke (421b shown) to provide air to the cylinder. Fuel is then injected into the engine cylinders (422b shown) through port injectors or direct injectors. The fuel and air mixture is compressed and ignited during the compression stroke (423a, 423b). Peak cylinder pressure may occur at top dead center of the compression stroke or during the expansion stroke. Exhaust gas is then released by opening the exhaust valve during the exhaust stroke (424a, 424b). Here, as with
参考第三汽缸,在411b-413b处示出第一汽缸事件,并且在随后的汽缸事件(即,在循环_2期间),汽缸3被停用。具体地,汽缸3的燃料、火花和气门运转中的每一个在411b-413b之后的汽缸事件被停用。在第一汽缸事件期间(即,在循环_1期间),进气门在进气冲程期间被打开(411b),以向汽缸提供空气。燃料然后通过进气道喷射器或直接喷射器被喷射到发动机汽缸(412b)。燃料与空气混合物在压缩冲程被压缩并且被点燃(413b)。峰值汽缸压力可以在压缩冲程的上止点处或在膨胀冲程期间发生。然而,由于汽缸3在第一汽缸事件之后要被停用,因此排气不被释放,但是替代地,通过在排气冲程期间保持排气门关闭而被保持在汽缸中。相比之下,在411b-413b处示出的第一汽缸事件之前的汽缸事件,414a处的排气门运转被允许在排气门在排气冲程打开以释放排气的情况下继续。通过在汽缸3的停用(在循环_2)之前的汽缸3中的汽缸事件(在循环_1)关闭排气门,热被保持在燃烧室中,从而允许汽缸燃烧表面的加热,并且由此当汽缸3随后被重新激活时减少PM排放的释放。此外,冷却液温度可以针对发动机的静止而被(例如,缓慢地)增加,从而改善乘客舒适性。Referring to the third cylinder, the first cylinder event is shown at 411b-413b, and at the subsequent cylinder event (ie, during Cycle_2), cylinder 3 is deactivated. Specifically, each of the fuel, spark, and valve operation of cylinder 3 is deactivated for the cylinder events following 411b-413b. During the first cylinder event (ie, during Cycle_1), the intake valve is opened (411b) during the intake stroke to provide air to the cylinder. Fuel is then injected into the engine cylinders ( 412b ) through port injectors or direct injectors. The fuel and air mixture is compressed and ignited during the compression stroke (413b). Peak cylinder pressure may occur at top dead center of the compression stroke or during the expansion stroke. However, since cylinder 3 is to be deactivated after the first cylinder event, the exhaust is not released, but is instead held in the cylinder by keeping the exhaust valve closed during the exhaust stroke. In contrast, the cylinder event prior to the first cylinder event shown at 411b-413b, exhaust valve operation at 414a is allowed to continue with the exhaust valve open on the exhaust stroke to release exhaust gas. By closing the exhaust valve at a cylinder event in Cylinder 3 (in Cycle_1) prior to the deactivation of Cylinder 3 (in Cycle_2), heat is retained in the combustion chamber, allowing heating of the combustion surfaces of the cylinder, and by This reduces the release of PM emissions when cylinder 3 is subsequently reactivated. Additionally, coolant temperature may be increased (eg, slowly) for engine standstill to improve passenger comfort.
同样,参考第二汽缸,在431b-433b处示出第一汽缸事件,并且在随后的汽缸事件,汽缸2被停用。具体地,汽缸2的燃料、火花和气门运转中的每一个在431b-433b之后的汽缸事件被停用。在第一汽缸事件期间,进气门在进气冲程期间被打开(431b),以向汽缸提供空气。燃料然后通过进气道喷射器或直接喷射器被喷射到发动机汽缸(432b)。燃料与空气混合物在压缩冲程被压缩并且被点燃(433b)。峰值汽缸压力可以在压缩冲程的上止点处或在膨胀冲程期间发生。然而,由于汽缸2在第一汽缸事件之后要被停用,因此排气不被释放,但是替代地,通过在排气冲程期间保持排气门关闭而被保持在汽缸中。相比之下,在431b-433b示出的第一汽缸事件之前的汽缸事件,434a处的排气门运转被允许在排气门在排气冲程打开以释放排气的情况下继续。通过在汽缸2的停用之前的汽缸2中的汽缸事件关闭排气门,热被保持在燃烧室中,从而允许汽缸燃烧表面的加热,并且由此当汽缸2随后被重新激活时减少PM排放的释放。Likewise, with reference to the second cylinder, a first cylinder event is shown at 431b-433b, and on a subsequent cylinder event,
应认识到,当汽缸2和汽缸3随后被重新激活时,被重新激活的汽缸的排气门可以在(一个或多个)进气门被打开之前被打开,以允许保持被捕集在汽缸中的任何残余气体在将新鲜充气吸入汽缸之前被推出。这允许在重新激活期间的失火发生得以减少。例如,响应于用于汽缸重新激活的指示,被停用的汽缸的排气门可以在重新激活立即之前的发动机循环的排气冲程被打开,以便排出残余物。然后,汽缸可以被重新激活,并且进气门和排气门可以分别在进气冲程和排气冲程之中如期望的那样运转。换言之,被停用的汽缸的排气门在重新激活立即之前的排气冲程期间被打开,并且然后在重新激活后的排气冲程期间被打开。It should be appreciated that when
