[go: up one dir, main page]

CN105543967B - 一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法 - Google Patents

一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法 Download PDF

Info

Publication number
CN105543967B
CN105543967B CN201610072172.9A CN201610072172A CN105543967B CN 105543967 B CN105543967 B CN 105543967B CN 201610072172 A CN201610072172 A CN 201610072172A CN 105543967 B CN105543967 B CN 105543967B
Authority
CN
China
Prior art keywords
silicon carbide
carbide powder
crystal form
raw material
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610072172.9A
Other languages
English (en)
Other versions
CN105543967A (zh
Inventor
张云伟
靳丽婕
韩金波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Xingyun Lianzhong Technology Co ltd
Original Assignee
Beijing Century Goldray Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Century Goldray Semiconductor Co ltd filed Critical Beijing Century Goldray Semiconductor Co ltd
Priority to CN201610072172.9A priority Critical patent/CN105543967B/zh
Publication of CN105543967A publication Critical patent/CN105543967A/zh
Application granted granted Critical
Publication of CN105543967B publication Critical patent/CN105543967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种稳定PVT法生长4H高纯碳化硅单晶晶型的原料处理方法包括:步骤1将合成好的碳化硅粉源放置在石墨坩埚内,用CVD炉加热至1000‑1300℃;步骤2向所述CVD炉内通入Ar(氩)和CH4(甲烷)的混合气体,调节调节Ar与CH4质量流比在1000‑1之间,压力控制在30000‑300pa之间,裂解后的碳沉积在碳化硅粉料表面,旋转翻动粉料使其在表面均匀沉积,根据沉积量需求增加反映时间;步骤3停止通入CH4气体后进行降温停炉,最终得到带有裂解碳镀层的碳化硅粉料。本发明通过增加原料中活性高的沉积碳来调节碳化硅生长中Si/C组分,使升华组分中Si与原料表面上的碳进行反应,最终降低生长组分中Si/C比来实现生长4H‑SiC高纯碳化硅晶型的稳定控制。