一种用于发动机的示例方法包含:选择用于停用的汽缸;以及在停用立即之前的发动机循环,在汽缸的排气冲程期间维持所选的汽缸的排气门被关闭。在上述示例中,额外地或可选地,选择用于停用的汽缸响应于发动机负荷的下降。在上述示例中的任何一个或所有中,在选择期间,排气温度额外地或可选地高于阈值温度。上述示例中的任何一个或所有可以额外地或可选地进一步包含,在所选的汽缸的重新激活期间,在打开进气门之前打开排气门,以在吸入空气之前释放被捕集的排气。在上述示例中的任何一个或所有中,打开排气门可以额外地或可选地包括在重新激活立即之前的发动机循环的排气冲程期间打开排气门。在上述示例中的任何一个或所有中,所选的汽缸是第一汽缸,并且该方法可以额外地或可选地进一步包含,选择用于停用的第二不同的汽缸,以及使第二汽缸在被停用的进气门、被停用的排气门、被停用的燃料喷射器和被延迟的火花中的一个或更多个的情况下运转。在上述示例中的任何一个或所有中,所述运转额外地或可选地可以包括,使第二汽缸在进气门在进气冲程期间打开、燃料喷射器被停用、火花被停用并且排气门在排气冲程期间打开的第一模式下运转;使第二汽缸在进气门在进气冲程期间打开、燃料喷射器被停用、火花被停用并且排气门在排气冲程期间打开的第二模式下运转;使第二汽缸在进气门在进气冲程或压缩冲程期间打开、燃料喷射器被激活并且燃料在压缩冲程期间被输送、火花被停用并且排气门在排气冲程期间打开的第三模式下运转;使第二汽缸在进气门在进气冲程期间打开、燃料喷射器被激活、火花被延迟至排气冲程并且排气门在排气冲程期间打开的第四模式下运转;以及基于排气催化剂温度选择模式。上述示例中的任何一个或所有可以额外地或可选地进一步包含,在多个发动机循环内停用所选的汽缸,其中维持所选的汽缸的排气门被关闭响应于发动机循环的次数高于阈值次数。在上述示例中的任何一个或所有中,额外地或可选地,阈值次数基于发动机冷却液温度、环境温度和汽缸温度中的一个或更多个,所述阈值次数随着发动机冷却液温度、环境温度和汽缸温度中的任何一个的减小而减少。An example method for an engine includes: selecting a cylinder for deactivation; and maintaining an exhaust valve of the selected cylinder closed during an exhaust stroke of the cylinder immediately prior to the engine cycle prior to deactivation. In the above examples, additionally or alternatively, the cylinders selected for deactivation are responsive to a drop in engine load. In any or all of the above examples, the exhaust gas temperature is additionally or alternatively above the threshold temperature during the selection period. Any or all of the above examples may additionally or alternatively further include, during reactivation of the selected cylinder, opening the exhaust valve prior to opening the intake valve to release trapped exhaust prior to intake air. gas. In any or all of the above examples, opening the exhaust valve may additionally or alternatively include opening the exhaust valve during the exhaust stroke of the engine cycle immediately preceding reactivation. In any or all of the above examples, the selected cylinder is the first cylinder, and the method may additionally or alternatively further comprise, selecting a second, different cylinder for deactivation, and deactivating the second cylinder Operates with one or more of a deactivated intake valve, a deactivated exhaust valve, a deactivated fuel injector, and a retarded spark. In any or all of the above examples, the operating may additionally or alternatively include causing the second cylinder to open during the intake stroke, the fuel injectors to be deactivated, the spark to be deactivated, and The exhaust valve is operated in the first mode during the exhaust stroke; the second cylinder is caused to have the intake valve open during the intake stroke, the fuel injectors are deactivated, the spark is deactivated and the exhaust valve is open during the exhaust stroke Operates in a second mode that is open during the period; having the second cylinder open with the intake valve open during the intake or compression stroke, the fuel injectors activated and fuel delivered during the compression stroke, the spark deactivated and the exhaust valve at Operates in third mode open during exhaust stroke; second cylinder with intake valve open during intake stroke, fuel injector activated, spark retarded to exhaust stroke and exhaust valve open during exhaust stroke operating in a fourth mode of ; and selecting the mode based on the exhaust catalyst temperature. Any or all of the above examples may additionally or alternatively further include deactivating selected cylinders for a plurality of engine cycles, wherein maintaining the exhaust valves of the selected cylinders closed in response to a high number of engine cycles at the threshold times. In any or all of the above examples, additionally or alternatively, the threshold number of times is based on one or more of engine coolant temperature, ambient temperature, and cylinder temperature, the threshold number being a function of engine coolant temperature, decreases as any one of ambient temperature and cylinder temperature decreases.
用于发动机的另一示例方法包含:停用个别汽缸机构的汽缸模式,汽缸模式包括第一被停用的汽缸和第二激活的汽缸,其中响应于用于第一汽缸的停用的命令,并且进一步基于发动机温度,第一汽缸的排气门在第一汽缸的停用立即之前的发动机循环的排气冲程被保持关闭。在上述示例中,额外地或可选地,第一汽缸的排气门可以响应于发动机温度低于阈值而被保持关闭。在上述示例中的任何一个或所有中,汽缸模式可以额外地或可选地进一步包括在其期间第一汽缸被维持停用的发动机循环的次数,并且该方法可以额外地或可选地进一步包含,在动机循环的次数之后重新激活第一汽缸。在上述示例中的任何一个或所有中,额外地或可选地,发动机温度是估计的发动机温度或期望的发动机温度,期望的发动机温度包括在重新激活时期望的发动机或发动机部件的温度。上述示例中的任何一个或所有可以额外地或可选地进一步包含,在重新激活期间,在打开第一汽缸的进气门之前打开第一汽缸的排气门,以在将空气吸入第一汽缸之前释放被捕集的排气。上述示例中的任何一个或所有可以额外地或可选地进一步包含,响应于期望的发动机温度在阈值之下,使第三汽缸在浓燃料喷射在压缩冲程期间被输送和火花被停用的情况下运转,而使第四汽缸在稀燃料喷射在进气冲程期间被输送和火花被停用的情况下运转。Another example method for an engine includes deactivating a cylinder mode of an individual cylinder mechanism, the cylinder mode including a first deactivated cylinder and a second activated cylinder, wherein in response to a command for deactivation of the first cylinder, And further based on engine temperature, the exhaust valve of the first cylinder is held closed for the exhaust stroke of the engine cycle immediately prior to deactivation of the first cylinder. In the above example, additionally or alternatively, the exhaust valve of the first cylinder may be held closed in response to the engine temperature being below a threshold. In any or all of the above examples, the cylinder mode may additionally or alternatively further include the number of engine cycles during which the first cylinder is maintained deactivated, and the method may additionally or alternatively further include , the first cylinder is reactivated after the number of engine cycles. In any or all of the above examples, additionally or alternatively, the engine temperature is an estimated engine temperature or a desired engine temperature, the desired engine temperature including the desired engine or engine component temperature upon reactivation. Any or all of the above examples may additionally or alternatively further include, during reactivation, opening the exhaust valve of the first cylinder prior to opening the intake valve of the first cylinder to allow air to be drawn into the first cylinder Before releasing the trapped exhaust. Any or all of the above examples may additionally or alternatively further include, in response to the desired engine temperature being below a threshold, enabling the third cylinder to be delivered with rich fuel injection and spark deactivated during the compression stroke The fourth cylinder is operated with lean fuel injection delivered during the intake stroke and spark deactivated.