Description

一种稳定PVT法生长4H高纯碳化硅单晶晶型的原料处理方法
技术领域
本发明涉及半导体生长技术领域,特别是一种稳定PVT(物理气相沉积)法生长4H高纯碳化硅单晶晶型的原料处理方法。
背景技术
SiC是第三代宽带隙半导体材料之一,相对于常见Si和GaAs等半导体材料,SiC在带隙、介质击穿电压、电子饱和速率、导热率等方面具有优良的性能。因此,SiC有望成为超越Si极限的下一代能源器件和高温器件材料,伴随于此,广泛进行着衬底材料的发展。特别是在极端条件和恶劣条件下应用时,SiC器件的特性远远超过了Si器件和GaAs器件。在光电子领域,也较相对传统衬底材料Si 与蓝宝石优越很多。
碳化硅生长方式有PVT(物理气相沉积)法、CVD(化学气相沉积)法等,大尺寸高纯半绝缘碳化硅的生长多采用PVT法进行生长,生长的晶型多已4H-SiC或6H-SiC为主要晶型衬底材料。碳化硅晶型有3C-SiC、2H-SiC、4H-SiC、6H-SiC、15R-SiC等多型,一定条件下晶体的几种多型结构可以共存共融,2H-SiC多型一般在1300-1600℃形成;4H-SiC多型在1900-2500℃温度范围生成;15R-SiC多型在2300-2700℃范围内形成。而3C-SiC和6H-SiC多型生成温度范围则很宽,3C-SiC多型生成温度范围1000-2750℃几乎涵盖了其他多型的生成温度范围;6H-SiC多型生成范围为1800-3000℃,涵盖了4H-SiC、15R-SiC多型生成范围。因此在生长过程容易产生多型,多型带来的位错、微管等缺陷大大降低了其制备的器件性能。
根据4H-SiC的生长特点,适宜的温度范围和底的生长组分Si/C比有利于提高4H-SiC生长稳定性,适宜的温度范围其采用测温可以满足控制,但与其矛盾的条件SiC的升华特性,底的Si/C比一般要求较高的生长温度,根据4H-SiC、6H-SiC、15R-SiC的形成温度范围,控制在2100-2300℃之间较为适宜4H-SiC生长。这样其生长组分的Si/C比又较高,因此如何降低碳化硅生长气氛中Si/C是解决晶型稳定的关键技术。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种稳定PVT法生长4H高纯碳化硅单晶晶型的原料处理方法。
为实现上述目的本发明一种稳定PVT法生长4H高纯碳化硅单晶晶型的原料处理方法,该方法包括如下步骤:
步骤1将合成好的碳化硅粉源放置在石墨坩埚内,用CVD炉加热至1000-1300℃;
步骤2向所述CVD炉内通入Ar(氩)和CH4(甲烷)的混合气体,调节调节Ar与CH4质量流比在1000-1之间,压力控制在30000-300pa之间,裂解后的碳沉积在碳化硅粉料表面,旋转翻动粉料使其在表面均匀沉积,根据沉积量需求增加反映时间;
步骤3停止通入CH4气体后进行降温停炉,最终得到带有裂解碳镀层的碳化硅粉料。
进一步,所述带有裂解碳镀层的碳化硅粉料的表面镀层碳与碳化硅粉料的质量比在1/500-1/5000之间。
本发明通过增加原料中活性高的沉积碳来调节碳化硅生长中Si/C组分,使升华组分中Si与原料表面上的碳进行反应,最终降低生长组分中Si/C比来实现生长4H-SiC高纯碳化硅晶型的稳定控制。
附图说明
图1为实例1中利用本发明进行生长的4H-SiC晶型的晶体的光谱分析图;
图2为实例2中利用本发明进行生长的4H-SiC晶型的晶体的光谱分析图;
图3为实例3中利用本发明进行生长的4H-SiC晶型的晶体的光谱分析图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
本发明的一种稳定PVT法生长4H高纯碳化硅单晶晶型的原料处理方法,该方法包括如下步骤:
步骤1将合成好的碳化硅粉源放置在石墨坩埚内,利用CVD炉加热至1000-1300℃;
步骤2向CVD炉内通入Ar(氩)和CH4(甲烷)的混合气体,调节调节Ar与CH4质量流比在1000-1之间,石墨坩埚内压力控制在30000-300pa之间,裂解后的碳沉积在碳化硅粉料表面,旋转翻动粉料使其在表面均匀沉积,根据沉积量需求增加反映时间;
步骤3停止通入CH4气体后进行降温停炉,最终得到带有活性高的裂解碳镀层的高纯碳化硅粉料。
优选的,将通过上述方法处理的碳化硅粉料的表面镀层碳与碳化硅粉料的质量比在1/500-1/5000之间。
下面选取三组生长实例说明本发明的效果:
实例1:CVD炉反应温度1150℃,Ar/CH4:800/50(sccm/min),石墨坩埚内压力控制在3000pa,反应20分钟。将得到的碳化硅粉料放置在石墨坩埚中,将4H-SiC籽晶固定在粉料上方的坩埚盖上,向单晶炉中通入Ar气体或混有H2的气体充至4-8万帕,温度控制在2100-2300℃之间进行4H-SiC晶型的晶体生长。将晶体切片后使用拉曼光谱分析进行晶型测试,如图1所示,晶型稳定95%。
实例2:CVD炉反应温度1200℃,Ar/CH4:800/50(sccm/min),石墨坩埚内压力控制在2000pa,反应20分钟。将得到的碳化硅粉料放置在石墨坩埚中,将4H-SiC籽晶固定在粉料上方的坩埚盖上,向单晶炉中通入Ar气体或混有H2的气体充至4-8万帕,温度控制在2100-2300℃之间进行4H-SiC晶型的晶体生长。将晶体切片后使用拉曼光谱分析进行晶型测试,如图2所示,晶型稳定100%。
实例3:CVD炉反应温度1150℃,Ar/CH4:500/50(sccm/min), 石墨坩埚内压力控制在2000pa,反应20分钟。将得到的碳化硅粉料放置在石墨坩埚中,将4H-SiC籽晶固定在粉料上方的坩埚盖上,向单晶炉中通入Ar气体或混有H2的气体充至4-8万帕,温度控制在2100-2300℃之间进行4H-SiC晶型的晶体生长。将晶体切片后使用拉曼光谱分析进行晶型测试,如图3所示,晶型稳定100%。
上述示例只是用于说明本发明,本发明的实施方式并不限于这些示例,本领域技术人员所做出的符合本发明思想的各种具体实施方式都在本发明的保护范围之内。

Claims (1)

1.一种稳定PVT法生长4H高纯碳化硅单晶晶型的原料处理方法,其特征在于,该方法包括如下步骤:
步骤1将合成好的碳化硅粉源放置在石墨坩埚内,用CVD炉加热至1150~1200℃;
步骤2向所述CVD炉内通入Ar和CH4的混合气体,调节Ar与CH4质量流比在1000~1之间,压力控制在30000~300pa之间,裂解后的碳沉积在碳化硅粉料表面,旋转翻动粉料使其在表面均匀沉积,根据沉积量需求增加反应时间;
步骤3停止通入CH4气体后进行降温停炉,最终得到带有裂解碳镀层的碳化硅粉料;
所述带有裂解碳镀层的碳化硅粉料的表面镀层碳与碳化硅粉料的质量比在1/500-1/5000之间。
CN201610072172.9A 2016-02-02 2016-02-02 一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法 Active CN105543967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610072172.9A CN105543967B (zh) 2016-02-02 2016-02-02 一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610072172.9A CN105543967B (zh) 2016-02-02 2016-02-02 一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法

Publications (2)

Publication Number Publication Date
CN105543967A CN105543967A (zh) 2016-05-04
CN105543967B true CN105543967B (zh) 2023-02-03

Family

ID=55823515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610072172.9A Active CN105543967B (zh) 2016-02-02 2016-02-02 一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法

Country Status (1)