另一示例发动机系统包含:发动机,其具有多个汽缸,每个汽缸包括进气门和排气门;停用机构,其用于停用多个汽缸中的一个汽缸的进气门和排气门中的至少一个;温度传感器,其用于估计发动机温度;以及控制器。控制器可以被配置为具有计算机可读指令,所述计算机可读指令被存储在非临时性存储器上,该指令用于:基于发动机负荷选择用于停用的多个汽缸中的一个;以及在第一发动机循环,在相应的进气冲程期间打开多个发动机汽缸中的每个汽缸的进气门,在排气冲程期间保持多个汽缸中的一个汽缸的排气门关闭,而在相应的排气冲程期间打开其余汽缸的排气门;以及在第二发动机循环,在第一发动机循环立即之后,停用多个汽缸中的一个汽缸的进气门和排气门,同时维持维持其余汽缸激活。在上述示例中,在排气冲程期间保持多个汽缸中的一个汽缸的排气门关闭可以额外地或可选地响应于发动机温度低于阈值。上述示例中的任何一个或所有可以额外地或可选地进一步包含,使其余汽缸中的一个或更多个在火花正时被延迟到排气冲程内的情况下运转,以使发动机温度升高至阈值之上。上述示例中的任何一个或所有可以额外地或可选地进一步包含,使其余汽缸中的至少一个在火花激活和燃料加浓的情况下运转,而使其余汽缸中的至少另一个在火花激活和燃料变稀的情况下运转以使发动机温度升高至阈值之上。上述示例中的任何一个或所有可以额外地或可选地进一步包含,在第三发动机循环,在排气冲程期间重新激活多个汽缸中的一个汽缸的排气门并打开排气门,并且在第三发动机循环立即之后的第四发动机循环期间,在进气冲程期间重新激活多个汽缸中的一个汽缸的进气门并打开进气门。Another example engine system includes an engine having a plurality of cylinders, each cylinder including an intake valve and an exhaust valve; a deactivation mechanism for deactivating the intake and exhaust of one of the plurality of cylinders at least one of the doors; a temperature sensor for estimating engine temperature; and a controller. The controller may be configured with computer readable instructions stored on non-transitory memory for: selecting one of the plurality of cylinders for deactivation based on engine load; and In the first engine cycle, the intake valve of each of the plurality of engine cylinders is opened during the corresponding intake stroke, the exhaust valve of one of the plurality of cylinders is kept closed during the exhaust stroke, and the corresponding opening the exhaust valves of the remaining cylinders during the exhaust stroke; and in the second engine cycle, immediately after the first engine cycle, deactivating the intake and exhaust valves of one of the plurality of cylinders while maintaining the remaining cylinders activation. In the above examples, maintaining the exhaust valve of one of the plurality of cylinders closed during the exhaust stroke may additionally or alternatively be in response to the engine temperature being below a threshold. Any or all of the above examples may additionally or alternatively further include operating one or more of the remaining cylinders with spark timing retarded into the exhaust stroke to increase engine temperature above the threshold. Any or all of the above examples may additionally or alternatively further include operating at least one of the remaining cylinders with spark activation and fuel enrichment while operating at least one of the remaining cylinders with spark activation and fuel enrichment. Operates fuel lean to raise engine temperature above a threshold. Any or all of the above examples may additionally or alternatively further include, during the third engine cycle, reactivating and opening the exhaust valve of one of the plurality of cylinders during the exhaust stroke, and During the fourth engine cycle immediately following the third engine cycle, the intake valve of one of the plurality of cylinders is reactivated and opened during the intake stroke.
在进一步的表示中,一种用于发动机的方法包含,停用个别汽缸机构的汽缸模式,所述汽缸模式第一被停用的汽缸和第二激活的汽缸,其中响应于用于第一汽缸的停用的命令,第一汽缸的排气门在第一汽缸的停用立即之前的点火循环的排气冲程被保持关闭。In a further representation, a method for an engine includes deactivating a cylinder mode of an individual cylinder mechanism, the cylinder mode a first deactivated cylinder and a second activated cylinder, wherein in response to a cylinder mode for the first cylinder The deactivation command, the exhaust valve of the first cylinder is held closed for the exhaust stroke of the ignition cycle immediately preceding the deactivation of the first cylinder.
以此方式,保持来自被停用的汽缸中的燃烧的排气的技术效果是,停用益处能够被延长更长的持续时间而不使排气排放退化。通过在排气冲程期间保持在下一个循环有待被停用的汽缸的排气门被关闭,热排气可以被保持在汽缸中,即使当汽缸被停用时也升高被停用的汽缸的燃烧表面的温度。因此,这不仅减少对冷汽缸重新激活的需要,由此改善燃料经济性,而且减少来自被重新激活的汽缸的微粒物质排放。通过当汽缸模式的其他汽缸被停用时还使具有可变气门和火花运转的激活的汽缸可选地运转,排气催化剂升温得以加快,并且具有汽缸停用的发动机运转的持续时间得以延长。这允许汽缸停用的燃料经济性益处被延长,从而改善发动机性能和燃料经济性。In this way, the technical effect of maintaining exhaust from combustion in deactivated cylinders is that the deactivation benefits can be extended for longer durations without degrading exhaust emissions. By keeping the exhaust valve of the cylinder to be deactivated in the next cycle closed during the exhaust stroke, hot exhaust gas can be held in the cylinder, boosting combustion of the deactivated cylinder even when the cylinder is deactivated surface temperature. Thus, this not only reduces the need for cold cylinder reactivation, thereby improving fuel economy, but also reduces particulate matter emissions from the reactivated cylinders. By also selectively operating the activated cylinder with variable valve and spark operation when other cylinders of the cylinder pattern are deactivated, exhaust catalyst warming is accelerated and the duration of engine operation with cylinder deactivation is extended. This allows the fuel economy benefits of cylinder deactivation to be prolonged, thereby improving engine performance and fuel economy.
注意,本文中包括的示例控制和估计程序能够与各种发动机和/或车辆系统配置一起使用。本文公开的控制方法和程序可作为可执行指令被储存在非临时性存储器中且可通过包括控制器的控制系统结合各种传感器、致动器和其它发动机硬件来实施。在本文中所描述的具体程序可以代表任意数量的处理策略中的一个或多个,诸如事件驱动、中断驱动、多任务、多线程等。因此,所描述的各种动作、操作和/或功能可以所示顺序执行、并行地执行,或者在一些情况下被省略。同样,实现在本文中所描述的本发明的示例实施例的特征和优点不一定需要所述处理顺序,但是为了便于图释和说明而提供了所述处理顺序。取决于所使用的特定策略,所示出的动作、操作和/或功能中的一个或多个可以被重复执行。另外,所描述的动作、操作和/或功能可以图形地表示被编入发动机控制系统中的计算机可读存储介质的非临时性存储器的代码,其中通过配合电子控制器执行包括各种发动机硬件部件的系统中的指令而使所描述的动作得以实现。Note that the example control and estimation routines included herein can be used with various engine and/or vehicle system configurations. The control methods and programs disclosed herein may be stored as executable instructions in non-transitory memory and may be implemented by a control system including a controller in conjunction with various sensors, actuators, and other engine hardware. The specific procedures described herein may represent one or more of any number of processing strategies, such as event-driven, interrupt-driven, multitasking, multithreading, and the like. Thus, the various acts, operations and/or functions described may be performed in the order shown, in parallel, or in some cases omitted. Likewise, the described order of processing is not necessarily required to implement the features and advantages of the example embodiments of the invention described herein, but is provided for ease of illustration and description. Depending on the particular strategy used, one or more of the illustrated actions, operations, and/or functions may be repeatedly performed. Additionally, the described acts, operations, and/or functions may graphically represent code programmed into a non-transitory memory of a computer-readable storage medium in an engine control system, where executed in cooperation with an electronic controller, including various engine hardware components The described actions are carried out by the instructions in the system.
应认识到,在本文中所公开的配置和程序本质上是示例性的,并且这些具体的实施例不被认为是限制性的,因为许多变体是可能的。例如,上述技术能够应用于V-6、I-4、I-6、V-12、对置4缸和其他发动机类型。本公开的主题包括在本文中所公开的各种系统和构造和其他的特征、功能和/或性质的所有新颖的和非显而易见的组合和子组合。It should be appreciated that the configurations and procedures disclosed herein are exemplary in nature and that these specific examples are not to be considered limiting, as many variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4 and other engine types. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various systems and configurations and other features, functions and/or properties disclosed herein.
本申请的权利要求具体地指出某些被认为是新颖的和非显而易见的组合和子组合。这些权利要求可能涉及“一个”元件或“第一”元件或其等同物。这些权利要求应当被理解为包括一个或多个这种元件的结合,既不要求也不排除两个或多个这种元件。所公开的特征、功能、元件和/或特性的其他组合和子组合可通过修改现有权利要求或通过在这个或关联申请中提出新的权利要求而得到要求保护。这些权利要求,无论与原始权利要求范围相比更宽、更窄、相同或不相同,都被认为包括在本公开的主题内。The claims of this application particularly point out certain combinations and subcombinations regarded as novel and nonobvious. These claims may refer to "an" element or "a first" element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and subcombinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
Claims (15)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462067354P | 2014-10-22 | 2014-10-22 | |
US62/067,354 | 2014-10-22 | ||
US14/861,857 US9988997B2 (en) | 2014-10-22 | 2015-09-22 | Method and system for engine temperature control |
US14/861,857 | 2015-09-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105545498A CN105545498A (en) | 2016-05-04 |
CN105545498B true CN105545498B (en) | 2020-12-04 |
Family
ID=55698566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510690168.4A Active CN105545498B (en) | 2014-10-22 | 2015-10-22 | Method and system for engine temperature control |
Country Status (4)
Country | Link |
---|---|
US (1) | US9988997B2 (en) |
CN (1) | CN105545498B (en) |
DE (1) | DE102015117971B4 (en) |
RU (1) | RU2704921C2 (en) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9689327B2 (en) | 2008-07-11 | 2017-06-27 | Tula Technology, Inc. | Multi-level skip fire |
DE112013005866T5 (en) | 2012-12-07 | 2015-08-20 | Ethanol Boosting Systems, Llc | Intake manifold injection system for the reduction of soot from turbocharged gasoline engines with direct injection |