Country Link
CN (1) CN105543967B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821471B (zh) * 2016-05-10 2018-10-30 山东大学 一种低应力高纯半绝缘SiC单晶的制备方法
CN108193282B (zh) * 2017-11-14 2019-06-25 山东天岳先进材料科技有限公司 一种高纯碳化硅原料的合成方法及其应用
CN110541199B (zh) * 2019-10-11 2020-07-31 山东大学 一种直径8英寸及以上尺寸高质量SiC籽晶的制备方法
CN110872728B (zh) * 2019-11-28 2021-05-28 山东大学 一种简单、高效降低SiC单晶中碳包裹物的方法
CN113445122B (zh) * 2020-03-24 2022-11-22 芯恩(青岛)集成电路有限公司 提高SiC晶体生长效率及质量的方法及装置
CN112226815A (zh) * 2020-11-16 2021-01-15 哈尔滨科友半导体产业装备与技术研究院有限公司 用于pvt法生长碳化硅单晶的碳化硅粉料的预处理方法
CN113026106B (zh) * 2021-05-19 2021-08-10 浙江大学杭州国际科创中心 一种碳化硅晶体的生长工艺

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099414A (ja) * 2002-09-13 2004-04-02 National Institute Of Advanced Industrial & Technology 炭化珪素単結晶の製造方法
US7767021B2 (en) * 2005-09-29 2010-08-03 Neosemitech Corporation Growing method of SiC single crystal
CN100400723C (zh) * 2006-05-29 2008-07-09 中国科学院物理研究所 一种碳化硅单晶生长后的热处理方法
JP4987784B2 (ja) * 2008-04-03 2012-07-25 新日本製鐵株式会社 炭化珪素単結晶インゴットの製造方法
JP2013103848A (ja) * 2011-11-11 2013-05-30 Mitsubishi Electric Corp SiC単結晶の製造方法

Also Published As

Publication number Publication date
CN105543967A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105543967B (zh) 一种稳定pvt法生长4h高纯碳化硅单晶晶型的原料处理方法
JP5657109B2 (ja) 半絶縁炭化珪素単結晶及びその成長方法
KR101379941B1 (ko) 탄화규소 단결정 및 탄화규소 단결정 웨이퍼
CN110578171B (zh) 一种大尺寸低缺陷碳化硅单晶的制造方法
KR102284879B1 (ko) 탄화규소 웨이퍼 및 탄화규소 웨이퍼의 제조방법
KR100773624B1 (ko) 탄화 규소 단결정으로 이루어지는 종결정 및 그를 이용한잉곳의 제조 방법
CN104562206B (zh) 一种提高物理气相传输法生长4H‑SiC 晶体晶型稳定性的方法
JP4387159B2 (ja) 黒鉛材料、炭素繊維強化炭素複合材料、及び、膨張黒鉛シート
CN103270203B (zh) 单晶碳化硅外延生长用供料件和单晶碳化硅的外延生长方法
KR101767295B1 (ko) 단결정 탄화규소 액상 에피택셜 성장용 시드재 및 단결정 탄화규소의 액상 에피택셜 성장 방법
Boo et al. Growth of cubic SiC films using 1, 3-disilabutane
JP4585137B2 (ja) 炭化珪素単結晶インゴットの製造方法
EP3072995B1 (en) Method for producing silicon carbide crystals from vapour phase
Racka-Szmidt et al. Effect of cerium impurity on the stable growth of the 4H-SiC polytype by the physical vapour transport method
JP3590464B2 (ja) 4h型単結晶炭化珪素の製造方法
JP2017154953A (ja) 炭化珪素単結晶製造装置
KR100775983B1 (ko) 반절연 탄화규소 단결정 성장방법
KR101549597B1 (ko) 탄화규소가 코팅된 도가니를 이용한 탄화규소 단결정의 제조방법
CN102965733A (zh) 一种无石墨包裹物的导电碳化硅晶体生长工艺
JPS638296A (ja) 3C−SiC結晶の形成方法
CN106399967B (zh) 一种SiC薄膜材料的制备方法
JP5724124B2 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法
Yoo et al. Epitaxial growth of thick single crystalline cubic silicon carbide by sublimation method
JPH06101438B2 (ja) β−Sicのエピタキシヤル成長方法
JP5724121B2 (ja) 単結晶炭化ケイ素エピタキシャル成長用フィード材及び単結晶炭化ケイ素のエピタキシャル成長方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161216

Address after: Tonghui trunk road 100176 Beijing city Daxing District economic and Technological Development Zone No. 17 hospital

Applicant after: BEIJING CENTURY GOLDRAY SEMICONDUCTOR Co.,Ltd.

Address before: Tonghui trunk road 101111 Beijing city Daxing District economic and Technological Development Zone No. 17 hospital

Applicant before: BEIJING HUAJINCHUANGWEI ELECTRONICS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240327

Address after: Room JZ2467, Yard 2, Junzhuang Road, Junzhuang Town, Mentougou District, Beijing, 102399 (cluster registration)

Patentee after: Beijing Xingyun Lianzhong Technology Co.,Ltd.

Country or region after: China

Address before: 100176 courtyard 17, Tonghui Ganqu Road, Daxing Economic and Technological Development Zone, Beijing

Patentee before: BEIJING CENTURY GOLDRAY SEMICONDUCTOR Co.,Ltd.

Country or region before: China