US9441570B2 (en) | 2012-12-07 | 2016-09-13 | Ethanol Boosting Systems, Llc | Gasoline particulate reduction using optimized port and direct injection |
US9399964B2 (en) | 2014-11-10 | 2016-07-26 | Tula Technology, Inc. | Multi-level skip fire |
US10400691B2 (en) | 2013-10-09 | 2019-09-03 | Tula Technology, Inc. | Noise/vibration reduction control |
US11236689B2 (en) | 2014-03-13 | 2022-02-01 | Tula Technology, Inc. | Skip fire valve control |
US10662883B2 (en) | 2014-05-12 | 2020-05-26 | Tula Technology, Inc. | Internal combustion engine air charge control |
US10233796B2 (en) * | 2014-05-12 | 2019-03-19 | Tula Technology, Inc. | Internal combustion engine using variable valve lift and skip fire control |
US10323588B2 (en) * | 2014-10-22 | 2019-06-18 | Ford Global Technologies, Llc | Method and system for particulate matter control |
US10227936B2 (en) | 2016-06-09 | 2019-03-12 | Ford Global Technologies, Llc | System and method for adjusting intake manifold pressure |
US10208687B2 (en) | 2016-06-09 | 2019-02-19 | Ford Global Technologies, Llc | System and method for operating an engine oil pump |
DE102017112665A1 (en) | 2016-06-09 | 2017-12-14 | Ford Global Technologies, Llc | SYSTEM FOR SWITCHING OFF MOTOR CYLINDERS |
US10156195B2 (en) | 2016-06-09 | 2018-12-18 | Ford Global Technologies, Llc | System and method for selecting a cylinder deactivation mode |
US10337431B2 (en) | 2016-06-09 | 2019-07-02 | Ford Global Technologies, Llc | System and method for controlling busyness of cylinder mode changes |
US10107216B2 (en) | 2016-06-09 | 2018-10-23 | Ford Global Technologies, Llc | System and method for reactivating engine cylinders |
US10316775B2 (en) | 2016-06-09 | 2019-06-11 | Ford Global Technologies, Llc | System and method for controlling engine torque while deactivating engine cylinders |
US10337444B2 (en) | 2016-06-09 | 2019-07-02 | Ford Global Technologies, Llc | System and method for controlling fuel for reactivating engine cylinders |
US10711715B2 (en) | 2016-06-09 | 2020-07-14 | Ford Global Technologies, Llc | System and method for improving cylinder deactivation |
US10507834B2 (en) | 2016-06-09 | 2019-12-17 | Ford Global Technologies, Llc | Cylinder deactivation control for driveline braking |
US10690064B2 (en) | 2016-06-09 | 2020-06-23 | Ford Global Technologies, Llc | System for deactivating engine cylinders |
US10024256B2 (en) | 2016-06-09 | 2018-07-17 | Ford Global Technologies, Llc | System and method for intake manifold pressure control |
US10337418B2 (en) | 2016-06-09 | 2019-07-02 | Ford Global Technologies, Llc | System for reactivating deactivated cylinders |
US10151223B2 (en) | 2016-06-09 | 2018-12-11 | Ford Global Technologies, Llc | Valve deactivating system for an engine |
US10626813B2 (en) * | 2016-06-09 | 2020-04-21 | Ford Global Technologies, Llc | System and method for controlling engine knock |
CN114087075B (en) * | 2016-06-09 | 2024-04-09 | 福特环球技术公司 | System and method for controlling the frequency of cylinder mode changes |
US10316774B2 (en) | 2016-06-09 | 2019-06-11 | Ford Global Technologies, Llc | System for method for controlling engine knock of a variable displacement engine |
DE102017112565A1 (en) * | 2016-06-09 | 2017-12-14 | Ford Global Technologies, Llc | SYSTEM FOR RESETTING THE DISCONNECTED CYLINDER |
US11480120B2 (en) | 2016-06-09 | 2022-10-25 | Ford Global Technologies, Llc | System and method for mitigating cylinder deactivation degradation |
US10371070B2 (en) | 2016-06-09 | 2019-08-06 | Ford Global Technologies, Llc | Active cylinder configuration for an engine including deactivating engine cylinders |
DE102017112317A1 (en) | 2016-06-09 | 2017-12-14 | Ford Global Technologies, Llc | SYSTEM AND METHOD FOR IMPROVING CYLINDER SHUT-OFF |
US10107217B2 (en) | 2016-06-09 | 2018-10-23 | Ford Global Technologies, Llc | System and method for determining engine knock |
WO2018058015A1 (en) | 2016-09-26 | 2018-03-29 | Ethanol Boosting Systems, Llc | Gasoline particulate reduction using optimized port fuel injection plus direct injection |
US10125705B2 (en) * | 2016-10-06 | 2018-11-13 | Cummins Inc. | Cylinder deactivation entrance and exit control |
US10280863B2 (en) * | 2017-02-02 | 2019-05-07 | Ford Global Technologies, Llc | Fuel injector diagnostics in a variable displacement engine |
JP6589917B2 (en) * | 2017-03-22 | 2019-10-16 | トヨタ自動車株式会社 | Control device for internal combustion engine |
US10612486B2 (en) * | 2017-07-31 | 2020-04-07 | Ford Global Technologies, Llc | Systems and methods for identifying a stuck open exhaust gas recirculation valve |
JP6863166B2 (en) * | 2017-08-08 | 2021-04-21 | トヨタ自動車株式会社 | Variable control device for combustion cylinder ratio |
DE102017216978B4 (en) * | 2017-09-25 | 2021-03-04 | Audi Ag | Method for operating a drive device and a corresponding drive device |
US10493836B2 (en) | 2018-02-12 | 2019-12-03 | Tula Technology, Inc. | Noise/vibration control using variable spring absorber |
JP2020051374A (en) * | 2018-09-28 | 2020-04-02 | 本田技研工業株式会社 | Cylinder deactivation switching device |
US10690071B1 (en) * | 2018-12-12 | 2020-06-23 | Denso International America, Inc. | Control system for variable displacement engine |
US10781762B2 (en) | 2018-12-12 | 2020-09-22 | Denso International America, Inc. | Control system for variable displacement engine |
US10961930B2 (en) | 2018-12-12 | 2021-03-30 | Denso International America, Inc. | Control system for variable displacement engine |
US10690036B1 (en) | 2018-12-20 | 2020-06-23 | Denso International America, Inc. | Diagnostic test for engine exhaust system |
US20210040908A1 (en) * | 2019-04-02 | 2021-02-11 | Tula Technology, Inc. | Deceleration cylinder cut off and turbocharger rotational speed management |
US11073095B2 (en) * | 2019-09-09 | 2021-07-27 | Ford Global Technologies, Llc | Method and system for improving exhaust system efficiency |
US10995682B1 (en) * | 2019-11-06 | 2021-05-04 | Ford Global Technologies, Llc | System and method for reducing engine temperature |
US11261818B2 (en) * | 2019-11-19 | 2022-03-01 | Hyundai Motor Company | System and method for controlling NVH in an engine containing CVVD technology |
US11560822B2 (en) | 2020-08-25 | 2023-01-24 | Tula Technology, Inc. | Particulate filter soot management for internal combustion engines |
DE112021004484T5 (en) * | 2020-08-27 | 2023-10-19 | Cummins Inc. | RELOADING MANAGEMENT FOR CYLINDER RELEASE |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1455020A1 (en) * | 1987-05-13 | 1989-01-30 | Коломенский Филиал Всесоюзного Заочного Политехнического Института | Method of controlling internal combustion engine |
SU1793084A1 (en) * | 1990-11-16 | 1993-02-07 | Valentin V Leonov | Method of internal combustion engine control |
US5483941A (en) | 1993-10-25 | 1996-01-16 | Ford Motor Company | Method and apparatus for maintaining temperatures during engine fuel cutoff modes |
US7260467B2 (en) * | 2003-12-12 | 2007-08-21 | Ford Global Technologies, Llc | Cylinder deactivation method to minimize drivetrain torsional disturbances |
US6978204B2 (en) | 2004-03-05 | 2005-12-20 | Ford Global Technologies, Llc | Engine system and method with cylinder deactivation |
US7128043B2 (en) * | 2004-03-19 | 2006-10-31 | Ford Global Technologies, Llc | Electromechanically actuated valve control based on a vehicle electrical system |
US7240663B2 (en) * | 2004-03-19 | 2007-07-10 | Ford Global Technologies, Llc | Internal combustion engine shut-down for engine having adjustable valves |
US7762237B2 (en) * | 2007-09-07 | 2010-07-27 | Ford Global Technologies, Llc | Method for determining valve degradation |
WO2010106640A1 (en) * | 2009-03-17 | 2010-09-23 | トヨタ自動車株式会社 | Device for controlling internal combustion engine |
US20100263639A1 (en) | 2009-04-20 | 2010-10-21 | Ford Global Technologies, Llc | Engine Control Method and System |
US8511281B2 (en) | 2009-07-10 | 2013-08-20 | Tula Technology, Inc. | Skip fire engine control |
WO2011108075A1 (en) * | 2010-03-02 | 2011-09-09 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP5384413B2 (en) * | 2010-03-31 | 2014-01-08 | 本田技研工業株式会社 | Internal combustion engine with valve deactivation mechanism |
US8272362B2 (en) | 2011-03-29 | 2012-09-25 | Ford Global Technologies, Llc | Engine control method and system |
US8919097B2 (en) * | 2011-05-12 | 2014-12-30 | Ford Global Technologies, Llc | Methods and systems for variable displacement engine control |
JP5351233B2 (en) * | 2011-10-14 | 2013-11-27 | 日野自動車株式会社 | Control device for internal combustion engine |
US8931273B2 (en) | 2012-05-17 | 2015-01-13 | Ford Global Technologies, Llc | Stored compressed air management for improved engine performance |
GB2503499A (en) * | 2012-06-29 | 2014-01-01 | Ford Global Tech Llc | Variable displacement by deactivation of one or more cylinders of an automobile engine |
US9043122B2 (en) * | 2012-06-29 | 2015-05-26 | Ford Global Technologies, Llc | Method and system for pre-ignition control |
US9567928B2 (en) * | 2012-08-07 | 2017-02-14 | GM Global Technology Operations LLC | System and method for controlling a variable valve actuation system to reduce delay associated with reactivating a cylinder |
US9638121B2 (en) * | 2012-08-24 | 2017-05-02 | GM Global Technology Operations LLC | System and method for deactivating a cylinder of an engine and reactivating the cylinder based on an estimated trapped air mass |
DE102014100450B4 (en) * | 2013-01-22 | 2019-03-28 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Cylinder control method for preventing operation at a resonance frequency |
US9243573B2 (en) * | 2013-05-31 | 2016-01-26 | Ford Global Technologies, Llc | Methods and systems for cylinder bank misfire detection and reactivation |
US9506408B2 (en) * | 2014-06-02 | 2016-11-29 | Ford Global Technologies, Llc | Method of fuel injection for a variable displacement engine |
-
2015
- 2015-09-22 US US14/861,857 patent/US9988997B2/en active Active
- 2015-10-21 DE DE102015117971.7A patent/DE102015117971B4/en active Active
- 2015-10-21 RU RU2015145130A patent/RU2704921C2/en active
- 2015-10-22 CN CN201510690168.4A patent/CN105545498B/en active Active
Also Published As
Publication number | Publication date |
---|---|
RU2015145130A (en) | 2017-04-21 |
DE102015117971A1 (en) | 2016-04-28 |
RU2704921C2 (en) | 2019-10-31 |
US20160115884A1 (en) | 2016-04-28 |
DE102015117971B4 (en) | 2025-01-02 |
US9988997B2 (en) | 2018-06-05 |
CN105545498A (en) | 2016-05-04 |
RU2015145130A3 (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105545498B (en) | Method and system for engine temperature control | |
US9784199B2 (en) | Method and system for exhaust catalyst warming | |
US9879625B2 (en) | Variable displacement engine control system and method | |
US9835101B2 (en) | System and method for selective cylinder deactivation | |
US10161336B2 (en) | System and method for determining valve operation | |
US10323588B2 (en) | Method and system for particulate matter control | |
US9874169B2 (en) | Control device of compression-ignition engine | |
US9382857B2 (en) | Post fuel injection of gaseous fuel to reduce exhaust emissions | |
US9175616B2 (en) | Approach for controlling exhaust gas recirculation | |
US9670854B2 (en) | Method and system for air charge estimation | |
US20080196695A1 (en) | Event-based direct injection engine starting with a variable number of injections | |
US20160010568A1 (en) | Selectively deactivatable engine cylinder | |
CN104373226A (en) | Variable displacement engine control system and method | |
US9759138B2 (en) | Internal combustion engine with partial deactivation and method for the operation of an internal combustion engine of said type | |
CN103375283B (en) | Explosive motor and the operating method of the explosive motor of the type that part is disabled | |
US11391227B1 (en) | Methods and system for operating skipped cylinders to provide secondary air | |
US11635004B2 (en) | Methods and system for operating skipped cylinders to provide secondary air | |
CN106609707A (en) | Method and system for engine control | |
US11365693B1 (en) | Methods and system for operating skipped cylinders to provide secondary air | |
US11365695B1 (en) | Methods and system for operating skipped cylinders to provide secondary air | |
US11480122B1 (en) | Methods and systems for reducing engine exhaust emissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |