CN105535992B - Application of Ascl1 in inducing transdifferentiation of astrocytes into functional neurons - Google Patents
Application of Ascl1 in inducing transdifferentiation of astrocytes into functional neurons Download PDFInfo
- Publication number
- CN105535992B CN105535992B CN201510662939.9A CN201510662939A CN105535992B CN 105535992 B CN105535992 B CN 105535992B CN 201510662939 A CN201510662939 A CN 201510662939A CN 105535992 B CN105535992 B CN 105535992B
- Authority
- CN
- China
- Prior art keywords
- cells
- astrocytes
- ascl1
- mcherry
- aav
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000001130 astrocyte Anatomy 0.000 title claims abstract description 164
- 210000002569 neuron Anatomy 0.000 title claims abstract description 148
- 101150010353 Ascl1 gene Proteins 0.000 title claims abstract description 82
- 230000001939 inductive effect Effects 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 26
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 25
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 18
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 17
- 238000000338 in vitro Methods 0.000 claims abstract description 14
- 238000012258 culturing Methods 0.000 claims abstract description 4
- 210000001259 mesencephalon Anatomy 0.000 claims description 62
- 101001092197 Homo sapiens RNA binding protein fox-1 homolog 3 Proteins 0.000 claims description 46
- 102100035530 RNA binding protein fox-1 homolog 3 Human genes 0.000 claims description 46
- 239000003550 marker Substances 0.000 claims description 40
- 230000036982 action potential Effects 0.000 claims description 33
- 239000013604 expression vector Substances 0.000 claims description 30
- 239000013598 vector Substances 0.000 claims description 26
- 230000000946 synaptic effect Effects 0.000 claims description 19
- 210000003710 cerebral cortex Anatomy 0.000 claims description 14
- 210000001577 neostriatum Anatomy 0.000 claims description 14
- 101150063425 Acsbg1 gene Proteins 0.000 claims description 12
- 238000010304 firing Methods 0.000 claims description 12
- 210000001362 glutamatergic neuron Anatomy 0.000 claims description 12
- 210000001222 gaba-ergic neuron Anatomy 0.000 claims description 11
- 108091026890 Coding region Proteins 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 7
- 101000979001 Homo sapiens Methionine aminopeptidase 2 Proteins 0.000 claims description 6
- 101000969087 Homo sapiens Microtubule-associated protein 2 Proteins 0.000 claims description 6
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 claims description 6
- 102000001435 Synapsin Human genes 0.000 claims description 6
- 108050009621 Synapsin Proteins 0.000 claims description 6
- 108020004999 messenger RNA Proteins 0.000 claims description 5
- 210000000278 spinal cord Anatomy 0.000 claims description 5
- 101150057182 GFAP gene Proteins 0.000 claims description 4
- 102000007354 PAX6 Transcription Factor Human genes 0.000 claims description 4
- 101150081664 PAX6 gene Proteins 0.000 claims description 4
- 230000000848 glutamatergic effect Effects 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000013607 AAV vector Substances 0.000 claims description 3
- 241000702421 Dependoparvovirus Species 0.000 claims description 3
- -1 S100 β Proteins 0.000 claims description 3
- 238000002560 therapeutic procedure Methods 0.000 claims description 2
- 102100021118 Microtubule-associated protein 2 Human genes 0.000 claims 1
- 241001406921 Squamosa Species 0.000 claims 1
- 208000012902 Nervous system disease Diseases 0.000 abstract description 14
- 208000025966 Neurological disease Diseases 0.000 abstract description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 6
- 210000003169 central nervous system Anatomy 0.000 abstract description 4
- 230000004770 neurodegeneration Effects 0.000 abstract description 4
- 208000015122 neurodegenerative disease Diseases 0.000 abstract description 4
- 230000004936 stimulating effect Effects 0.000 abstract description 4
- 208000001738 Nervous System Trauma Diseases 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 270
- 241000700605 Viruses Species 0.000 description 110
- 241000699670 Mus sp. Species 0.000 description 90
- 238000002347 injection Methods 0.000 description 65
- 239000007924 injection Substances 0.000 description 65
- 241000699666 Mus <mouse, genus> Species 0.000 description 35
- 230000014509 gene expression Effects 0.000 description 28
- 238000001727 in vivo Methods 0.000 description 28
- 208000015181 infectious disease Diseases 0.000 description 24
- 230000001537 neural effect Effects 0.000 description 21
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 19
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 19
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 19
- 238000002372 labelling Methods 0.000 description 19
- 108010054624 red fluorescent protein Proteins 0.000 description 18
- 241000713666 Lentivirus Species 0.000 description 16
- 230000002269 spontaneous effect Effects 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 241000283973 Oryctolagus cuniculus Species 0.000 description 14
- 230000001242 postsynaptic effect Effects 0.000 description 14
- 210000004556 brain Anatomy 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 210000004248 oligodendroglia Anatomy 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 12
- 230000036390 resting membrane potential Effects 0.000 description 12
- 102100040121 Allograft inflammatory factor 1 Human genes 0.000 description 9
- 101000890626 Homo sapiens Allograft inflammatory factor 1 Proteins 0.000 description 9
- 102000040945 Transcription factor Human genes 0.000 description 9
- 108091023040 Transcription factor Proteins 0.000 description 9
- 230000002964 excitative effect Effects 0.000 description 9
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 9
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 9
- 102000005396 glutamine synthetase Human genes 0.000 description 9
- 108020002326 glutamine synthetase Proteins 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 230000009385 viral infection Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 230000002018 overexpression Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 210000004498 neuroglial cell Anatomy 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 239000013603 viral vector Substances 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 108010023918 S100 Calcium Binding Protein beta Subunit Proteins 0.000 description 6
- 230000001054 cortical effect Effects 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000003140 4 aminobutyric acid A receptor blocking agent Substances 0.000 description 5
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 5
- 101150014889 Gad1 gene Proteins 0.000 description 5
- 102100023174 Methionine aminopeptidase 2 Human genes 0.000 description 5
- 108091006162 SLC17A6 Proteins 0.000 description 5
- 102000046053 Vesicular Glutamate Transport Protein 2 Human genes 0.000 description 5
- 239000002771 cell marker Substances 0.000 description 5
- 230000000366 juvenile effect Effects 0.000 description 5
- 210000000274 microglia Anatomy 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 208000024827 Alzheimer disease Diseases 0.000 description 4
- IYGYMKDQCDOMRE-QRWMCTBCSA-N Bicculine Chemical compound O([C@H]1C2C3=CC=4OCOC=4C=C3CCN2C)C(=O)C2=C1C=CC1=C2OCO1 IYGYMKDQCDOMRE-QRWMCTBCSA-N 0.000 description 4
- 102100021244 Integral membrane protein GPR180 Human genes 0.000 description 4
- 208000018737 Parkinson disease Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- TXUZVZSFRXZGTL-QPLCGJKRSA-N afimoxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=C(O)C=C1 TXUZVZSFRXZGTL-QPLCGJKRSA-N 0.000 description 4
- AACMFFIUYXGCOC-UHFFFAOYSA-N bicuculline Natural products CN1CCc2cc3OCOc3cc2C1C4OCc5c6OCOc6ccc45 AACMFFIUYXGCOC-UHFFFAOYSA-N 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000008045 co-localization Effects 0.000 description 4
- IYGYMKDQCDOMRE-UHFFFAOYSA-N d-Bicucullin Natural products CN1CCC2=CC=3OCOC=3C=C2C1C1OC(=O)C2=C1C=CC1=C2OCO1 IYGYMKDQCDOMRE-UHFFFAOYSA-N 0.000 description 4
- 210000003976 gap junction Anatomy 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 210000000653 nervous system Anatomy 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000007634 remodeling Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 101000742373 Homo sapiens Vesicular inhibitory amino acid transporter Proteins 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- BAQMYDQNMFBZNA-UHFFFAOYSA-N N-biotinyl-L-lysine Natural products N1C(=O)NC2C(CCCCC(=O)NCCCCC(N)C(O)=O)SCC21 BAQMYDQNMFBZNA-UHFFFAOYSA-N 0.000 description 3
- 102100038170 Vesicular inhibitory amino acid transporter Human genes 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- BAQMYDQNMFBZNA-MNXVOIDGSA-N biocytin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCC[C@H](N)C(O)=O)SC[C@@H]21 BAQMYDQNMFBZNA-MNXVOIDGSA-N 0.000 description 3
- 210000005013 brain tissue Anatomy 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010166 immunofluorescence Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 210000000225 synapse Anatomy 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- MGRVRXRGTBOSHW-UHFFFAOYSA-N (aminomethyl)phosphonic acid Chemical compound NCP(O)(O)=O MGRVRXRGTBOSHW-UHFFFAOYSA-N 0.000 description 2
- 108010022794 2',3'-Cyclic-Nucleotide Phosphodiesterases Proteins 0.000 description 2
- 102100040458 2',3'-cyclic-nucleotide 3'-phosphodiesterase Human genes 0.000 description 2
- DODQJNMQWMSYGS-QPLCGJKRSA-N 4-[(z)-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-phenylbut-1-en-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 DODQJNMQWMSYGS-QPLCGJKRSA-N 0.000 description 2
- RPXVIAFEQBNEAX-UHFFFAOYSA-N 6-Cyano-7-nitroquinoxaline-2,3-dione Chemical compound N1C(=O)C(=O)NC2=C1C=C([N+](=O)[O-])C(C#N)=C2 RPXVIAFEQBNEAX-UHFFFAOYSA-N 0.000 description 2
- 102000004219 Brain-derived neurotrophic factor Human genes 0.000 description 2
- 108090000715 Brain-derived neurotrophic factor Proteins 0.000 description 2
- 108010051219 Cre recombinase Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000018899 Glutamate Receptors Human genes 0.000 description 2
- 108010027915 Glutamate Receptors Proteins 0.000 description 2
- 102100035902 Glutamate decarboxylase 1 Human genes 0.000 description 2
- VLSMHEGGTFMBBZ-OOZYFLPDSA-M Kainate Chemical compound CC(=C)[C@H]1C[NH2+][C@H](C([O-])=O)[C@H]1CC([O-])=O VLSMHEGGTFMBBZ-OOZYFLPDSA-M 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 101100163882 Mus musculus Ascl1 gene Proteins 0.000 description 2
- 101100516508 Mus musculus Neurog2 gene Proteins 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 108091093126 WHP Posttrascriptional Response Element Proteins 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 230000000763 evoking effect Effects 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000000684 flow cytometry Methods 0.000 description 2
- 230000002518 glial effect Effects 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 210000004884 grey matter Anatomy 0.000 description 2
- 238000003317 immunochromatography Methods 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000016273 neuron death Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 230000001124 posttranscriptional effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000004092 somatosensory cortex Anatomy 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 101150084750 1 gene Proteins 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 102000018720 Basic Helix-Loop-Helix Transcription Factors Human genes 0.000 description 1
- 108010027344 Basic Helix-Loop-Helix Transcription Factors Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101150051240 DLX2 gene Proteins 0.000 description 1
- 101000941893 Felis catus Leucine-rich repeat and calponin homology domain-containing protein 1 Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000888419 Homo sapiens Glial fibrillary acidic protein Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 101150009249 MAP2 gene Proteins 0.000 description 1
- 102100032063 Neurogenic differentiation factor 1 Human genes 0.000 description 1
- 108050000588 Neurogenic differentiation factor 1 Proteins 0.000 description 1
- 238000010826 Nissl staining Methods 0.000 description 1
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 206010041899 Stab wound Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 230000003140 astrocytic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 229940077737 brain-derived neurotrophic factor Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001212 effect on astrocytes Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 230000003371 gabaergic effect Effects 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 102000051520 human GFAP Human genes 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000019948 ion homeostasis Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000005171 mammalian brain Anatomy 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 210000001178 neural stem cell Anatomy 0.000 description 1
- 230000019581 neuron apoptotic process Effects 0.000 description 1
- 230000008062 neuronal firing Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000035752 proliferative phase Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 208000020431 spinal cord injury Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012096 transfection reagent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000013042 tunel staining Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Immunology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Analytical Chemistry (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Cell Biology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明提供了一种Ascl1在诱导星形胶质细胞转分化为功能性神经元中的应用。具体地,提供了一种无刚毛鳞甲复合体同源物样1(achaete‑scute complex homolog‑like 1,Ascl1)基因或其蛋白或其促进剂的用途,其特征在于,(i)用于制备诱导星形胶质细胞形成功能性神经元细胞的药物组合物;和/或(ii)用于制备治疗神经系统疾病的药物组合物。该方法有望成为体外培养神经元细胞,以及在成人体内刺激产生新神经元细胞的有效方法,从而广泛应用于神经系统疾病的治疗,例如神经退行性病变、中枢神经创伤性疾病等等。The invention provides an application of Ascl1 in inducing the transdifferentiation of astrocytes into functional neurons. Specifically, there is provided a use of aachaete-scute complex homolog-like 1 (achaete-scute complex homolog-like 1, Ascl1) gene or a protein thereof or a promoter thereof, characterized in that (i) for use in preparing a pharmaceutical composition for inducing astrocytes to form functional neuronal cells; and/or (ii) preparing a pharmaceutical composition for treating nervous system diseases. This method is expected to be an effective method for culturing neuronal cells in vitro and stimulating the generation of new neuronal cells in adults, thus being widely used in the treatment of neurological diseases, such as neurodegenerative diseases, central nervous system trauma diseases, and so on.
Description
技术领域technical field
本发明属于生物技术和细胞治疗领域,具体地,本发明涉及一种诱导星形胶质细胞转分化为功能性神经元细胞的方法及其应用。The invention belongs to the field of biotechnology and cell therapy, and in particular, the invention relates to a method for inducing transdifferentiation of astrocytes into functional neuron cells and applications thereof.
背景技术Background technique
许多转录因子和染色质表观遗传修饰过程在维持已分化细胞的特性稳定中起着非常重要的作用。然而,诱导多能干细胞(iPS细胞)的研究表明,分化的细胞并不是被不可逆地锁定在其成熟的状态,而是可以通过选择性过量表达特定的转录因子实现去分化。Many transcription factors and chromatin epigenetic modification processes play a very important role in maintaining the stability of the properties of differentiated cells. However, studies of induced pluripotent stem cells (iPS cells) have shown that differentiated cells are not irreversibly locked in their mature state, but can be dedifferentiated by selective overexpression of specific transcription factors.
最近的研究结果发现,特定的转录因子可以直接将成纤维细胞诱导为功能性的神经元,这进一步表明了非神经元细胞可直接转分化为神经元。例如通过过表达转录因子Neurog2或Dlx2可以在体外将出生后小鼠大脑皮层的星形胶质细胞转分化为谷氨酸能神经元或GABA能神经元。一些研究还表明,非神经元细胞在体内可被重新编程为神经元或神经前体细胞。但是,体内的星形胶质细胞能否转分化为神经元以及这些诱导产生的神经元(iN)是否可以整合到已经存在的神经环路中目前还知之甚少。Recent findings have found that specific transcription factors can directly induce fibroblasts to become functional neurons, further suggesting that non-neuronal cells can be directly transdifferentiated into neurons. For example, astrocytes in the postnatal mouse cerebral cortex can be transdifferentiated into glutamatergic or GABAergic neurons in vitro by overexpressing the transcription factors Neurog2 or Dlx2. Several studies have also shown that non-neuronal cells can be reprogrammed into neurons or neural precursor cells in vivo. However, little is known about whether astrocytes in vivo can transdifferentiate into neurons and whether these induced neurons (iNs) can integrate into pre-existing neural circuits.
目前,过表达前神经蛋白Neurog2能够将体外培养的来自于出生早期小鼠大脑皮层的星形胶质细胞重编程为可形成突触联系的谷氨酸能神经元。过表达前神经蛋白NeuroD1能够将小鼠大脑皮层损伤后的反应性星形胶质细胞重编程为神经元。但是,目前还没有可以将正常状态下的星形胶质细胞转分化为功能性神经元的任何方法或路径。At present, overexpression of the pro-neuronal protein Neurog2 can reprogram in vitro cultured astrocytes from early-natal mouse cerebral cortex into glutamatergic neurons that can form synaptic connections. Overexpression of the proneuronal protein NeuroD1 can reprogram reactive astrocytes into neurons after injury in the mouse cerebral cortex. However, there is currently no method or pathway that can transdifferentiate normal astrocytes into functional neurons.
因此,本领域迫切需要寻找一种能够诱导成熟细胞转分化为有活性的神经元细胞的细胞因子,从而在大脑功能修复中开创新的治疗方式。Therefore, there is an urgent need in the art to find a cytokine that can induce the transdifferentiation of mature cells into active neuronal cells, thereby opening up a new therapeutic approach in the restoration of brain function.
越来越多的证据支持星形胶质细胞的谱系具有非常高的异质性。可以设想星形胶质细胞的不同来源可能影响其转分化为神经元的效果。在本研究中发现,单个转录因子Ascl1可以在体外有效地将出生后小鼠背侧中脑的星形胶质细胞转分化为可形成突触联系的神经元。此外,还设计了一个在体内特异靶向 星形胶质细胞的基因表达系统,发现单个转录因子Ascl1能够诱导体内的星形胶质细胞转分化为功能性的神经元。Growing evidence supports the very high heterogeneity of the lineage of astrocytes. It can be envisaged that different sources of astrocytes may influence the effect of their transdifferentiation into neurons. In the present study, a single transcription factor, Ascl1, was found to efficiently transdifferentiate postnatal mouse dorsal midbrain astrocytes into neurons that can form synaptic connections in vitro. In addition, a gene expression system that specifically targets astrocytes in vivo was designed, and it was found that a single transcription factor Ascl1 could induce the transdifferentiation of astrocytes into functional neurons in vivo.
发明内容SUMMARY OF THE INVENTION
本发明提供了Ascl1基因或其蛋白在诱导星形胶质细胞转分化为功能性神经元细胞的用途,以及其在神经系统疾病治疗方面的应用。The present invention provides the use of Ascl1 gene or its protein in inducing the transdifferentiation of astrocytes into functional neuron cells, and the application thereof in the treatment of nervous system diseases.
本发明第一方面,提供了一种无刚毛鳞甲复合体同源物样1(achaete-scutecomplex homolog-like 1,Ascl1)基因或其蛋白的用途,(i)用于制备诱导星形胶质细胞形成功能性神经元细胞的药物组合物;和/或(ii)用于制备治疗神经系统疾病的药物组合物。The first aspect of the present invention provides the use of aachaete-scutecomplex homolog-like 1 (Ascl1) gene or its protein, (i) for preparing induced astrocytes A pharmaceutical composition in which the cells form functional neuronal cells; and/or (ii) a pharmaceutical composition for use in the preparation of a neurological disease.
在另一优选例中,所述的Ascl1基因或其蛋白来源于哺乳动物,较佳地,来源于人、小鼠、大鼠。In another preferred embodiment, the Ascl1 gene or its protein is derived from mammals, preferably from humans, mice, and rats.
在另一优选例中,所述的星形胶质细胞包括正常状态和损伤状态下的星形胶质细胞。In another preferred embodiment, the astrocytes include astrocytes in a normal state and a damaged state.
在另一优选例中,所述的Ascl1基因的GenBank号为U68534.2,蛋白序列如SEQ IDNO.:1所示。In another preferred example, the GenBank number of the Ascl1 gene is U68534.2, and the protein sequence is shown in SEQ ID NO.:1.
在另一优选例中,编码所述的Ascl1基因的mRNA NCBI Reference Sequence号为NM_008553.4,mRNA序列如SEQ ID NO.:2所示。In another preferred example, the NCBI Reference Sequence number of the mRNA encoding the Ascl1 gene is NM_008553.4, and the mRNA sequence is shown in SEQ ID NO.:2.
在另一优选例中,所述的药物组合物包括含有Ascl1编码序列的表达载体(FUGW和GFAP-AAV),和药学上可接受的载体(GFAP-AAV)。In another preferred embodiment, the pharmaceutical composition includes an expression vector (FUGW and GFAP-AAV) containing the Ascl1 coding sequence, and a pharmaceutically acceptable vector (GFAP-AAV).
在另一优选例中,所述的星形胶质细胞来源于纹状体、脊髓、背侧中脑或大脑皮层,较佳地,所述的星形胶质细胞来源于皮层、背侧中脑。In another preferred embodiment, the astrocytes are derived from the striatum, spinal cord, dorsal midbrain or cerebral cortex, preferably, the astrocytes are derived from the cortex, dorsal midbrain or cerebral cortex brain.
在另一优选例中,所述的功能性神经元包括谷氨酸能神经元和/或γ-氨基丁酸(GABA)能神经元。In another preferred example, the functional neurons include glutamatergic neurons and/or γ-aminobutyric acid (GABA) neurons.
在另一优选例中,所述的功能性神经元能够发放动作电位并能够形成突触联系。In another preferred embodiment, the functional neurons are capable of firing action potentials and forming synaptic connections.
本发明第二方面,提供了一种表达载体,所述的表达载体含有Ascl1蛋白编码序列,且所述的表达载体可整合入星形胶质细胞,并在星形胶质细胞中表达外源的Ascl1蛋白。The second aspect of the present invention provides an expression vector, the expression vector contains the Ascl1 protein coding sequence, and the expression vector can be integrated into astrocytes and express exogenous in astrocytes of Ascl1 protein.
在另一优选例中,所述的表达载体包括质粒、病毒载体。In another preferred embodiment, the expression vector includes plasmid and viral vector.
在另一优选例中,所述的病毒载体可感染星形胶质细胞。In another preferred embodiment, the viral vector can infect astrocytes.
在另一优选例中,所述的表达载体是星形胶质细胞特异性表达载体。In another preferred embodiment, the expression vector is an astrocyte-specific expression vector.
在另一优选例中,所述的表达载体GFAP-AAV载体。In another preferred embodiment, the expression vector GFAP-AAV vector.
在另一优选例中,所述的病毒载体包括慢病毒FUGW载体。In another preferred embodiment, the viral vector includes a lentiviral FUGW vector.
在另一优选例中,所述的表达载体自5'到3'端依次包括一下元件:GFAP-AAV载体:病毒ITR序列+CMV的增强子+人GFAP的启动子+Ascl1和红色荧光蛋白mCherry的编码框+转录后调控元件WPRE+病毒ITR序列+氨苄抗性基因的启动子和编码框In another preferred example, the expression vector includes the following elements from 5' to 3' in order: GFAP-AAV vector: viral ITR sequence + CMV enhancer + human GFAP promoter + Ascl1 and red fluorescent protein mCherry The coding frame of the + post-transcriptional regulatory element WPRE + viral ITR sequence + the promoter and coding frame of the ampicillin resistance gene
FUGW载体:病毒ITR序列+Ubiquitin promoter启动子+Ascl1编码框+IRES序列+绿色蛋白GFP的编码框+转录后调控元件WPRE+病毒ITR序列+氨苄抗性基因的启动子和编码框FUGW vector: viral ITR sequence+Ubiquitin promoter promoter+Ascl1 coding frame+IRES sequence+green protein GFP coding frame+post-transcriptional regulatory element WPRE+viral ITR sequence+promoter and coding frame of ampicillin resistance gene
在另一优选例中,所述的病毒载体制备如下:In another preference, the viral vector is prepared as follows:
将具有Ascl1编码序列的多核苷酸序列导入病毒颗粒的包装细胞中,从而形成所述的病毒载体。The viral vector is formed by introducing the polynucleotide sequence having the Ascl1 coding sequence into the packaging cell of the viral particle.
本发明第三方面,提供了一种宿主细胞,所述的宿主细胞的染色体整合有编码Ascl1蛋白的多核苷酸,或所述的宿主细胞含有本发明第二方面所述的表达载体。The third aspect of the present invention provides a host cell, wherein the chromosome of the host cell is integrated with a polynucleotide encoding the Ascl1 protein, or the host cell contains the expression vector described in the second aspect of the present invention.
在另一优选例中,所述的宿主细胞是星状胶质细胞。In another preferred embodiment, the host cells are astrocytes.
本发明第四方面,提供了一种体外非治疗性的将星形胶质细胞转分化为功能性神经元细胞的方法,包括步骤:A fourth aspect of the present invention provides an in vitro non-therapeutic method for transdifferentiating astrocytes into functional neuron cells, comprising the steps of:
在外源性Ascl1蛋白存在下,培养星形胶质细胞,从而诱导星形胶质细胞形成神经元细胞。In the presence of exogenous Ascl1 protein, astrocytes were cultured to induce astrocytes to form neuronal cells.
在另一优选例中,所述的外源性Ascl1蛋白是在所述星形胶质细胞内表达外源Ascl1编码序列而产生的外源Ascl1蛋白。In another preferred embodiment, the exogenous Ascl1 protein is an exogenous Ascl1 protein produced by expressing an exogenous Ascl1 coding sequence in the astrocytes.
在另一优选例中,所述的外源性Ascl1蛋白是在所述星形胶质细胞内表达外源Ascl1编码序列而产生的外源Ascl1蛋白。In another preferred embodiment, the exogenous Ascl1 protein is an exogenous Ascl1 protein produced by expressing an exogenous Ascl1 coding sequence in the astrocytes.
在另一优选例中,所述的外源性Ascl1蛋白通过本发明第二方面所述的表达载体表达获得。In another preferred embodiment, the exogenous Ascl1 protein is obtained by expressing the expression vector described in the second aspect of the present invention.
在另一优选例中,所述的表达载体为慢病毒颗粒。In another preferred embodiment, the expression vector is a lentiviral particle.
本发明第五方面,提供了一种由星形胶质细胞转分化的功能性神经元细胞和/或神经元细胞群,所述的功能性神经元细胞和/或神经元细胞群由本发明第四方所述的方法制备获得,且所述的功能性神经元细胞和/或神经元细胞群具 有以下一种或多种特征:A fifth aspect of the present invention provides a functional neuron cell and/or neuron cell group transdifferentiated from astrocytes, wherein the functional neuron cell and/or neuron cell group is composed of the first The method described in Sifang is obtained, and the functional neuron cells and/or neuron cell groups have one or more of the following characteristics:
(a)至少50%的神经元细胞,优选至少60%、70%、80%、90%、或100%的神经元细胞表达神经元的标志物Tuj1,MAP2、NeuN或Synapsin I;(a) at least 50% of neuronal cells, preferably at least 60%, 70%, 80%, 90%, or 100% of neuronal cells express neuronal markers Tuj1, MAP2, NeuN or Synapsin I;
(b)能够发放动作电位并能够形成突触联系。(b) capable of firing action potentials and capable of forming synaptic connections.
在另一优选例中,所述的神经细胞群中,所述的神经元细胞不表达Gfap,S100β、Acsbg1、Sox2或Pax6等标志物。In another preferred example, in the neuronal cell population, the neuronal cells do not express markers such as Gfap, S100β, Acsbg1, Sox2 or Pax6.
在另一优选例中,所述的不表达包括基本不表达,例如至少60%、70%、80%、90%、或100%的神经元细胞不表达Gfap,S100β、Acsbg1、Sox2或Pax6等标志物。In another preferred embodiment, the non-expression includes substantially non-expression, for example, at least 60%, 70%, 80%, 90%, or 100% of neuronal cells do not express Gfap, S100β, Acsbg1, Sox2 or Pax6, etc. landmark.
本发明第六方面,提供了本发明第五方面所述的功能性神经元的用途,所述的功能性神经元细胞和/或神经元细胞群用于制备治疗神经系统疾病的药物组合物。The sixth aspect of the present invention provides the use of the functional neurons described in the fifth aspect of the present invention, wherein the functional neuron cells and/or neuron cell populations are used to prepare a pharmaceutical composition for treating nervous system diseases.
在另一优选例中,所述的神经系统疾病包括癫痫、阿尔兹海默症(AD)、帕金森病(PD)、中风引起的神经元死亡等。In another preferred embodiment, the neurological diseases include epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), neuronal death caused by stroke and the like.
本发明第七方面,提供了一种药物组合物,所述的药物组合物包括(A)本发明第二方面所述的表达载体或Ascl蛋白,或(B)本发明第五方面所述的功能性神经元;和(C)药学上可接受的载体。The seventh aspect of the present invention provides a pharmaceutical composition, the pharmaceutical composition comprising (A) the expression vector or Ascl protein described in the second aspect of the present invention, or (B) the fifth aspect of the present invention. functional neurons; and (C) a pharmaceutically acceptable carrier.
本发明第八方面,提供了一种治疗神经系统疾病的方法,包括步骤:An eighth aspect of the present invention provides a method for treating nervous system diseases, comprising the steps of:
向需要的对象施用安全有效量的本发明第七方面所述的药物组合物,从而治疗神经系统疾病。A safe and effective amount of the pharmaceutical composition of the seventh aspect of the present invention is administered to a subject in need, thereby treating nervous system diseases.
本发明第九方面,提供了一种(a)筛选治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物的方法,其特征在于,包括步骤:A ninth aspect of the present invention provides a method for (a) screening candidate compounds for the treatment of neurological diseases; and/or (b) screening for candidate compounds inducing the transdifferentiation of astrocytes into functional neuronal cells, wherein It is characterized in that it includes the steps:
(i)将测试化合物加入细胞培养体系作为测试组,并将未加入测试化合物的细胞培养体系作为对照组;(i) adding the test compound to the cell culture system as the test group, and using the cell culture system without the test compound as the control group;
(ii)比较测试组中Ascl1基因或其蛋白的表达量和/或活性E1与对照组中的表达量和/或活性E0;(ii) comparing the expression and/or activity E1 of the Ascl1 gene or its protein in the test group with the expression and/or activity E0 in the control group;
其中,当测试组中E1显著高于E0,则表明所试化合物为(a)治疗神经系统疾病的候选化合物;和/或(b)诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物。Wherein, when E1 in the test group is significantly higher than E0, it indicates that the tested compound is (a) a candidate compound for the treatment of neurological diseases; and/or (b) induces the transdifferentiation of astrocytes into functional neuron cells. candidate compounds.
在另一优选例中,所述的细胞为星形胶质细胞。In another preferred embodiment, the cells are astrocytes.
在另一优选例中,所述的显著高于指的是E1高于E0,且具有统计学差异;优选地,为E1≥2E0。In another preferred example, the said significantly higher means that E1 is higher than E0, and there is a statistical difference; preferably, E1≥2E0.
在另一优选例中,所述的方法还包括步骤:In another preferred embodiment, the method further comprises the steps:
(iii)将测试化合物加入星形胶质细胞培养体系作为测试组,并将未加入测试化合物的星形胶质细胞培养体系作为对照组;(iii) adding the test compound to the astrocyte culture system as the test group, and using the astrocyte culture system without the test compound as the control group;
(iv)比较测试组中星形胶质细胞向功能性神经元转化的比例,从而确定所述测试化合物是否为(a)治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物;(iv) comparing the proportion of astrocytes transformed into functional neurons in the test group to determine whether the test compound is (a) a candidate compound for the treatment of neurological diseases; and/or (b) screening for inducing astrocytes Candidate compounds for the transdifferentiation of glial cells into functional neuronal cells;
其中,当测试组中星形胶质细胞向功能性神经元转化的比例T1显著高于对照组的比例T0,则表明所述测试化合物为(a)治疗神经系统疾病的候选化合物;和/或(b)筛选诱导星形胶质细胞转分化为功能性神经元细胞的候选化合物。Wherein, when the ratio T1 of astrocytes transformed into functional neurons in the test group is significantly higher than the ratio T0 in the control group, it indicates that the test compound is (a) a candidate compound for the treatment of neurological diseases; and/or (b) Screening of candidate compounds for inducing transdifferentiation of astrocytes into functional neuronal cells.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described in the following (eg, the embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, we will not repeat them here.
附图说明Description of drawings
图1a-h显示了分离纯化的星形胶质细胞的属性鉴定,绝大部分的细胞表达星形胶质细胞的标志分子GFAP和S100β,少量的细胞表达少突胶质细胞的标志分子O4和CNPase,少量的细胞表达NG2胶质细胞的标志分子NG2,没有检测到神经元标志分子Tuj1以及干细胞标志分子Sox2和Oct4的表达。Figure 1a-h shows the identification of the properties of the isolated and purified astrocytes. Most of the cells express astrocyte marker molecules GFAP and S100β, and a small number of cells express oligodendrocyte marker molecules O4 and S100β. CNPase, a small amount of cells expressed NG2, a marker molecule of glial cells, NG2, but no expression of neuron marker molecule Tuj1 and stem cell marker molecules Sox2 and Oct4 was detected.
图2显示了星形胶质细胞在经慢病毒载体诱导发生转分化后表达神经元标志分子表达的情况。图2a-b显示星形胶质细胞转染对照慢病毒载体FUGW 10天后,星形胶质细胞不表达神经元的标志分子Tuj1,仍维持胶质细胞的形态同时表达星形胶质细胞的标志分子GFAP。图2c显示了感染慢病毒FUGW-Ascl1 10天后,大部分星形胶质细胞表达神经元的标志分子Tuj1,同时呈现典型的神经元形态。图2d和图2e分别显示了感染慢病毒FUGW-Ascl1 21天后,星形胶质细胞还表达成熟神经元的标志分子MAP2和synapsin I。图2f显示了对这些神经元进行了全细胞电生理记录。图2g显示,在慢病毒转染30-40天后,所有GFP阳性的细胞(共63个)都能产生动作电位,且绝大多数的iN细胞上(87.3%, 55/63个细胞)能记录到自发的突触后电流。图2h-i为FUW-Ascl1-tdTomato及对照病毒感染取自hGFAP-GFP小鼠的星形胶质细胞(星形胶质细胞带有GFP标记)的结果。其中,图2h显示感染只含红色荧光蛋白的对照慢病毒FUW-tdTomato后,被病毒感染的细胞仍然维持星形胶质细胞的形态,并表达GFAP;图2i显示用慢病毒过量表达Ascl1可诱导星形胶质细胞的形态发生改变,同时表达Tuj1。这些转分化产生的神经元仍然有GFP的表达。Figure 2 shows the expression of neuronal marker molecules in astrocytes after transdifferentiation induced by lentiviral vector. Figure 2a-b shows that 10 days after astrocytes were transfected with the control lentiviral vector FUGW, astrocytes did not express the neuronal marker molecule Tuj1, but still maintained the shape of glial cells and expressed astrocyte markers Molecular GFAP. Figure 2c shows that after 10 days of infection with lentivirus FUGW-Ascl1, most of the astrocytes expressed Tuj1, a marker molecule of neurons, and presented typical neuronal morphology. Figure 2d and Figure 2e show that 21 days after infection with lentivirus FUGW-Ascl1, astrocytes also expressed mature neuron marker molecules MAP2 and synapsin I, respectively. Figure 2f shows whole-cell electrophysiological recordings from these neurons. Figure 2g shows that 30-40 days after lentiviral transfection, all GFP-positive cells (63 cells in total) were able to generate action potentials, and the vast majority of iN cells (87.3%, 55/63 cells) were able to record to spontaneous postsynaptic currents. Figures 2h-i are the results of FUW-Ascl1-tdTomato and control virus infection of astrocytes (astrocytes with GFP labeling) from hGFAP-GFP mice. Among them, Figure 2h shows that after infection with the control lentivirus FUW-tdTomato containing only red fluorescent protein, the virus-infected cells still maintain the morphology of astrocytes and express GFAP; Figure 2i shows that overexpression of Ascl1 with lentivirus can induce Astrocytes were morphologically altered and Tuj1 was expressed. These transdifferentiated neurons still expressed GFP.
图3显示了所诱导细胞的递质属性。图3a显示大多数iN细胞表达GABA,而图3b和图3d分别显示了部分iN细胞表达GABA能神经元标志分子GAD67和VGAT。图3c和e分别显示了对照病毒感染的细胞不表达GABA能神经元标志分子VGAT以及谷氨酸能神经元标志分子VGLUT2。图3f显示了部分iN细胞表达谷氨酸能神经元标志分子VGLUT2。图3g显示了部分iN细胞(19.4%,7/36个细胞)能记录到自突触,当加入AMPA/kainate谷氨酸受体的拮抗剂CNQX时,自突触的电流被完全阻断(3/3个细胞)。图3h显示了部分iN细胞(21%,8/38个细胞)能记录到自突触,当加入GABAA受体的拮抗剂bicuculline时,自突触的电流被完全阻断(5/5个细胞)。Figure 3 shows the transmitter properties of the induced cells. Figure 3a shows that most iN cells express GABA, while Figure 3b and Figure 3d show that some iN cells express GABAergic neuron marker molecules GAD67 and VGAT, respectively. Figures 3c and e show that control virus-infected cells do not express GABAergic neuron marker molecule VGAT and glutamatergic neuron marker molecule VGLUT2, respectively. Figure 3f shows that some iN cells express the glutamatergic neuron marker molecule VGLUT2. Figure 3g shows that some iN cells (19.4%, 7/36 cells) were able to record from self-synapses, and when CNQX, an antagonist of AMPA/kainate glutamate receptors, was added, the self-synaptic currents were completely blocked ( 3/3 cells). Figure 3h shows that some iN cells (21%, 8/38 cells) could record from self-synapses, and when bicuculline, a GABA A receptor antagonist, was added, the self-synaptic currents were completely blocked (5/5 cells). cell).
图4a和图4b显示了用慢病毒FUW-Ascl1-tdTomato感染取自GAD67–GFP小鼠背侧中脑的星形胶质细胞并发现诱导的细胞表达GFP。图4c显示了iN细胞诱导10天后加入从P5-P7野生型小鼠背侧中脑分离出来的神经元共培养,在慢病毒转染29-40天后,几乎所有tdTomato+GFP+的细胞(97%,37/38个细胞)都能产生动作电位。图4d显示了绝大多数的iN细胞上(89%,34/38个细胞)能记录到自发的突触后电流。Figure 4a and Figure 4b show that astrocytes taken from the dorsal midbrain of GAD67–GFP mice were infected with lentivirus FUW-Ascl1-tdTomato and the induced cells were found to express GFP. Figure 4c shows that iN cells were co-cultured 10 days after induction with neurons isolated from the dorsal midbrain of P5-P7 wild-type mice, and almost all tdTomato + GFP + cells (97 %, 37/38 cells) were able to generate action potentials. Figure 4d shows that the vast majority of iN cells (89%, 34/38 cells) could record spontaneous postsynaptic currents.
图5a和图5b分别显示了出生后12-15天小鼠中脑背侧注射病毒3天后,不论是注射对照病毒AAV-mCherry还是病毒AAV-Ascl1/mCherry,几乎所有mCherry阳性的细胞表达Acsbg1。图5c和图5d分别显示了在AAV-mCherry感染3天后,发现在两种转基因小鼠Aldh1l1-GFP小鼠和GFAP-GFP小鼠中,绝大多数mCherry阳性的细胞同时也是GFP阳性的细胞。图5e显示了用4-hydroxytamoxifen(4-OHT)诱导GFAP-CreERT2;Rosa26-CAG-tdTomato小鼠表达tdTomato,发现tdTomato与Acsbg1共定位。Figure 5a and Figure 5b show that almost all mCherry-positive cells express
图6显示了mCherry不和NG2细胞的标记物NG2共存于同一细胞中。Figure 6 shows that mCherry does not coexist in the same cell with NG2, a marker for NG2 cells.
图7a,a′图7d,d′分别显示在对照病毒AAV-mCherry和病毒AAV-Ascl1/mCherry注射出生后12-15天的小鼠背侧中脑3-5天后,免疫共标 显示mCherry均不与NeuN共定位;图7b,b′、7c、c′显示分别在注射对照病毒后10-14天和28-32天AAV-mCherry的小鼠中,mCherry都不与NeuN共定位。图7e,e′和图7f,f′显示在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位:从注射病毒后10-14天44.2±12.5%(n=3,每次计数309-436个细胞)到注射病毒后28-32天93.1±1.7%(n=3,每次计数412-557个细胞)。图7g显示病毒注射45天后,部分iN细胞表达Gad1,图7h显示还有部分iN细胞表达VGLUT2。图7i和图7j显示从室管膜下区(subventricular zone,SVZ)分离的细胞可以产生大量的神经球而从背侧中脑分离的细胞基本上不能产生神经球。图7k-图7n显示用4-OHT连续5天(P12-P16)诱导GFAP-CreERT2;Rosa26-CAG-tdTomato小鼠表达tdTomato,发现30天后tdTomato仍然不与NeuN共定位。因此,从GFAP+诱导产生的iN细胞来源于出生后的星形胶质细胞,而不是神经前体细胞。Figure 7a, a' Figure 7d, d' show that 3-5 days after injection of control virus AAV-mCherry and virus AAV-Ascl1/mCherry in the dorsal midbrain of mice 12-15 days after birth, immunoco-labeling showed that mCherry was No colocalization with NeuN; Figures 7b,b', 7c,c' show that none of mCherry colocalized with NeuN in mice with AAV-mCherry 10-14 days and 28-32 days after injection of control virus, respectively. Fig. 7e,e' and Fig. 7f,f' show that in mice injected with virus AAV-Ascl1/mCherry, mCherry gradually co-localized with NeuN: 44.2±12.5% from 10-14 days after virus injection (n=3, each 309-436 cells per count) to 93.1 ± 1.7% (n=3, 412-557 cells per count) to 28-32 days after virus injection. Figure 7g shows that 45 days after virus injection, some iN cells express Gad1, and Figure 7h shows that some iN cells also express VGLUT2. Figures 7i and 7j show that cells isolated from the subventricular zone (SVZ) can produce large numbers of neurospheres whereas cells isolated from the dorsal midbrain are essentially incapable of producing neurospheres. Figures 7k-7n show that GFAP-CreERT2; Rosa26-CAG-tdTomato mice were induced with 4-OHT for 5 consecutive days (P12-P16) expressing tdTomato and found that tdTomato still did not co-localize with NeuN after 30 days. Thus, iN cells induced from GFAP + were derived from postnatal astrocytes, not neural precursor cells.
图8a-8c显示了注射病毒AAV-Ascl1/mCherry的小鼠背侧中脑的细胞密度与注射对照病毒AAV-mCherry的小鼠基本相当。图8d-8h显示了在注射病毒AAV-Ascl1/mCherry的小鼠中凋亡并没有增加。Figures 8a-8c show that the cell density in the dorsal midbrain of mice injected with virus AAV-Ascl1/mCherry was substantially comparable to mice injected with control virus AAV-mCherry. Figures 8d-8h show that apoptosis is not increased in mice injected with the virus AAV-Ascl1/mCherry.
图9显示了在注射病毒AAV-Ascl1/mCherry 155天后的小鼠背侧中脑,仍然可以检测到mCherry的表达,而且它们与NeuN存在良好的共定位。Figure 9 shows that mCherry expression can still be detected in the dorsal midbrain of mice 155 days after virus AAV-Ascl1/mCherry injection, and they co-localize well with NeuN.
图10显示了注射病毒AAV-Ascl1/mCherry的小鼠iN细胞的基因表达情况。通过用流式细胞分选在不同时间点(第4,10,30天)分选mCherry+的细胞,进行荧光实时定量PCR的分析。发现星形胶质细胞的标志分子(Gfap,S100β和Acsbg1)的表达逐渐降低,神经细胞的标志分子(Tuj1,Map2和NeuN)的表达逐渐升高,神经前体细胞标志分子(Sox2和Pax6)基本上检测不到表达。Figure 10 shows the gene expression of mouse iN cells injected with virus AAV-Ascl1/mCherry. Analysis by real-time quantitative PCR was performed by sorting mCherry+ cells at different time points (
图11a显示在感染对照病毒AAV-mCherry的小鼠脑片中,发现检测的细胞具有较低的阻抗,较高的静息膜电位,不能发放动作电位。生物胞素(biocytin)重塑的结果显示,对照病毒感染的细胞具有星形胶质细胞的典型形态,并通过间隙连接与邻近的星形胶质细胞相连。图11b-11e显示在感染病毒AAV-Ascl1/mCherry 7-30天的小鼠脑片中,在电压钳模式下,很多细胞具有内向的Na+电流和外向的K+电流,而且振幅随感染时间的增加而增加;而在电流钳模式下,检测的细胞发放动作电位的能力也随之增强,且细胞的形态变得更加复杂。Biocytin重塑的结果也发现检测的细胞形成间隙连接也更少。11f和11g显示了细胞的输入电阻逐渐增加,而静息膜电位逐渐降低。图11h显示 Ascl1诱导产生的iN细胞随着感染时间的延长越来越兴奋,感染30天后所有记录的iN细胞都能够高频(50-220Hz)发放动作电位,而对照病毒感染的细胞都展现出类似星形胶质细胞的“非活性”状态。图11i显示在AAV-Ascl1/mCherry病毒感染30天后,发现所有病毒感染的细胞(23/23)上都能检测到高频的自发突触后电流。图11j显示进一步的药理实验表明iN细胞既接受兴奋性的谷氨酸输入,也接受抑制性的GABA输入。图11k显示通过双全细胞记录发现,iN细胞(mCherry+)与中脑顶盖的神经元(mCherry-)可形成突触联系,加入GABAA受体的拮抗剂bicuculline时,在中脑顶盖的神经元中所诱发的突触电流被完全阻断。Figure 11a shows that in the mouse brain slices infected with the control virus AAV-mCherry, the detected cells have lower impedance, higher resting membrane potential, and cannot fire action potentials. Results of biocytin remodeling revealed that control virus-infected cells had the typical morphology of astrocytes and were connected to neighboring astrocytes by gap junctions. Figures 11b-11e show that in mouse brain slices infected with virus AAV-Ascl1/mCherry for 7-30 days, in voltage-clamp mode, many cells have inward Na + currents and outward K + currents, and the amplitudes vary with infection time In the current-clamp mode, the ability of the detected cells to fire action potentials also increased, and the cell morphology became more complex. The results of Biocyte remodeling also found that the detected cells also formed fewer gap junctions. 11f and 11g show a gradual increase in the input resistance of the cell, while a gradual decrease in the resting membrane potential. Figure 11h shows that Ascl1-induced iN cells became more and more excited with the prolongation of infection time, and all recorded iN cells were able to fire action potentials at high frequency (50-220 Hz) 30 days after infection, while the control virus-infected cells exhibited Similar to the "inactive" state of astrocytes. Figure 11i shows that 30 days after AAV-Ascl1/mCherry virus infection, high-frequency spontaneous postsynaptic currents were found to be detected in all virus-infected cells (23/23). Figure 11j shows further pharmacological experiments showing that iN cells received both excitatory glutamate input and inhibitory GABA input. Figure 11k shows that by double whole-cell recording, iN cells (mCherry + ) can form synaptic connections with neurons in the midbrain tectum (mCherry - ), and when bicuculline, a GABA A receptor antagonist, is added to the midbrain tectum The synaptic current evoked in the neuron is completely blocked.
图12a,a′和图12e,e′分别显示了无论是在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的成年小鼠中脑中,免疫共标显示mCherry不与NeuN共定位。图12b,b′和图12c,c′分别显示了不论是在病毒注射16天后或38天后,mCherry都基本上不与NeuN共定位。图12d的电生理的实验表明,对照病毒AAV-mCherry感染的细胞具有典型的星形胶质细胞特性。图12f、12f′和图12g、12g′显示在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位,从16天63.5±3.1%到38天92.1±1.5%。图12h显示病毒AAV-Ascl1/mCherry感染的细胞在感染15-21天后,大多数的iN细胞(9/10)在电压钳模式下具有内向和外向的电流,并能够发放动作电位。图12i显示大多数的iN细胞(8/10)上可记录到自发的突触后电流。图12j显示对照质粒AAV-FLEX-NLSGFP感染的GFP+细胞几乎不表达NeuN。图12k显示经过28天的感染后,AAV-FLEX-Ascl1/GFP感染的GFP+细胞绝大多数表达NeuN。Figures 12a,a' and Figures 12e,e' show that neither in the midbrain of adult mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, respectively, co-immunolabeling showed that mCherry did not co-localize with NeuN. Figures 12b,b' and Figures 12c,c' show that mCherry does not substantially co-localize with NeuN either 16 days or 38 days after virus injection, respectively. Electrophysiological experiments in Figure 12d show that cells infected with the control virus AAV-mCherry have typical astrocytic properties. Figures 12f, 12f' and Figures 12g, 12g' show that in mice injected with the virus AAV-Ascl1/mCherry, mCherry gradually co-localized with NeuN, from 63.5±3.1% at 16 days to 92.1±1.5% at 38 days. Figure 12h shows that the majority of iN cells (9/10) had inward and outward currents in voltage-clamp mode and were able to fire action potentials 15-21 days after infection of cells infected with virus AAV-Ascl1/mCherry. Figure 12i shows that spontaneous postsynaptic currents can be recorded in most iN cells (8/10). Figure 12j shows that GFP + cells infected with the control plasmid AAV-FLEX-NLSGFP hardly express NeuN. Figure 12k shows that AAV-FLEX-Ascl1/GFP infected GFP + cells overwhelmingly expressed NeuN after 28 days of infection.
图13显示AAV-FLEX-NLSGFP感染的GFP+细胞绝大多数表达Acsbg1。Figure 13 shows that AAV-FLEX-NLSGFP infected GFP + cells overwhelmingly express Acsbg1.
图14a显示在AAV-mCherry病毒注射3天后,成年小鼠背侧中脑损伤部位大多数的mCherry+细胞表达GFAP。图14b显示病毒感染30天后,mCherry+细胞仍然很少表达NeuN。图14c显示AAV-Ascl1/mCherry病毒感染3天后的mCherry+细胞大多数表达NeuN。图14d显示AAV-Ascl1/mCherry病毒感染的mCherry+细胞在30天后具有较大的膜电阻和更去极化的静息膜电位。图14e显示该细胞不能发放动作电位。图14f-h显示所有记录的细胞(17/17)都能够发放多个动作电位并接受自发的兴奋性和抑制性突触传入。Figure 14a shows that 3 days after AAV-mCherry virus injection, the majority of mCherry + cells at the site of dorsal midbrain injury in adult mice express GFAP. Figure 14b shows that 30 days after virus infection, mCherry + cells still rarely express NeuN. Figure 14c shows that mCherry + cells mostly express
图15显示了在AAV-mCherry病毒注射3天后,成年小鼠背侧中脑损伤部位大多数的mCherry+细胞几乎不表达NeuN。Figure 15 shows that 3 days after AAV-mCherry virus injection, the majority of mCherry + cells at the site of dorsal midbrain injury in adult mice hardly express NeuN.
图16a-d显示了mCherry几乎不表达于纹状体神经元(NeuN+)、小胶质细胞(IBA1+)、少突胶质细胞(Olig2+)和NG2细胞(NG2+)中。图16e,f显示了大约96%的mCherry+细胞表达星形胶质细胞的标志分子谷氨酰胺合成酶(GS)。图16g显示了在AAV-mCherry病毒注射30天后,mCherry+细胞表达GS。图16h显示了AAV-Ascl1/mCherry病毒感染的mCherry+细胞大多数不再表达GS。图16i,j,l显示了AAV-mCherry病毒感染的细胞在30天后有一个相对较小的膜电阻(2.9±1.0MΩ中,n=7)、更加超极化的膜电位,同时不能发放动作电位。16k显示了AAV-Ascl1/mCherry病毒感染的mCherry+细胞在电压钳模式下大多数(15/16)能检测到向内和外向的电流。图16m显示了在这些细胞中大部分(12/16)能够记录到自发的兴奋性和抑制性突触后电流。Figures 16a-d show that mCherry is hardly expressed in striatal neurons (NeuN + ), microglia (IBA1 + ), oligodendrocytes (Olig2 + ) and NG2 cells (NG2 + ). Figures 16e,f show that approximately 96% of mCherry + cells express glutamine synthetase (GS), a marker molecule of astrocytes. Figure 16g shows mCherry + cells express
图17a、a′显示了在AAV-mCherry病毒注射30天后,mCherry+细胞几乎不表达NeuN。图17b、b′AAV-Ascl1/mCherry病毒感染的mCherry+细胞表达NeuN。Figures 17a, a' show that 30 days after AAV-mCherry virus injection, mCherry + cells hardly express NeuN. Figure 17b, b'AAV-Ascl1/mCherry virus-infected mCherry + cells express NeuN.
图18a显示了在病毒注射30天后,AAV-mCherry感染的成年小鼠皮层细胞(mCherry+)很少表达NeuN,而18b显示了AAV-Ascl1/mCherry病毒感染的皮层mCherry+细胞绝大部分表达NeuN。图18c显示了AAV-Ascl1/mCherry病毒感染30的细胞具有较大的膜电阻和更加去极化的静息膜电位,图18d、f显示了对照病毒AAV-mCherry感染30天的细胞仍表现出与星形胶质细胞相似的膜性质。图18e,f显示了AAV-Ascl1/mCherry病毒感染30的细胞中,所有记录的细胞(10/10)都能够发放动作电位。图18g则显示在这些细胞中(10/10)能够记录到自发的兴奋性和抑制性突触后电流。Figure 18a shows that AAV-mCherry-infected adult mouse cortical cells (mCherry + ) rarely express
图19a,b显示了在病毒注射7天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry几乎不与BrdU共定位。图19c,d显示了在病毒注射15天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry几乎不与Ki67共定位。图19e,f显示了在病毒注射30天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry仍然不与BrdU共定位。图19g显示了在病毒注射30天后,在注射AAV-Ascl1/mCherry的小鼠中,免疫共标显示mCherry不与Ki67共定位。Figure 19a,b shows that 7 days after virus injection, in mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry hardly co-localized with BrdU. Figures 19c,d show that 15 days after virus injection, in mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry hardly co-localized with Ki67. Figure 19e,f show that 30 days after virus injection, in mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry still did not co-localize with BrdU. Figure 19g shows that 30 days after virus injection, in mice injected with AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry did not co-localize with Ki67.
图20a,b显示了在病毒注射7天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中脑中,免疫共标显示mCherry几乎不与少突胶质 细胞的标志物GST-π共定位。图20c,d显示了在病毒注射30天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠中脑中,免疫共标显示mCherry很少与少突胶质细胞的标志物Olig2共定位。图20e-h显示了在病毒注射30天后,在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry的小鼠纹状体和皮层中,免疫共标显示mCherry很少与少突胶质细胞的标志物Olig2共定位。Figure 20a,b shows that 7 days after virus injection, in the midbrain of mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry hardly interacted with the oligodendrocyte marker GST- π colocalization. Figure 20c,d show that 30 days after virus injection, in the midbrain of mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry was rarely co-labeled with Olig2, a marker of oligodendrocytes. position. Figure 20e-h shows that 30 days after virus injection, in the striatum and cortex of mice injected with the control virus AAV-mCherry or AAV-Ascl1/mCherry, immunoco-labeling showed that mCherry was rarely associated with the hallmarks of oligodendrocytes Olig2 colocalization.
图21A、B分别显示了野生型小鼠(P42-P70)和Gad67-GFP(P51-P55)小鼠的中脑背侧神经元的放电模式。图21C、D分别显示从幼年小鼠以及成年小鼠诱导的神经元放电模式。图21E显示了上述四种小鼠中脑背侧神经元的放电模式的分类统计结果。Figures 21A and B show the firing patterns of dorsal midbrain neurons in wild-type mice (P42-P70) and Gad67-GFP (P51-P55) mice, respectively. Figures 21C, D show neuronal firing patterns induced from juvenile and adult mice, respectively. Figure 21E shows the classification statistics of the firing patterns of the above four mouse dorsal midbrain neurons.
图22a、a′,b、b′显示了在用玻璃电极注射AAV 7天后,小鼠注射部位周围GFAP(反应性星形胶质细胞标志物)以及IBA1(小胶质细胞标记物)的表达情况。图22c、c′,d、d′显示了在用31G针头注射AAV 7天后,小鼠注射部位周围GFAP以及IBA1的表达情况。Figure 22a, a', b, b' show the expression of GFAP (reactive astrocyte marker) and IBA1 (microglia marker) around the injection site in
具体实施方式Detailed ways
本发明人经过广泛而深入的研究,首次意外地发现,过表达Ascl1基因或其蛋白能够有效地将星形胶质细胞诱导转分化为具有正常电生理功能的神经元细胞,且在体内和体外,对正常或损伤形态下的星形胶质细胞均具有这样的转分化作用。此外,本发明人还通过实验证实,不同部位来源(背侧中脑,纹状体以及大脑皮层)的星形胶质细胞均能够在Ascl1的存在下分化为神经元细胞。因此,该方法有望成为体外培养神经元细胞,以及在成人体内刺激产生新神经元细胞的有效方法,从而广泛应用于神经系统疾病的治疗,例如神经退行性病变、中枢神经创伤性疾病等等。在此基础上,完成了本发明。After extensive and in-depth research, the inventors unexpectedly discovered for the first time that overexpression of the Ascl1 gene or its protein can effectively induce transdifferentiation of astrocytes into neuronal cells with normal electrophysiological functions, and in vivo and in vitro , has such a transdifferentiation effect on astrocytes in normal or damaged form. In addition, the inventors have also confirmed through experiments that astrocytes from different parts (dorsal midbrain, striatum and cerebral cortex) can differentiate into neurons in the presence of Ascl1. Therefore, this method is expected to be an effective method for culturing neuronal cells in vitro and stimulating the generation of new neuronal cells in adults, thereby being widely used in the treatment of neurological diseases, such as neurodegenerative diseases, central nervous system trauma diseases and so on. On this basis, the present invention has been completed.
无刚毛鳞甲复合体同源物样1(Ascl1)基因或其蛋白或其促进剂Atheinoscalen complex homolog-like 1 (Ascl1) gene or its protein or its promoter
无刚毛鳞甲复合体同源物样1基因或其蛋白,Ascl,achaete-scute complexhomolog-like 1,bHLH类转录因子。Ascl1GenBank:U68534.2,其蛋白序列如SEQ ID NO.:1所示;No setae-scute complex homolog-like 1 gene or its protein, Ascl, achaete-scute complexhomolog-like 1, bHLH class of transcription factors. Ascl1GenBank:U68534.2, its protein sequence is as shown in SEQ ID NO.:1;
其NCBI Reference Sequence:NM_008553.4;mRNA序列如SEQ ID NO.:2所示。Its NCBI Reference Sequence: NM_008553.4; the mRNA sequence is shown in SEQ ID NO.:2.
Ascl1的促进剂没有特殊限制,可以为任何促进Ascl1基因或其蛋白表达和/或活性的物质,例如小分子化合物、促进性的miRNA。本领域技术人员可以根据现有的数据库对Ascl1促进剂进行筛选。应理解,基于本发明公开的Ascl1对星形胶质细胞的转分化诱导作用,本领域技术人员能够合理地预见任何对Ascl1具有促进作用的物质均会对星形胶质细胞具有转分化的诱导作用。The promoter of Ascl1 is not particularly limited, and can be any substance that promotes the expression and/or activity of the Ascl1 gene or its protein, such as small-molecule compounds and stimulatory miRNAs. Those skilled in the art can screen Ascl1 promoters according to existing databases. It should be understood that, based on the transdifferentiation induction effect of Ascl1 on astrocytes disclosed in the present invention, those skilled in the art can reasonably predict that any substance that has a promoting effect on Ascl1 will induce transdifferentiation of astrocytes. effect.
星形胶质细胞astrocytes
星形胶质细胞,是哺乳动物脑内数量最多的一类细胞。它们执行许多功能,包括生化支撑(例如形成血-脑屏障),为神经元提供营养,维持细胞外离子平衡,并参与脑和脊髓损伤后的修复和瘢痕形成。根据胶质丝的含量以及胞突的形状可将星形胶质细胞分为两种:纤维性星形胶质细胞(fibrous astrocyte)多分布在脑和脊髓的白质,突起细长,分支较少,胞质中含大量胶质丝;原浆性星形胶质细胞(protoplasmic astrocyte),多分布在灰质,细胞突起粗短,分支多。Astrocytes are the most abundant type of cells in the mammalian brain. They perform many functions, including biochemical support (such as forming the blood-brain barrier), providing nutrients to neurons, maintaining extracellular ion homeostasis, and participating in repair and scarring following brain and spinal cord injury. According to the content of glial filaments and the shape of cell processes, astrocytes can be divided into two types: fibrous astrocytes are mostly distributed in the white matter of the brain and spinal cord, with elongated processes and fewer branches. , the cytoplasm contains a lot of glial filaments; protoplasmic astrocytes (protoplasmic astrocytes) are mostly distributed in the gray matter, with thick and short cell processes and many branches.
可用于本发明的星形胶质细胞没有特别限制,包括哺乳动物中枢神经系统来源的各种星形胶质细胞,例如来源于纹状体、脊髓、背侧中脑或大脑皮层,较佳地,来源于背侧中脑或大脑皮层。The astrocytes that can be used in the present invention are not particularly limited, including various astrocytes derived from the central nervous system of mammals, such as those derived from the striatum, spinal cord, dorsal midbrain or cerebral cortex, preferably , originating from the dorsal midbrain or cerebral cortex.
在本发明中,各个来源的星形胶质细胞所具有的诱导转化效率均较高,其中大脑皮层来源的细胞诱导效率最高,其次为背侧中脑。In the present invention, astrocytes from various sources have higher induction and transformation efficiency, among which the induction efficiency of cells derived from cerebral cortex is the highest, followed by the dorsal midbrain.
通常,星形胶质细胞的特异性标志物为GFAP,灰质中的星形胶质细胞GFAP表达相对较低,但表达Acsbg1和GS。而当通过本发明方法的诱导后,这些星形胶质细胞表现出神经元细胞特有的标志物,例如Tuj1、MAP2和synapsin I。Typically, astrocytes are specific markers for GFAP, and astrocytes in gray matter have relatively low GFAP expression but express Acsbg1 and GS. And when induced by the method of the present invention, these astrocytes exhibit neuronal cell-specific markers such as Tuj1, MAP2 and synapsin I.
功能性神经元functional neuron
如本文所用,术语“功能性神经元”指的是在外源性Ascl1基因或蛋白存在下,由星形胶质细胞转分化而成的、具有正常神经元电生理活动的神经元细胞,包括GABA能神经元细胞和谷氨酸能神经元细胞。As used herein, the term "functional neuron" refers to neuronal cells with normal neuronal electrophysiological activity, including GABA, transdifferentiated from astrocytes in the presence of exogenous Ascl1 gene or protein Neuron cells and glutamatergic neuron cells.
通常,所述的功能性神经元细胞具有如下特性:Typically, the functional neuronal cells have the following properties:
(a)表达神经元的标志物Tuj1、MAP2和Synapsin I;(a) Expression of neuronal markers Tuj1, MAP2 and Synapsin I;
(b)能够发放动作电位并能够形成突触联系。(b) capable of firing action potentials and capable of forming synaptic connections.
表达载体Expression vector
可用于本发明的表达载体没有特殊限制,可以是含有Ascl1蛋白编码序列的能够整合入星形胶质细胞,并表达外源Ascl1蛋白的任何表达载体。例如病毒载体,其可以是任何能够利用病毒具有传送其基因组的特点,将遗传物质带入其他细胞,进行感染的病毒载体。可发生于完整活体或是细胞培养中。包括慢病毒载体、腺病毒载体、疱疹病毒载体、痘病毒载体。The expression vector that can be used in the present invention is not particularly limited, and can be any expression vector containing the Ascl1 protein coding sequence that can integrate into astrocytes and express exogenous Ascl1 protein. For example, a viral vector can be any viral vector that can utilize the characteristics of a virus to transmit its genome and bring genetic material into other cells for infection. Can occur in whole in vivo or in cell culture. Including lentiviral vector, adenoviral vector, herpes virus vector, poxvirus vector.
在本发明中,一种优选的表达载体为慢病毒载体。例如,利用常规PCR技术将小鼠Ascl1基因的cDNA克隆到慢病毒表达载体FUGW-IRES-EGFP中得到FUGW-Ascl1,并将编码GFP的序列替换成其他荧光蛋白,例如tdTomato,从而构成FUW-Ascl1-tdTomato载体。In the present invention, a preferred expression vector is a lentiviral vector. For example, the cDNA of the mouse Ascl1 gene was cloned into the lentiviral expression vector FUGW-IRES-EGFP by conventional PCR technology to obtain FUGW-Ascl1, and the sequence encoding GFP was replaced with other fluorescent proteins, such as tdTomato, to form FUW-Ascl1 - tdTomato vector.
在本发明的一个实施例中,一种Ascl1慢病毒载体包装的方法可以按照常规的方法进行,优选地,可采用“Production and purification of lentiviral vectors”(Tiscornia,G.,Singer,O.&Verma,I.M..Nat.Protoc.1,241-245(2006))中记录的方法进行慢病毒载体的包装。In one embodiment of the present invention, a method for packaging Ascl1 lentiviral vectors can be performed according to conventional methods, preferably, "Production and purification of lentiviral vectors" (Tiscornia, G., Singer, O. & Verma, Packaging of lentiviral vectors was performed by the method described in I.M..Nat.Protoc. 1, 241-245 (2006)).
诱导方法Induction method
本发明还提供了在体外和体内分别将星形胶质细胞诱导转分化为功能性神经元细胞的方法。The present invention also provides methods for inducing transdifferentiation of astrocytes into functional neuronal cells in vitro and in vivo, respectively.
在体外,所述的方法包括步骤:通过Ascl1载体(例如慢病毒)感染星形胶质细胞,感染后的细胞维持培养至少10天,更佳地,20天以上,从而使星形胶质细胞转化为成熟的神经元细胞。In vitro, the method includes the steps of: infecting astrocytes with an Ascl1 vector (eg, lentivirus), and maintaining the infected cells in culture for at least 10 days, more preferably, more than 20 days, so that the astrocytes are cultured transformed into mature neuronal cells.
在体内,可将含有Ascl1的载体施用(例如注射)到所需对象含有星形胶质细胞的部位,例如背侧中脑、纹状体或大脑皮层。通常,这种施用可以对未受损和受损的神经系统组织进行注射,从而诱导该神经系统特定部位中的星形胶质细胞进行转分化。In vivo, the Ascl1-containing vector can be administered (eg, injected) to a desired site of the subject containing astrocytes, such as the dorsal midbrain, striatum, or cerebral cortex. Typically, such administration allows injection into undamaged and damaged nervous system tissue to induce transdifferentiation of astrocytes in specific parts of the nervous system.
药物组合物以及给药方式Pharmaceutical composition and mode of administration
本发明还提供一种可用于将星形胶质细胞诱导形成功能性神经元的组合物。本发明的药物组合物还可治疗或预防神经退行性疾病、神经系统外伤性疾病等等。The present invention also provides a composition useful for inducing astrocytes to form functional neurons. The pharmaceutical composition of the present invention can also treat or prevent neurodegenerative diseases, traumatic diseases of the nervous system, and the like.
本发明药物组合物包括本发明上述的表达载体(例如病毒颗粒)、或外源性 Ascl1蛋白本身,和药学上可接受的载体。The pharmaceutical composition of the present invention includes the above-mentioned expression vector (eg virus particle) of the present invention, or the exogenous Ascl1 protein itself, and a pharmaceutically acceptable carrier.
在本发明的药物组合物,通常含有107-1012PFU/ml的慢病毒或AAV病毒颗粒,较佳地108-1012PFU/ml的慢病毒或AAV病毒颗粒,更佳地109-1012PFU/ml的慢病毒或AAV病毒颗粒。The pharmaceutical composition of the present invention usually contains 10 7 -10 12 PFU/ml lentivirus or AAV virus particles, preferably 10 8 -10 12 PFU/ml lentivirus or AAV virus particles, more preferably 10 9 -10 12 PFU/ml of lentivirus or AAV virus particles.
“药学上可接受的载体”指用于治疗剂给药的载体,包括各种赋形剂和稀释剂。"Pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent and includes various excipients and diluents.
术语指这样一些药剂载体:它们本身并不是必要的活性成分,且施用后没有过分的毒性。合适的载体是本领域普通技术人员所熟知的。在组合物中药学上可接受的载体可含有液体,如水、盐水、缓冲液。另外,这些载体中还可能存在辅助性的物质,如填充剂、润滑剂、助流剂、润湿剂或乳化剂、pH缓冲物质等。所述的载体中还可以含有细胞转染试剂。The term refers to pharmaceutical carriers which are not themselves essential active ingredients and which are not unduly toxic after administration. Suitable carriers are well known to those of ordinary skill in the art. Pharmaceutically acceptable carriers in the compositions may contain liquids such as water, saline, buffers. In addition, auxiliary substances such as fillers, lubricants, glidants, wetting or emulsifying agents, pH buffering substances and the like may also be present in these carriers. The carrier may also contain cell transfection reagents.
通常,将所述表达载体(慢病毒颗粒)和药学上可接受的载体混合后,即可获得的本发明的药物组合物。Generally, the pharmaceutical composition of the present invention can be obtained after mixing the expression vector (lentiviral particle) and a pharmaceutically acceptable carrier.
本发明所述的组合物的给药方式没有特别限制,代表性的例子包括(但并不限于):静脉注射、皮下注射、脑部注射等。The mode of administration of the composition of the present invention is not particularly limited, and representative examples include (but are not limited to): intravenous injection, subcutaneous injection, brain injection, and the like.
应用application
本发明Ascl1可用于制备诱导星形胶质细胞产生功能性神经元,从而将新诱导的神经元应用于各种由于神经元数量减少、细胞衰退、凋亡或神经元功能下降相关的疾病。其中,所述的神经系统相关疾病包括癫痫、阿尔兹海默症(AD)、帕金森病(PD)、中风引起的神经元死亡等。The Ascl1 of the present invention can be used to prepare and induce astrocytes to generate functional neurons, so that the newly induced neurons can be applied to various diseases related to the reduction of the number of neurons, cell decline, apoptosis or neuron function decline. Wherein, the nervous system-related diseases include epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), neuronal death caused by stroke, and the like.
本发明有益效果Beneficial effects of the present invention
本发明将单个转录因子Ascl1在体外能将中脑背侧的星形胶质细胞转分化为功能性的神经元。利用特异地在星形胶质细胞中表达的GFAP-AAV载体,Ascl1能够将成年小鼠背侧中脑、纹状体以及躯体感觉皮层的星形胶质细胞转分化为功能性的神经元。这些诱导的神经元逐渐成熟,呈现出神经元的形态并表达神经元的标志分子,而且这些神经元能够发放动作电位,并能够接受其他神经元的突触传入而且能够释放神经递质与其他神经元建立突触联系。因此,该方法有望成为体外培养神经元细胞,以及在成人体内刺激产生新神经元细胞的有效方法,从而广泛应用于神经系统疾病的治疗,例如神经退行性病变、中枢神经创伤性疾病等等。In the present invention, a single transcription factor Ascl1 can transdifferentiate the astrocytes in the dorsal midbrain into functional neurons in vitro. Using a GFAP-AAV vector specifically expressed in astrocytes, Ascl1 was able to transdifferentiate adult mouse dorsal midbrain, striatum, and somatosensory cortex astrocytes into functional neurons. These induced neurons gradually mature, take on neuronal morphology and express neuronal marker molecules, and these neurons are able to fire action potentials, receive synaptic afferents from other neurons, and release neurotransmitters and other Neurons make synaptic connections. Therefore, this method is expected to be an effective method for culturing neuronal cells in vitro and stimulating the generation of new neuronal cells in adults, thereby being widely used in the treatment of neurological diseases, such as neurodegenerative diseases, central nervous system trauma diseases and so on.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring HarborLaboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. The experimental method of unreceipted specific conditions in the following examples, usually according to normal conditions, such as people such as Sambrook, molecular cloning: conditions described in laboratory manual (New York:Cold Spring Harbor Laboratory Press, 1989), or according to manufacturer the proposed conditions. Percentages and parts are weight percentages and parts unless otherwise specified.
通用方法general approach
星形胶质细胞培养astrocyte culture
星形胶质细胞的制备参考“Preparation of separate astroglial andoligodendroglial cell cultures from rat cerebral tissue”(McCarthy,K.D.&deVellis,J.J.Cell Biol.85,890-902(1980))。取出出生后5-7天小鼠或成年小鼠的背侧中脑,并用0.25%的胰酶消化15分钟。吹散的细胞置于含10%血清的DMEM/F12配液中培养7-9天。经震荡去除少突胶质细胞后,得到的细胞即为星形胶质细胞。For the preparation of astrocytes, refer to "Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue" (McCarthy, K.D. & deVellis, J.J. Cell Biol. 85, 890-902 (1980)). The dorsal midbrain of postnatal day 5-7 mice or adult mice was removed and digested with 0.25% trypsin for 15 min. The blown cells were cultured in DMEM/F12 solution containing 10% serum for 7-9 days. After shaking to remove oligodendrocytes, the resulting cells are astrocytes.
免疫显色Immunochromic
培养细胞的免疫显色参照“Direct conversion of fibroblasts to functionalneurons by defined factors”(Vierbuchen,T.et al.Nature 463,1035-1041(2010)).组织切片的免疫显色结合原位杂交及免疫显色的双标实验参照已发表的方法进行。免疫显色用到的一抗包括:mouse anti-GFAP(Mi llipore,1:1,000),rabbit-GFAP(DAKO,1:1,000),mouse anti-Tuj1(Covance,1:500),mouse anti-Map2(Sigma,1:500),rabbit anti-GFP(Invitrogen,1:1,000),chick anti-GFP(Invitrogen,1:1,000),mouse anti-NeuN(Millipore,1:100),rabbit anti-Synapsin I(Millipore,1:1,000),rabbit anti-GABA(Sigma,1:3,000),rabbit anti-GAD67(Millipore,1:200),guinea pig anti-VGAT(Synaptic Systems,1:200),rabbit anti-Dsred(Clontech,1:500),mouse anti-Dsred(Santa Cruz,1:100),rabbit anti-VGLUT1(Synaptic Systems,1:500),guinea piganti-VGLUT2(Frontier Institute Co.,1:400),rabbit anti-Acsbg1(Abcam,1:100),mouse anti-glutamine synthetase(610518, BD Biosciences,1:200),rabbit anti-Sox2(Millipore,1:500),mouse anti-S100β(Sigma,1:1,000),rabbit anti-EAAT1(Abcam,1:500),rabbit anti-NG2(Millipore,1:200),rabbit anti-Iba1(Wako,1:500),mouse anti-CNPase(Abcam,1:500),mouse anti-O4(Millipore,1:500),mouse anti-Ascl1(BD Biosciences,1:200),rabbit anti-Sox2(Millipore,1:500),rabbit anti-Olig2(AB9610,Millipore,1:500),rabbit anti-DCX(ab77450,Abcam,1:500).The immunochromatization of cultured cells refers to "Direct conversion of fibroblasts to functionalneurons by defined factors" (Vierbuchen, T. et al. Nature 463, 1035-1041 (2010)). Immunochromatization of tissue sections combined with in situ hybridization and immunofluorescence Color double-labeling experiments were performed according to published methods. The primary antibodies used for immunochromatography include: mouse anti-GFAP (Millipore, 1:1,000), rabbit-GFAP (DAKO, 1:1,000), mouse anti-Tuj1 (Covance, 1:500), mouse anti-Map2 (Sigma, 1:500), rabbit anti-GFP (Invitrogen, 1:1,000), chick anti-GFP (Invitrogen, 1:1,000), mouse anti-NeuN (Millipore, 1:100), rabbit anti-Synapsin I ( Millipore, 1:1,000), rabbit anti-GABA (Sigma, 1:3,000), rabbit anti-GAD67 (Millipore, 1:200), guinea pig anti-VGAT (Synaptic Systems, 1:200), rabbit anti-Dsred ( Clontech, 1:500), mouse anti-Dsred (Santa Cruz, 1:100), rabbit anti-VGLUT1 (Synaptic Systems, 1:500), guinea piganti-VGLUT2 (Frontier Institute Co., 1:400), rabbit anti -Acsbg1 (Abcam, 1:100), mouse anti-glutamine synthetase (610518, BD Biosciences, 1:200), rabbit anti-Sox2 (Millipore, 1:500), mouse anti-S100β (Sigma, 1:1,000), rabbit anti-EAAT1(Abcam,1:500),rabbit anti-NG2(Millipore,1:200),rabbit anti-Iba1(Wako,1:500),mouse anti-CNPase(Abcam,1:500),mouse anti -O4 (Millipore, 1:500), mouse anti-Ascl1 (BD Biosciences, 1:200), rabbit anti-Sox2 (Millipore, 1:500), rabbit anti-Olig2 (AB9610, Millipore, 1:500), rabbit anti-DC X(ab77450, Abcam, 1:500).
FITC-,Cy3-以及Cy5-偶联的二抗购自Jackson Immunoresearch.Alexa-350-,Alexa-488-与Alexa-546-偶联的二抗购自Invitrogen。FITC-, Cy3- and Cy5-conjugated secondary antibodies were purchased from Jackson Immunoresearch. Alexa-350-, Alexa-488- and Alexa-546-conjugated secondary antibodies were purchased from Invitrogen.
AAV病毒的立体定位注射Stereotactic injection of AAV virus
AAV病毒参照小鼠脑图谱进行。注射病毒后,在不同时间点收集背部中脑、纹状体、大脑皮层做免疫显色或脑片记录。制备损伤的背侧中脑模型时,注射病毒用5毫升注射器及31G的针头完成。AAV virus was performed with reference to mouse brain atlas. After virus injection, the dorsal midbrain, striatum, and cerebral cortex were collected at different time points for immunochromatization or brain slice recording. In preparing the injured dorsal midbrain model, virus injection was done with a 5 ml syringe and a 31G needle.
流式细胞分选和定量RT-PCRFlow cytometric sorting and quantitative RT-PCR
表达mCherry的细胞通过流式细胞仪进行分选。提取细胞的总RNA,合成cDNA,然后进行实时定量PCR的检测。GAPDH作为基因表达水平的内参。Cells expressing mCherry were sorted by flow cytometry. Total RNA of cells was extracted, cDNA was synthesized, and then detected by real-time quantitative PCR. GAPDH was used as an internal reference for gene expression levels.
实施例1质粒构建与病毒感染Example 1 Plasmid construction and virus infection
小鼠Ascl1基因的cDNA克隆到慢病毒表达载体FUGW-IRES-EGFP中得到FUGW-Ascl1。用tdTomato替换FUGW-Ascl1质粒中的GFP得到FUW-Ascl1-tdTomato。空的慢病毒表达载体FUGW与FUW-tdTomato分别作为对照。慢病毒的包装参照文献“Production andpurification of lentiviral vectors”(Tiscornia,G.,Singer,O.&Verma,I.M.Nat.Protoc.1,241-245(2006))。The cDNA of mouse Ascl1 gene was cloned into lentiviral expression vector FUGW-IRES-EGFP to obtain FUGW-Ascl1. Substituting tdTomato for GFP in the FUGW-Ascl1 plasmid yielded FUW-Ascl1-tdTomato. Empty lentiviral expression vectors FUGW and FUW-tdTomato were used as controls, respectively. For the packaging of lentivirus, refer to the document "Production and purification of lentiviral vectors" (Tiscornia, G., Singer, O. & Verma, I.M. Nat. Protoc. 1, 241-245 (2006)).
星形胶质细胞铺板培养24小时后加入慢病毒,感染24小时后更换培养基:DMEM/F12,B27,Glutamax和青霉素/链霉素。感染6-7后,每三天在培养基中加入脑源性神经营养因子(BDNF;PeproTech公司,20ng/ml)。Lentivirus was added 24 hours after astrocytes were plated and cultured, and the medium was changed 24 hours after infection: DMEM/F12, B27, Glutamax and penicillin/streptomycin. After infection 6-7, brain-derived neurotrophic factor (BDNF; PeproTech, 20 ng/ml) was added to the medium every three days.
为了制备GFAP-AAV载体,用hGFAP启动子(2.2kb)替换AAV-FLEX-Arch-GFP质粒(Addgene)中的CMV启动子。插入mCherry后得到AAV-mCherry质粒。 将Ascl1克隆进AAV-mCherry后得到AAV-Ascl1/mCherry质粒。将Ascl1克隆进AAV-FLEX-Arch-GFP得到AAV-FLEX-Ascl1/GFP。AAV-mCherry与AAV-FLEX-NLSGFP作为对照。NLS为核定位信号,其序列为:VPKKKRKVEA。To prepare the GFAP-AAV vector, the CMV promoter in the AAV-FLEX-Arch-GFP plasmid (Addgene) was replaced with the hGFAP promoter (2.2 kb). AAV-mCherry plasmid was obtained after inserting mCherry. The AAV-Ascl1/mCherry plasmid was obtained after Ascl1 was cloned into AAV-mCherry. Ascl1 was cloned into AAV-FLEX-Arch-GFP to obtain AAV-FLEX-Ascl1/GFP. AAV-mCherry and AAV-FLEX-NLSGFP served as controls. NLS is a nuclear localization signal, and its sequence is: VPKKKRKVEA.
实施例2 Ascl1将体外的背侧中脑星形胶质细胞转分化为神经元Example 2 Ascl1 transdifferentiates dorsal midbrain astrocytes into neurons in vitro
首先分离纯化出生后5-7天(P5-P7)小鼠背侧中脑的星形胶质细胞。这些胶质细胞的属性通过检查不同细胞类型的分子标记得到验证(图1)。绝大部分的细胞表达星形胶质细胞的标志分子GFAP和S100β,少量的细胞表达少突胶质细胞的标志分子O4和CNPase,少量的细胞表达NG2胶质细胞的标志分子NG2,没有检测到神经元标志分子Tuj1以及干细胞标志分子Sox2和Oct4的表达。First, astrocytes from the dorsal midbrain of mice 5-7 days after birth (P5-P7) were isolated and purified. The properties of these glial cells were verified by examining molecular markers of different cell types (Figure 1). The vast majority of cells expressed astrocyte marker molecules GFAP and S100β, a small number of cells expressed oligodendrocyte marker molecules O4 and CNPase, and a small number of cells expressed NG2 glial cell marker molecule NG2, which was not detected. Expression of neuron marker molecule Tuj1 and stem cell marker molecules Sox2 and Oct4.
结果result
2.1经转化星形胶质细胞表现成熟神经元标志分子2.1 Transformed astrocytes express mature neuron marker molecules
星形胶质细胞转染对照慢病毒载体FUGW 10天后,星形胶质细胞不表达神经元的标志分子Tuj1(图2a),仍维持胶质细胞的形态同时表达星形胶质细胞的标志分子GFAP(图2b)。与此相反,感染慢病毒FUGW-Ascl110天后,大部分星形胶质细胞表达神经元的标志分子Tuj1,同时呈现典型的神经元形态(76.8±6.4%,n=3,每次计数348–384个GFP+细胞,图2c)。感染慢病毒FUGW-Ascl121天后,星形胶质细胞还表达成熟神经元的标志分子MAP2(图2d)和synapsin I(图2e)。10 days after astrocytes were transfected with the control lentiviral vector FUGW, astrocytes did not express the marker molecule Tuj1 of neurons (Fig. 2a), but still maintained the shape of glial cells and expressed the marker molecules of astrocytes. GFAP (Fig. 2b). In contrast, 10 days after infection with lentivirus FUGW-Ascl1, most of the astrocytes expressed the neuronal marker molecule Tuj1 and exhibited typical neuronal morphology (76.8±6.4%, n=3, 348–384 counts per count). GFP + cells, Figure 2c). After 21 days of infection with lentivirus FUGW-Ascl1, astrocytes also expressed mature neuron marker molecules MAP2 (Fig. 2d) and synapsin I (Fig. 2e).
2.2电生理特性检测显示所转化细胞均能为功能性细胞2.2 Electrophysiological characteristics test showed that the transformed cells were functional cells
为了检验由Ascl1转分化得到的神经元(induced neuronal(iN)cells)是否具有神经元的电生理特性,对这些细胞进行了全细胞记录(图2f)。To examine whether neurons transdifferentiated from Ascl1 (induced neuronal (iN) cells) possess neuronal electrophysiological properties, whole-cell recordings were performed on these cells (Fig. 2f).
结果表明,在慢病毒转染30-40天后,所有GFP阳性的细胞(共63个)都能产生动作电位(图2g)。同时,绝大多数的iN细胞上(87.3%,55/63个细胞)能记录到自发的突触后电流(图2g),这说明这些神经元能形成功能性突触。The results showed that all GFP-positive cells (63 in total) were able to generate action potentials 30-40 days after lentiviral transfection (Fig. 2g). Meanwhile, spontaneous postsynaptic currents were recorded on the vast majority of iN cells (87.3%, 55/63 cells) (Fig. 2g), indicating that these neurons can form functional synapses.
2.3验证诱导的神经元来源于星形胶质细胞2.3 Verify that the induced neurons are derived from astrocytes
为了进一步验证诱导的神经元来源于星形胶质细胞,用慢病毒FUW-Ascl1-tdTomato感染取自hGFAP-GFP小鼠的星形胶质细胞(带有GFP标 记)。经Ascl1诱导的细胞其形态发生改变并表达Tuj1,同时仍然有GFP的表达(图2i),而感染只含红色荧光蛋白的对照慢病毒FUW-tdTomato后,被病毒感染的细胞仍然维持星形胶质细胞的形态,并表达GFAP(图2h)。这说明诱导产生的神经元来源于星形胶质细胞。To further verify that the induced neurons were derived from astrocytes, astrocytes (tagged with GFP) from hGFAP-GFP mice were infected with lentivirus FUW-Ascl1-tdTomato. The Ascl1-induced cells changed their morphology and expressed Tuj1, while still expressing GFP (Fig. 2i), while after infection with the control lentivirus FUW-tdTomato containing only red fluorescent protein, the virus-infected cells still maintained astrocytes The morphology of cytoplasmic cells and expression of GFAP (Fig. 2h). This indicated that the induced neurons were derived from astrocytes.
2.4通过免疫显色检测iN细胞的递质属性2.4 Detection of transmitter properties of iN cells by immunochromatography
实验发现,大多数iN细胞表达GABA(74.9±4.5%,n=3,每次计数153-228个GFP+Tuj1+细胞,图3a),其中部分iN细胞表达GABA能神经元标志分子GAD67(图3b)和VGAT(图3d)。另外,发现部分iN细胞表达谷氨酸能神经元标志分子VGLUT2(10.8±3.8%,n=3,每次计数134-280个GFP+Tuj1+细胞,图3f)。这说明iN细胞中含有抑制性神经元以及兴奋性神经元。为了在电生理上进一步证明这一点,检测了iN细胞的自突触(autapse)情况。The experiment found that most iN cells expressed GABA (74.9±4.5%, n=3, 153-228 GFP + Tuj1 + cells were counted each time, Figure 3a), and some iN cells expressed GABAergic neuron marker molecule GAD67 (Figure 3a). 3b) and VGAT (Fig. 3d). In addition, some iN cells were found to express the glutamatergic neuron marker molecule VGLUT2 (10.8±3.8%, n=3, 134-280 GFP + Tuj1 + cells were counted each time, Figure 3f). This indicates that iN cells contain inhibitory neurons as well as excitatory neurons. To further demonstrate this electrophysiologically, iN cells were examined for their autapse.
结果发现,部分iN细胞(19.4%,7/36个细胞)能记录到自突触(图3g),当加入AMPA/kainate谷氨酸受体的拮抗剂CNQX时,自突触的电流被完全阻断(3/3个细胞)。这说明iN细胞中含有谷氨酸能神经元。It was found that some iN cells (19.4%, 7/36 cells) could record from self-synapses (Fig. 3g), and when CNQX, an antagonist of AMPA/kainate glutamate receptors, was added, the self-synaptic currents were completely suppressed. Block (3/3 cells). This indicates that iN cells contain glutamatergic neurons.
为了验证iN细胞中是否存在GABA的释放,用慢病毒FUW-Ascl1-tdTomato感染取自GAD67–GFP小鼠背侧中脑的星形胶质细胞(图4a),并发现诱导的细胞表达GFP(图4b),说明它们可能是GABA能的神经元。To verify the presence of GABA release in iN cells, astrocytes taken from the dorsal midbrain of GAD67–GFP mice were infected with lentivirus FUW-Ascl1-tdTomato (Fig. 4a), and the induced cells were found to express GFP ( Figure 4b), indicating that they may be GABAergic neurons.
iN细胞诱导10天后加入从P5-P7野生型小鼠背侧中脑分离出来的神经元共培养,在慢病毒转染29-40天后,几乎所有tdTomato+GFP+的细胞(97%,37/38个细胞)都能产生动作电位(图4c)。同时,绝大多数的iN细胞上(89%,34/38个细胞)能记录到自发的突触后电流(图4d)。另外,部分iN细胞(21%,8/38个细胞)能记录到自突触,当加入GABAA受体的拮抗剂bicuculline时,自突触的电流被完全阻断(5/5个细胞)(图3h),这说明iN细胞中含有GABA能神经元。Neurons isolated from the dorsal midbrain of P5-P7 wild-type mice were co-cultured 10 days after iN cell induction, and 29-40 days after lentiviral transfection, almost all tdTomato + GFP + cells (97%, 37/ 38 cells) were able to generate action potentials (Fig. 4c). Meanwhile, spontaneous postsynaptic currents were recorded on the vast majority of iN cells (89%, 34/38 cells) (Fig. 4d). In addition, some iN cells (21%, 8/38 cells) could record from self-synapses, and when bicuculline, a GABA A receptor antagonist, was added, the self-synaptic currents were completely blocked (5/5 cells) (Fig. 3h), which indicated that iN cells contained GABAergic neurons.
结果表明,出生后早期背侧中脑的星形胶质细胞可以在体外被重编程为功能性的谷氨酸能神经元或GABA能神经元。The results show that astrocytes in the early postnatal dorsal midbrain can be reprogrammed into functional glutamatergic or GABAergic neurons in vitro.
实施例3 GFAP-AAV载体有效地感染体内的背侧中脑星形胶质细胞Example 3 GFAP-AAV vector efficiently infects dorsal midbrain astrocytes in vivo
为了探索星形胶质细胞在体内重编程为神经元的可能性,构建了hGFAP启动子驱动的含红色荧光蛋白(mCherry)的重组腺相关病毒(AAV)载体。将病毒 注射到P12-P15的野生型小鼠的一侧顶盖,三天后通过免疫染色可以检测到mCherry的表达。To explore the possibility of reprogramming astrocytes into neurons in vivo, a recombinant adeno-associated virus (AAV) vector containing red fluorescent protein (mCherry) driven by hGFAP promoter was constructed. The virus was injected into the lateral tectum of P12-P15 wild-type mice, and mCherry expression was detectable by immunostaining three days later.
结果result
3.1mCherry与星形胶质细胞的标记分子Acsbg1免疫共标显示,注射病毒3天后,不论是注射对照病毒AAV-mCherry(96.1±0.7%,n=3,每次计数220-326个细胞;图5a),还是病毒AAV-Ascl1/mCherry(93.1±2.7%,n=3,每次计数130-280个细胞;图5b),几乎所有mCherry阳性的细胞表达Acsbg1(代表细胞是星形胶质细胞)。此外,mCherry和神经元标记分子NeuN的免疫共标表明mCherry不在神经元中表达(图7a,a′,d,d′)。另外还发现mCherry不和NG2细胞的标记物NG2共存于同一细胞中(图6)。3. The co-labeling of 1mCherry and astrocyte marker molecule Acsbg1 showed that after 3 days of virus injection, regardless of the control virus AAV-mCherry (96.1±0.7%, n=3, 220-326 cells were counted each time; Fig. 5a), or viral AAV-Ascl1/mCherry (93.1±2.7%, n=3, 130-280 cells per count; Figure 5b), almost all mCherry-positive cells express Acsbg1 (representative cells are astrocytes) ). In addition, immunoco-labeling of mCherry and the neuronal marker molecule NeuN indicated that mCherry was not expressed in neurons (Fig. 7a, a', d, d'). It was also found that mCherry did not coexist in the same cells as NG2, a marker for NG2 cells (Fig. 6).
3.2为了进一步确定GFAP-AAV载体的特异性,使用了两种星形胶质细胞特异性表达GFP的转基因小鼠GFAP-GFP和Aldh1l1-GFP。3.2 To further determine the specificity of the GFAP-AAV vector, two transgenic mice GFAP-GFP and Aldh1l1-GFP expressing GFP specifically in astrocytes were used.
在AAV-mCherry感染3天后,发现在两种转基因小鼠Aldh1l1-GFP小鼠(98.7±1.0%,n=3,每次计数426-475个细胞,图5c)和GFAP-GFP小鼠(93.5±1.4%,n=3,每次计数123-186个细胞,图5d)中,绝大多数mCherry阳性的细胞表同时也是GFP阳性的细胞。After 3 days of AAV-mCherry infection, it was found that in both transgenic Aldh1l1-GFP mice (98.7±1.0%, n=3, 426-475 cells counted each, Figure 5c) and GFAP-GFP mice (93.5 ±1.4%, n=3, 123-186 cells were counted each time, in Figure 5d), the vast majority of mCherry-positive cells were also GFP-positive cells.
另外,用4-hydroxytamoxifen(4-OHT)诱导GFAP-CreERT2;Rosa26-CAG-tdTomato小鼠表达tdTomato,发现tdTomato与Acsbg1共定位(93.8±1.6%,n=3,每次计数169-177个细胞,图5e)。In addition, GFAP-CreERT2 was induced with 4-hydroxytamoxifen (4-OHT); Rosa26-CAG-tdTomato mice expressed tdTomato, and tdTomato was found to co-localize with Acsbg1 (93.8±1.6%, n=3, 169-177 cells per count) , Figure 5e).
因此,GFAP启动子驱动的AAV载体可以特异指导外源基因在P12-P15小鼠体内的星形胶质细胞中表达。Therefore, the GFAP promoter-driven AAV vector can specifically direct the expression of foreign genes in astrocytes in P12-P15 mice.
实施例4 Ascl1在体内将幼年小鼠背侧中脑星形胶质细胞转变成神经元Example 4 Ascl1 converts juvenile mouse dorsal midbrain astrocytes into neurons in vivo
将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到P12-P15的野生型小鼠的一侧顶盖,然后在几个不同的时间点收集脑组织样品。The virus AAV-mCherry or AAV-Ascl1/mCherry was injected into the lateral tectum of P12-P15 wild-type mice, and then brain tissue samples were collected at several different time points.
结果result
4.1与对照相比,注射含Ascl1的病毒,逐渐显现出mCherry与NeuN的共定位4.1 Compared with the control, injection of Ascl1-containing virus gradually revealed the co-localization of mCherry and NeuN
在病毒注射3-5天后,无论是在注射对照病毒AAV-mCherry(3.4±0.2%,n=3,每次计数472-489个细胞;图7a,a′),还是病毒AAV-Ascl1/mCherry(4.5±2.3%,n=3,每次计数279-419个细胞;图7d,d′)的小鼠中, 免疫共标显示mCherry均不与NeuN共定位。3-5 days after virus injection, either the control virus AAV-mCherry (3.4±0.2%, n=3, 472-489 cells counted each; Fig. 7a, a'), or the virus AAV-Ascl1/mCherry (4.5±2.3%, n=3, 279-419 cells per count; Fig. 7d,d'), immunoco-labeling showed that none of mCherry co-localized with NeuN.
但是从注射病毒后10-14天44.2±12.5%(n=3,每次计数309-436个细胞)(图7e,e′)到注射病毒后28-32天93.1±1.7%(n=3,每次计数412-557个细胞)(图7f,f′),在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位。But from 44.2±12.5% (n=3, 309-436 cells per count) at 10-14 days after virus injection (Fig. 7e,e') to 93.1±1.7% (n=3) at 28-32 days after virus injection , 412-557 cells per count) (Fig. 7f,f'), mCherry gradually colocalized with NeuN in mice injected with the virus AAV-Ascl1/mCherry.
然而,在注射对照病毒AAV-mCherry的小鼠中,不论是在注射病毒后10-14天(4.0±0.5%,n=3,每次计数325-487个细胞;图7b,b′),还是28-32天(3.9±0.4%,n=3,每次计数389-515个细胞;图7c,c′)后,mCherry都不与NeuN共定位。However, in mice injected with the control virus AAV-mCherry, both 10-14 days after virus injection (4.0±0.5%, n=3, 325-487 cells per count; Fig. 7b,b'), Also after 28-32 days (3.9±0.4%, n=3, 389-515 cells per count; Fig. 7c,c'), neither mCherry co-localized with NeuN.
4.2注射含Ascl1的病毒未增加神经元细胞的凋亡4.2 Injection of Ascl1-containing virus did not increase apoptosis of neuronal cells
尼氏显色结果表明,注射病毒AAV-Ascl1/mCherry的小鼠背侧中脑的细胞密度与注射对照病毒AAV-mCherry的小鼠基本相当(图8a-8c)。TUNEL染色结果显示,在注射病毒AAV-Ascl1/mCherry的小鼠中凋亡并没有增加(图8d-8h)。The results of Nissl staining showed that the cell density of the dorsal midbrain of mice injected with virus AAV-Ascl1/mCherry was basically comparable to that of mice injected with control virus AAV-mCherry (Figure 8a-8c). The results of TUNEL staining showed that apoptosis was not increased in mice injected with virus AAV-Ascl1/mCherry (Fig. 8d-8h).
在注射病毒AAV-Ascl1/mCherry 155天后的小鼠背侧中脑,仍然可以检测到mCherry的表达,而且它们与NeuN存在良好的共定位(图9)。这说明iN细胞在体内可以存活较长的时间。Expression of mCherry was still detectable in the dorsal midbrain of mice 155 days after virus AAV-Ascl1/mCherry injection, and they colocalized well with NeuN (Figure 9). This shows that iN cells can survive for a long time in vivo.
4.3在体产生的iN细胞的递质属性检测4.3 Detection of transmitter properties of iN cells generated in vivo
进一步检测了在体产生的iN细胞的递质属性。病毒注射45天后,发现部分iN细胞表达Gad1(13.2±4.2%,n=3,每次计数57-180个细胞;图7g),同时还有部分iN细胞表达VGLUT2(6.5±2.2%,n=3,每次计数48-118个细胞;图7h)。The transmitter properties of iN cells generated in vivo were further examined. 45 days after virus injection, some iN cells were found to express Gad1 (13.2±4.2%, n=3, 57-180 cells per count; Figure 7g), while some iN cells expressed VGLUT2 (6.5±2.2%, n= 3, 48-118 cells were counted each time; Figure 7h).
这说明体内产生的iN细胞含有谷氨酸能神经元和GABA能神经元。This indicated that iN cells generated in vivo contained glutamatergic neurons and GABAergic neurons.
4.4经诱导的细胞来源于星形胶质细胞,而非神经前体细胞4.4 Induced cells are derived from astrocytes, not neural precursors
为了检测P12-P15的野生型小鼠背侧中脑是否存在神经干细胞,分离了体内的细胞进行成球培养实验。从室管膜下区(subventricular zone,SVZ)分离的细胞可以产生大量的神经球(364.9±53.5个神经球/孔(六孔板),n=3,每次计数333-426个神经球;图7i)。而从背侧中脑分离的细胞基本上不能产生神经球(0.8±0.2个神经球/孔(六孔板),n=3,每次计数0-1个神经球;图7j)。另外,为了探索P12GFAP+的细胞是否能够在晚期产生神经元,用4-OHT连续5天(P12-P16)诱导GFAP-CreERT2;Rosa26-CAG- tdTomato小鼠表达tdTomato,发现30天后tdTomato仍然不与NeuN共定位(图7k-7n)。In order to detect whether there are neural stem cells in the dorsal midbrain of P12-P15 wild-type mice, the cells in vivo were isolated and cultured into spheroids. Cells isolated from the subventricular zone (SVZ) could produce a large number of neurospheres (364.9 ± 53.5 neurospheres/well (six-well plate), n=3, 333-426 neurospheres per count; Figure 7i). Whereas cells isolated from the dorsal midbrain were essentially incapable of producing neurospheres (0.8 ± 0.2 neurospheres/well (six-well plate), n = 3, 0-1 neurosphere per count; Figure 7j). In addition, to explore whether P12GFAP + cells could generate neurons at a late stage, GFAP-CreERT2 was induced with 4-OHT for 5 consecutive days (P12-P16; Rosa26-CAG-tdTomato mice expressed tdTomato, and it was found that tdTomato still did not interact with tdTomato after 30 days). NeuN co-localized (Figures 7k-7n).
这些结果表明,从GFAP+诱导的iN细胞来源于出生后的星形胶质细胞,而不是神经前体细胞。These results suggest that iN cells induced from GFAP + are derived from postnatal astrocytes, rather than neural precursor cells.
实施例5体内iN细胞的电生理特性Example 5 Electrophysiological properties of iN cells in vivo
为了检测体内iN细胞的电生理特性,对注射病毒后不同时间点的急性脑片进行全细胞记录。感染的细胞用mCherry的表达来鉴定。To examine the electrophysiological properties of iN cells in vivo, whole-cell recordings were performed on acute brain slices at different time points after virus injection. Infected cells were identified by mCherry expression.
结果result
5.1感染含Ascl1病毒的细胞能够产生动作电位5.1 Infection of cells containing Ascl1 virus can generate action potentials
在感染病毒AAV-Ascl1/mCherry 7-30天的小鼠脑片中,发现在电压钳模式下,很多细胞具有内向的Na+电流和外向的K+电流,而且振幅随感染时间的增加而增加(图11b-11e)。与之对应的是,在电流钳模式下,检测的细胞发放动作电位的能力也随之增强(图11b-11e)。进一步地,细胞的形态变得更加复杂,biocytin重塑的结果也发现检测的细胞形成间隙连接也更少(图11b-11e)。与此同时,细胞的输入电阻逐渐增加,而静息膜电位逐渐降低(图11f和11g)。这些结果都表明转录因子Ascl1体内诱导的iN细胞功能逐渐成熟。In the mouse brain slices infected with the virus AAV-Ascl1/mCherry for 7-30 days, it was found that many cells had inward Na + current and outward K + current in voltage-clamp mode, and the amplitude increased with the increase of infection time. (Figures 11b-11e). Correspondingly, the ability of the detected cells to fire action potentials was also enhanced in current-clamp mode (Figures 11b-11e). Further, the morphology of the cells became more complex, and the results of biocytin remodeling also found that the detected cells formed fewer gap junctions (Figures 11b-11e). At the same time, the cell's input resistance gradually increased, while the resting membrane potential gradually decreased (Figures 11f and 11g). These results all indicate that the function of iN cells induced by transcription factor Ascl1 in vivo gradually matures.
然而,在感染对照病毒AAV-mCherry的小鼠脑片中,发现检测的细胞具有较低的阻抗(1.88±0.77MΩ,n=9),较高的静息膜电位(-79.21±0.37mV,n=14),不能发放动作电位(图11a)。同时,生物胞素(biocytin)重塑的结果显示,对照病毒感染的细胞具有星形胶质细胞的典型形态,并通过间隙连接与邻近的星形胶质细胞相连(图11a)。这些结果表明,对照病毒AAV-mCherry特异性地在体内的星形胶质细胞中表达,同时它并没有改变星形细胞的生理特性。However, in the mouse brain slices infected with the control virus AAV-mCherry, the detected cells were found to have lower impedance (1.88±0.77MΩ, n=9), higher resting membrane potential (-79.21±0.37mV, n=14) and could not fire action potentials (Fig. 11a). Meanwhile, biocytin remodeling results showed that control virus-infected cells had a typical morphology of astrocytes and were connected to neighboring astrocytes by gap junctions (Fig. 11a). These results indicate that the control virus, AAV-mCherry, is specifically expressed in astrocytes in vivo, while it does not alter the physiological properties of astrocytes.
5.2 Ascl1诱导产生的iN随着感染时间延长而更易发生动作电位,其产生的电流能为GABAA受体拮抗剂所阻断5.2 Ascl1-induced iN is more prone to action potentials with prolonged infection, and the generated currents can be blocked by GABA A receptor antagonists
根据电流及电压响应模式的不同,将iN细胞分成4组:非活性细胞(non-active),具有内向电流但不能发放动作电位的细胞(inward),能够发放单个动作电位的细胞(sAP)和能够发放多个动作电位的细胞(mAP)。According to the different current and voltage response modes, iN cells are divided into 4 groups: non-active cells (non-active), cells with inward current but unable to fire action potentials (inward), cells capable of firing single action potentials (sAP) and A cell capable of firing multiple action potentials (mAP).
结果显示,Ascl1诱导产生的iN细胞随着感染时间的延长越来越兴奋,感 染30天后所有记录的iN细胞都能够高频(50-220Hz)发放动作电位(图11h)。而对照病毒感染的细胞都展现出类似星形胶质细胞的“非活性”状态(图11h)。进一步观察到iN细胞中存在自发的突触后电流,随着感染时间的延长,存在自发的突触后电流的iN细胞也越多。在AAV-Ascl1/mCherry病毒感染30天后,发现所有病毒感染的细胞(23/23)上都能检测到高频的自发突触后电流(图11i)。The results showed that Ascl1-induced iN cells became more and more excited with the prolongation of infection time, and all recorded iN cells were able to fire action potentials at high frequency (50-220 Hz) 30 days after infection (Fig. 11h). In contrast, control virus-infected cells all exhibited an "inactive" state similar to astrocytes (Fig. 11h). It was further observed that there were spontaneous postsynaptic currents in iN cells, and the number of iN cells with spontaneous postsynaptic currents increased with the prolongation of infection time. After 30 days of AAV-Ascl1/mCherry virus infection, high-frequency spontaneous postsynaptic currents were found to be detected in all virus-infected cells (23/23) (Fig. 11i).
进一步的药理实验表明iN细胞既接受兴奋性的谷氨酸输入,也接受抑制性的GABA输入(图11j)。最后,通过双全细胞记录发现,iN细胞(mCherry+)与中脑顶盖的神经元(mCherry-)可形成突触联系(图11k)。加入GABAA受体的拮抗剂bicuculline时,在中脑顶盖的神经元中所诱发的突触电流被完全阻断(图11k)。这说明iN细胞能够与周围的神经元建立GABA能突触联系,并整合到体内现有的神经环路中。Further pharmacological experiments showed that iN cells received both excitatory glutamate input and inhibitory GABA input (Fig. 11j). Finally, iN cells (mCherry + ) formed synaptic connections with neurons in the midbrain tectum (mCherry - ) by double whole-cell recording (Fig. 11k). Synaptic currents evoked in neurons of the midbrain tectum were completely blocked when the GABA A receptor antagonist bicuculline was added (Fig. 11k). This suggests that iN cells can establish GABAergic synaptic connections with surrounding neurons and integrate into existing neural circuits in vivo.
实施例6 Ascl1在体内将成年背侧中脑星形胶质细胞转分化为神经元Example 6 Ascl1 transdifferentiates adult dorsal midbrain astrocytes into neurons in vivo
本实验进一步研究了成年小鼠的星形胶质细胞是否可以被重新编程为神经元。将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到P60的野生型小鼠中,并显示mChrrey是否与NeuN共定位。This experiment further investigated whether adult mouse astrocytes could be reprogrammed into neurons. The virus AAV-mCherry or AAV-Ascl1/mCherry was injected into wild-type mice at P60 and showed whether mChrrey colocalized with NeuN.
结果result
6.1成年小鼠的星形胶质细胞诱导产生的iN细胞可在体内形成功能性突触6.1 Astrocyte-induced iN cells from adult mice can form functional synapses in vivo
在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry逐渐与NeuN共定位,从16天63.5±3.1%(n=3,每次计数131-266个细胞)(图12f和12f′)到38天92.1±1.5%(n=3,每次计数152-216个细胞)(图12g和12g′)。电生理记录表明,病毒AAV-Ascl1/mCherry感染的细胞在感染15-21天后,大多数的iN细胞(9/10)在电压钳模式下具有内向和外向的电流,并能够发放动作电位(图12h)。同时,大多数的iN细胞(8/10)上可记录到自发的突触后电流(图12i)。这表明成年小鼠的星形胶质细胞诱导产生的iN细胞可在体内形成功能性突触。In mice injected with the virus AAV-Ascl1/mCherry, mCherry gradually co-localized with NeuN, from 63.5 ± 3.1% (n = 3, 131-266 cells per count) at 16 days (Figures 12f and 12f') to 38 Day 92.1 ± 1.5% (n=3, 152-216 cells per count) (Figures 12g and 12g'). Electrophysiological recordings showed that the majority of iN cells (9/10) had inward and outward currents in voltage-clamp mode and were able to fire action potentials 15-21 days after infection in cells infected with the virus AAV-Ascl1/mCherry (Fig. 12h). At the same time, spontaneous postsynaptic currents were recorded in the majority of iN cells (8/10) (Fig. 12i). This suggests that astrocyte-induced iN cells from adult mice can form functional synapses in vivo.
与之相反,在注射5天后,无论是在注射对照病毒AAV-mCherry(4.2±1.4%,n=3,每次计数182-216个细胞;图12a,a′)或AAV-Ascl1/mCherry(5.6±1.6%,n=3,每次计数151-335个细胞;图12e,e′)的小鼠中, 免疫共标显示mCherry不与NeuN共定位。随后,实验发现在注射对照病毒AAV-mCherry的小鼠中,不论是在病毒注射16天后(6.7±3.6%,n=3,每次计数236-312个细胞;图12b,b′)或38天后(3.7±1.2%,n=3,每次计数118-144个细胞;图12c,c′),mCherry基本上不与NeuN共定位。电生理的实验表明,对照病毒AAV-mCherry感染的细胞具有典型的星形胶质细胞特性(图12d)。In contrast, 5 days after injection, either control virus AAV-mCherry (4.2±1.4%, n=3, 182-216 cells counted per time; Fig. 12a, a') or AAV-Ascl1/mCherry ( 5.6±1.6%, n=3, 151-335 cells per count; immunoco-labeling in mice in Figure 12e,e') showed that mCherry did not co-localize with NeuN. Subsequently, it was found that in mice injected with the control virus AAV-mCherry, either 16 days after virus injection (6.7±3.6%, n=3, 236-312 cells per count; Fig. 12b,b') or 38 Days later (3.7±1.2%, n=3, 118-144 cells per count; Figure 12c,c'), mCherry did not substantially co-localize with NeuN. Electrophysiological experiments showed that cells infected with the control virus AAV-mCherry had typical astrocyte properties (Fig. 12d).
由此可见,Ascl1在体内可将成年小鼠背侧中脑星形胶质细胞转分化功能性的神经元。Thus, Ascl1 can transdifferentiate adult mouse dorsal midbrain astrocytes into functional neurons in vivo.
6.2Cre依赖的Ascl1的表达也可以将成年背侧中脑星形胶质细胞转分化成神经元6.2 Cre-dependent Ascl1 expression can also transdifferentiate adult dorsal midbrain astrocytes into neurons
根据常规技术,制作了Cre重组酶诱导表达的AAV病毒:AAV-FLEX-NLSGFP和AAV-FLEX-Ascl1/GFP。在AAV载体中含有能够响应Cre重组酶的FLEX序列。将这些腺病毒注射到成年Aldh1l1-Cre转基因小鼠的中脑背侧。According to conventional techniques, Cre recombinase-inducible AAV viruses were prepared: AAV-FLEX-NLSGFP and AAV-FLEX-Ascl1/GFP. The AAV vector contains a FLEX sequence capable of responding to Cre recombinase. These adenoviruses were injected into the dorsal midbrain of adult Aldh1l1-Cre transgenic mice.
经过28天的感染后,AAV-FLEX-Ascl1/GFP感染的GFP+细胞绝大多数表达NeuN(90.1±2.1%,n=3,每次计数126-170个细胞;图12k)。另外AAV-FLEX-NLSGFP感染的GFP+细胞绝大多数表达Acsbg1(94.8±1.7%,n=3,233-268个细胞每次;图13),这表明Cre重组酶在星形胶质细胞中特异表达。After 28 days of infection, AAV-FLEX-Ascl1/GFP infected GFP + cells overwhelmingly expressed NeuN (90.1±2.1%, n=3, 126-170 cells per count; Figure 12k). In addition, AAV-FLEX-NLSGFP-infected GFP + cells overwhelmingly expressed Acsbg1 (94.8±1.7%, n=3, 233-268 cells per time; Figure 13), suggesting that Cre recombinase is in astrocytes specific expression.
而对照质粒AAV-FLEX-NLSGFP感染的GFP+细胞几乎不表达NeuN(2.9±1.1%,n=3,每次计数121-181个细胞;图12j),While GFP+ cells infected with the control plasmid AAV-FLEX-NLSGFP hardly expressed NeuN (2.9±1.1%, n=3, 121-181 cells per count; Figure 12j),
因此,Cre依赖的Ascl1的表达也可以将成年背侧中脑星形胶质细胞转分化成神经元。Thus, Cre-dependent Ascl1 expression can also transdifferentiate adult dorsal midbrain astrocytes into neurons.
6.3损伤的中脑星形胶质细胞(反应性细胞)可以转分化为功能性的神经元6.3 Injured midbrain astrocytes (reactive cells) can transdifferentiate into functional neurons
通过用针头注射AAV病毒AAV-mCherry或AAV-Ascl1/mCherry造成成年小鼠中脑背侧的刺伤模型。A stab wound model was created in the dorsal midbrain of adult mice by needle injection of the AAV virus AAV-mCherry or AAV-Ascl1/mCherry.
在AAV-mCherry病毒注射3天后,损伤部位大多数的mCherry+细胞(92.8±1.2%,n=3,每次计数60-117个细胞;图14a)表达GFAP,而几乎不表达NeuN(2.4±1.3%,n=3,每次计数69-107个细胞;图15)。病毒感染30天后,mCherry+细胞仍然很少表达NeuN(2.5±1.2%,n=3,每次计数78-82个细胞;图14b)。AAV-mCherry病毒感染的细胞在30天后有一个相对较小的膜电阻(5.3±1.9MΩ中,n=6),更多超极化膜电位(-81.2±1.7mV,n =5)(图14d),同时不能发放动作电位(图14e)。At 3 days after AAV-mCherry virus injection, the majority of mCherry + cells (92.8±1.2%, n=3, 60-117 cells per count; Figure 14a) at the lesion site expressed GFAP and almost none of NeuN (2.4±1.2%). 1.3%, n=3, 69-107 cells per count; Figure 15). After 30 days of viral infection, mCherry + cells still rarely expressed NeuN (2.5±1.2%, n=3, 78-82 cells per count; Figure 14b). AAV-mCherry virus-infected cells had a relatively small membrane resistance (5.3 ± 1.9 MΩ, n = 6) and more hyperpolarized membrane potential (-81.2 ± 1.7 mV, n = 5) after 30 days (Fig. 14d), while unable to fire action potentials (Fig. 14e).
免疫荧光显示,AAV-Ascl1/mCherry病毒感染30天后的mCherry+细胞大多数表达NeuN(54.2±6.9%,n=3,每次计数114-142个细胞;图14c)。AAV-Ascl1/mCherry病毒感染的mCherry+细胞在30天后具有较大的膜电阻(424.7±88.7MΩ中,n=17)和更去极化的静息膜电位(-61.2±1.6mV,n=17)(图14d)。同时,所有记录的细胞(17/17)都能够发放多个动作电位(图14f,g)并接受自发的兴奋性和抑制性突触传入。Immunofluorescence showed that mCherry + cells 30 days after AAV-Ascl1/mCherry virus infection mostly expressed NeuN (54.2±6.9%, n=3, 114-142 cells per count; Figure 14c). AAV-Ascl1/mCherry virus-infected mCherry + cells had larger membrane resistance (424.7 ± 88.7 MΩ, n = 17) and more depolarized resting membrane potential (-61.2 ± 1.6 mV, n = 17) after 30 days 17) (Fig. 14d). At the same time, all recorded cells (17/17) were able to fire multiple action potentials (Fig. 14f,g) and receive spontaneous excitatory and inhibitory synaptic afferents.
这些结果表明,损伤的中脑星形胶质细胞可以转分化为功能性的神经元。These results suggest that damaged midbrain astrocytes can be transdifferentiated into functional neurons.
实施例7 Ascl1在体内将成年小鼠纹状体星形胶质细胞转分化成神经元Example 7 Ascl1 transdifferentiates adult mouse striatal astrocytes into neurons in vivo
为了研究Ascl1将星形胶质细胞转分化为神经元是否具有区域特异性,进一步检查成年小鼠的纹状体星形胶质细胞是否可以被重新编程为神经元。将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到成年野生型小鼠(P60)的纹状体。To investigate whether the transdifferentiation of astrocytes into neurons by Ascl1 is region-specific, we further examined whether striatal astrocytes from adult mice could be reprogrammed into neurons. The virus AAV-mCherry or AAV-Ascl1/mCherry was injected into the striatum of adult wild-type mice (P60).
免疫染色表明大约96%的mCherry+细胞表达星形胶质细胞的标志分子谷氨酰胺合成酶(GS)(图16e,f)。而mCherry几乎不表达于神经元(NeuN+)、小胶质细胞(IBA1+)、少突胶质细胞(Olig2+)和NG2细胞(NG2+)中(图16a-d,f)。Immunostaining indicated that approximately 96% of mCherry + cells expressed glutamine synthase (GS), a marker molecule of astrocytes (Fig. 16e,f). In contrast, mCherry was hardly expressed in neurons (NeuN + ), microglia (IBA1 + ), oligodendrocytes (Olig2 + ) and NG2 cells (NG2 + ) ( FIG. 16 a-d , f ).
为了确定AAV病毒感染后mCherry+细胞的性质,进行了mCherry、GS和NeuN的免疫三标染色。结果表明,AAV-Ascl1/mCherry病毒感染的mCherry+细胞大多数不再表达GS(图16h),而是表达NeuN(64.4±3.4%,n=3,每次计数119-129个细胞;图17b)。而在AAV-mCherry病毒注射30天后,mCherry+细胞表达GS(图16g),几乎不表达NeuN(3.2±2.1%,n=3,每次计数104-140个细胞;图17a)。这提示星形胶质细胞转分化成了神经元。To determine the nature of mCherry + cells following AAV virus infection, immunotriple staining for mCherry, GS, and NeuN was performed. The results showed that the majority of mCherry + cells infected with AAV-Ascl1/mCherry virus no longer expressed GS (Fig. 16h), but NeuN (64.4±3.4%, n=3, 119-129 cells per count; Fig. 17b ) ). Whereas 30 days after AAV-mCherry virus injection, mCherry + cells expressed GS (Fig. 16g) and hardly NeuN (3.2±2.1%, n=3, 104-140 cells per count; Fig. 17a). This suggests that astrocytes transdifferentiate into neurons.
为了进一步研究诱导的神经元是否是功能性的,进行了进一步的电生理分析。实验表明,AAV-Ascl1/mCherry病毒感染的mCherry+细胞在电压钳模式下大多数(15/16)能检测到向内和外向的电流(图16k),在电流钳模式下大多数(13/16)能够发放动作电位(图16k,l)。此外,在这些细胞中大部分(12/16)能够记录到自发的兴奋性和抑制性突触后电流(图16m)。然而AAV-mCherry病毒感染的细胞在30天后有一个相对较小的膜电阻(2.9±1.0MΩ中,n=7)、更加超极化的膜电位(-79.0±0.3mV,n=7)(图16i),同时不能发放动 作电位(图16j,l)。这表明,成年小鼠纹状体的星形胶质细胞能转分化为功能性的神经元。To further investigate whether the induced neurons were functional, further electrophysiological analyses were performed. Experiments showed that AAV-Ascl1/mCherry virus-infected mCherry + cells detected inward and outward currents in most (15/16) of voltage-clamp mode (Fig. 16k), and most (13/16) in current-clamp mode 16) Ability to fire action potentials (Fig. 16k,l). Furthermore, spontaneous excitatory and inhibitory postsynaptic currents were recorded in the majority (12/16) of these cells (Fig. 16m). However, AAV-mCherry virus-infected cells had a relatively small membrane resistance (2.9 ± 1.0 MΩ, n = 7), a more hyperpolarized membrane potential (-79.0 ± 0.3 mV, n = 7) after 30 days ( Fig. 16i), while action potentials could not be fired (Fig. 16j,l). This suggests that astrocytes in the adult mouse striatum can transdifferentiate into functional neurons.
实施例8 Ascl1在体内将成年小鼠皮层星形胶质细胞转分化成神经元Example 8 Ascl1 transdifferentiates adult mouse cortical astrocytes into neurons in vivo
8.1本实施例研究了Ascl1是否可以将成年小鼠皮层的星形胶质细胞转分化为神经元。将病毒AAV-mCherry或AAV-Ascl1/mCherry注射到成年野生型小鼠(P60)的躯体感觉皮层。8.1 This example investigates whether Ascl1 can transdifferentiate astrocytes in adult mouse cortex into neurons. Viral AAV-mCherry or AAV-Ascl1/mCherry were injected into the somatosensory cortex of adult wild-type mice (P60).
在病毒注射30天后,实验发现AAV-Ascl1/mCherry病毒感染的皮层mCherry+细胞绝大部分表达NeuN(93.9±1.2%,n=3,每次计数132-147个细胞;图18b)。而AAV-mCherry感染的皮层细胞(mCherry+)很少表达NeuN(2.6±0.8%,n=3,每次计数120-133个细胞;图18a)。Thirty days after virus injection, it was found that the vast majority of cortical mCherry + cells infected with AAV-Ascl1/mCherry virus expressed NeuN (93.9±1.2%, n=3, 132-147 cells per count; Figure 18b). In contrast, AAV-mCherry-infected cortical cells (mCherry + ) rarely expressed NeuN (2.6±0.8%, n=3, 120-133 cells per count; Figure 18a).
而进一步的电生理分析发现,AAV-Ascl1/mCherry病毒感染30的细胞具有较大的膜电阻(163.3±35.9MΩ,n=10)和更加去极化的静息膜电位(-67±2.2mV,n=8)(图18c),并且所有记录的细胞(10/10)都能够发放动作电位(图18e,f)。同样,在这些细胞中(10/10)能够记录到自发的兴奋性和抑制性突触后电流(图18g)。而相比之下,对照病毒AAV-mCherry感染30天的细胞仍表现出与星形胶质细胞相似的膜性质(膜电阻,2.3±0.5MΩ,n=8;静息膜电位,-78.8±0.8mV,n=7,图18c;不能发放动作电位,图18d,f)。Further electrophysiological analysis found that cells infected with AAV-Ascl1/mCherry virus had a larger membrane resistance (163.3±35.9MΩ, n=10) and a more depolarized resting membrane potential (-67±2.2mV) , n=8) (Fig. 18c), and all recorded cells (10/10) were able to fire action potentials (Fig. 18e,f). Likewise, spontaneous excitatory and inhibitory postsynaptic currents could be recorded in these cells (10/10) (Fig. 18g). In contrast, cells infected with the control virus AAV-mCherry for 30 days still exhibited membrane properties similar to those of astrocytes (membrane resistance, 2.3 ± 0.5 MΩ, n = 8; resting membrane potential, -78.8 ± 0.8 mV, n=7, Fig. 18c; unable to fire action potentials, Fig. 18d,f).
这表明,Ascl1可以将成年小鼠大脑皮层的星形胶质细胞转分化为功能性的神经元。This suggests that Ascl1 can transdifferentiate astrocytes in the adult mouse cerebral cortex into functional neurons.
8.1为了进一步确定Ascl1诱导星形胶质细胞为神经元是否经过增殖阶段,在病毒注射后的第3-7天以及第3-30天持续地进行腹腔注射BrdU用以标记增殖的细胞。8.1 In order to further determine whether Ascl1 induced astrocytes to be neurons or not through the proliferation stage, BrdU was continuously injected intraperitoneally to label the proliferating cells on days 3-7 and 3-30 after virus injection.
在注射7天后,无论是在注射对照病毒AAV-mCherry(2.2±0.5%,n=3,每次计数325-410个细胞;图19a)或AAV-Ascl1/mCherry(1.6±0.3%,n=3,每次计数213-307个细胞;图19b)的小鼠中,免疫共标显示mCherry几乎不与BrdU共定位。在注射30天后,无论是在注射对照病毒AAV-mCherry(4.3±1.2%,n=3,每次计数230-363个细胞;图19e)或AAV-Ascl1/mCherry(1.6±1.0%,n=3,每次计数204-290个细胞;图19f)的小鼠中,免疫共标显示mCherry仍然几乎不与BrdU共定位。同时,在注射病毒 AAV-Ascl1/mCherry的小鼠中,mCherry与NeuN共定位,而在注射对照病毒AAV-mCherry的小鼠中,mCherry不与NeuN共定位(图19e,f)。进一步发现,在病毒注射15天后,无论是在注射对照病毒AAV-mCherry(1.0±0.6%,n=3,每次计数192-246个细胞;图19c)或AAV-Ascl1/mCherry(0.9±0.3%,n=3,每次计数185-276个细胞;图19d)的小鼠中,免疫共标显示mCherry几乎不与Ki67共定位。在注射30天后,无论是在注射对照病毒AAV-mCherry或AAV-Ascl1/mCherry(0.5±0.1%,n=3,每次计数171-248个细胞;图19g)的小鼠中,免疫共标显示mCherry仍然几乎不与Ki67共定位。Seven days after injection, either control virus AAV-mCherry (2.2±0.5%, n=3, 325-410 cells per count; Figure 19a) or AAV-Ascl1/mCherry (1.6±0.3%, n=3) 3, 213-307 cells were counted each time; in mice of Figure 19b), immunoco-labeling showed that mCherry hardly co-localized with BrdU. Thirty days after injection, either the control virus AAV-mCherry (4.3±1.2%, n=3, 230-363 cells per count; Figure 19e) or AAV-Ascl1/mCherry (1.6±1.0%, n=3) or AAV-Ascl1/mCherry (1.6±1.0%, n= 3, 204-290 cells per count; Figure 19f) in mice, immunoco-labeling showed that mCherry still barely co-localized with BrdU. Meanwhile, mCherry colocalized with NeuN in mice injected with the virus AAV-Ascl1/mCherry, whereas mCherry did not colocalize with NeuN in mice injected with the control virus AAV-mCherry (Fig. 19e,f). It was further found that 15 days after virus injection, either control virus AAV-mCherry (1.0 ± 0.6%, n = 3, 192-246 cells per count; Figure 19c) or AAV-Ascl1/mCherry (0.9 ± 0.3 %, n=3, 185-276 cells per count; in mice of Figure 19d), immunoco-labeling showed that mCherry hardly co-localized with Ki67. Co-immunolabeling was performed 30 days after injection in mice injected with either the control virus AAV-mCherry or AAV-Ascl1/mCherry (0.5±0.1%, n=3, 171-248 cells per count; Figure 19g). showed that mCherry still barely colocalized with Ki67.
这些结果表明,Ascl1诱导的体内重编程没有经过增殖阶段。These results suggest that Ascl1-induced in vivo reprogramming does not go through the proliferative phase.
8.3本实施例还研究了Ascl1过表达是否可以将星形胶质细胞转变成少突胶质细胞。在注射7天后,无论是在注射对照病毒AAV-mCherry(0.4±0.1%,n=3,每次计数237-303个细胞;图20a)或AAV-Ascl1/mCherry(0.4±0.3%,n=3,每次计数219-338个细胞;图20b)的小鼠中脑,免疫共标显示mCherry几乎不与少突胶质细胞的标志物GST-π共定位。在注射30天后,无论是在注射对照病毒AAV-mCherry(2.8±2.2%,n=3,每次计数308-393个细胞;图20c)或AAV-Ascl1/mCherry(3.3±0.4%,n=3,每次计数278-327个细胞;图20d)的小鼠中脑,免疫共标显示mCherry几乎不与另一个少突胶质细胞的标志物Olig2共定位。而同时,在注射病毒AAV-Ascl1/mCherry的小鼠中,mCherry与NeuN共定位(图20d)。这些结果表明,在中脑过表达Ascl1,星形细胞转分化为神经元而不是少突胶质细胞。同时,在注射病毒的纹状体中也发现mCherry几乎不与Olig2共定位,不论是在注射对照病毒AAV-mCherry(3.2±1.2%,n=3,每次计数156-181个细胞;图20e)或AAV-Ascl1/mCherry(4.4±1.7%,n=3,每次计数137-199个细胞;图20f)的脑组织中。进一步,不论是在注射对照病毒AAV-mCherry(3.1±1.4%,n=3,每次计数124-197个细胞;图20g)或AAV-Ascl1/mCherry(3.2±1.4%,n=3,每次计数119-145个细胞;图20h)的皮层脑组织中,mCherry几乎不与Olig2共定位。8.3 This example also investigates whether Ascl1 overexpression can convert astrocytes into oligodendrocytes. Seven days after injection, 237-303 cells were counted per injection with either control virus AAV-mCherry (0.4 ± 0.1%, n=3; Figure 20a) or AAV-Ascl1/mCherry (0.4 ± 0.3%, n= 3, 219-338 cells were counted each time; in the mouse midbrain of Figure 20b), immunoco-labeling showed that mCherry hardly co-localized with GST-π, a marker of oligodendrocytes. Thirty days after injection, either the control virus AAV-mCherry (2.8±2.2%, n=3, 308-393 cells counted each; Figure 20c) or AAV-Ascl1/mCherry (3.3±0.4%, n=3) were injected 3, 278-327 cells were counted each time; Figure 20d) mouse midbrain, immunoco-labeling showed that mCherry hardly co-localized with Olig2, another marker of oligodendrocytes. Meanwhile, in mice injected with the virus AAV-Ascl1/mCherry, mCherry colocalized with NeuN (Fig. 20d). These results suggest that overexpression of Ascl1 in the midbrain transdifferentiates astrocytes into neurons rather than oligodendrocytes. At the same time, mCherry was also found to hardly co-localize with Olig2 in the virus-injected striatum, regardless of whether it was injected with the control virus AAV-mCherry (3.2 ± 1.2%, n = 3, 156-181 cells per count; Figure 20e ) or AAV-Ascl1/mCherry (4.4±1.7%, n=3, 137-199 cells per count; Figure 20f). Further, either control virus AAV-mCherry (3.1±1.4%, n=3, 124-197 cells counted each; Figure 20g) or AAV-Ascl1/mCherry (3.2±1.4%, n=3, each 119-145 cells were counted; in the cortical brain tissue of Fig. 20h), mCherry hardly co-localized with Olig2.
这些结果表明,在纹状体和皮层中过表达Ascl1,星形细胞也是转分化为神经元而不是少突胶质细胞。These results suggest that overexpression of Ascl1 in the striatum and cortex also transdifferentiates astrocytes into neurons rather than oligodendrocytes.
实施例9中脑背侧的转分化神经元与内源神经元的电生理特性Example 9 Electrophysiological properties of transdifferentiated and endogenous neurons in the dorsal midbrain
为了研究转分化的神经元与内源的脑神经元是否具有相似的特性,本实施例进一步比较了中脑背侧的转分化神经元与内源神经元的电生理特性。In order to investigate whether transdifferentiated neurons and endogenous brain neurons have similar properties, this example further compares the electrophysiological properties of transdifferentiated neurons and endogenous neurons in the dorsal midbrain.
对野生型小鼠(P42-P70)和Gad67-GFP(P51-P55)小鼠的急性脑切片的中脑背侧进行全细胞记录,发现神经元的阻抗分别为489.1±131.1MΩ(n=21,野生型小鼠)和326.0±31.9MΩ(n=17,Gad67-GFP小鼠),静息膜电位分别为-57.6±2.0mV(n=19,野生型小鼠)和-57.1±1.9mV(n=15,Gad67-GFP小鼠)(图21A,B)。这些结果与从幼年小鼠(阻抗,177.3±16.6,n=23;静息膜电位,-61.9±1.0,n=8)以及成年小鼠(阻抗,240.0±81.9,n=9;静息膜电位,-61.0±1.2,n=6)(图21C,D)诱导得到的神经元类似。Whole-cell recordings from the dorsal midbrain of acute brain slices from wild-type mice (P42-P70) and Gad67-GFP (P51-P55) mice revealed a neuronal impedance of 489.1 ± 131.1 MΩ, respectively (n = 21 , wild-type mice) and 326.0 ± 31.9 MΩ (n = 17, Gad67-GFP mice), the resting membrane potentials were -57.6 ± 2.0 mV (n = 19, wild-type mice) and -57.1 ± 1.9 mV, respectively (n=15, Gad67-GFP mice) (Fig. 21A,B). These results are consistent with those from juvenile mice (impedance, 177.3±16.6, n=23; resting membrane potential, -61.9±1.0, n=8) and adult mice (impedance, 240.0±81.9, n=9; resting membrane Potentials, -61.0±1.2, n=6) (FIG. 21C, D) induced similar neurons.
此外,基于神经元特异性的放电模式,将野生小鼠中脑背侧的神经元分为五种主要类型。发现,绝大多数从幼年小鼠以及成年小鼠(P12-P15:95.6%,22/23;P60:100%,9/9)诱导的神经元都可以归类到这些野生型小鼠和Gad67-GFP小鼠正常神经元的放电类型中(图21C,D,E)。此外,一些诱导的神经元(P12-P15,30-49天:82.6%,19/23;P60,15-21天:77.8%,7/9)展现出与Gad67-GFP小鼠神经元同样的放电模式,暗示它们有可能是GABA能神经元。Furthermore, neurons in the dorsal midbrain of wild mice were classified into five main types based on neuron-specific firing patterns. found that the vast majority of neurons induced from juvenile mice as well as from adult mice (P12-P15: 95.6%, 22/23; P60: 100%, 9/9) could be classified into these wild-type mice and Gad67 -GFP mouse firing patterns in normal neurons (Fig. 21C,D,E). In addition, some induced neurons (P12-P15, 30-49 days: 82.6%, 19/23; P60, 15-21 days: 77.8%, 7/9) exhibited the same performance as Gad67-GFP mouse neurons firing patterns, suggesting that they may be GABAergic neurons.
总之,这些结果表明,从幼年小鼠以及成年小鼠转分化的神经元与内源的中脑神经元具有类似的电生理特性。Taken together, these results demonstrate that neurons transdifferentiated from juvenile as well as adult mice have similar electrophysiological properties to endogenous midbrain neurons.
此外,在大多数涉及立体定向注射AAV病毒的实验中,使用直径为18-20微米的玻璃电极进行注射,而在损伤模型中使用直径约260微米的31G针头进行注射。为了比较这两种注射条件的损伤差异,对中脑注射7天后的小鼠进行免疫荧光实验,检测注射部位周围GFAP(反应性星形胶质细胞标志物)以及IBA1(小胶质细胞标记物)的表达情况。结果表明,玻璃电极注射的小鼠注射部位周围GFAP阳性的反应性星形胶质细胞明显少于31G针头注射的小鼠(玻璃电极:14.2±2.2,n=3,图22a,a′;31G针头:113.6±15.7,n=3;图22c,c′)。而且玻璃电极注射的小鼠注射部位周围IBA1阳性的小胶质细胞也明显少于31G针头注射的小鼠(玻璃电极:24.3±5.4,n=3,图22b,b′;31G针头:74.3±12.0,n=3;图22d,d′)。在皮层中,也观察到类似的情况,针头注射的部位周围GFAP或IBA1阳性胶质细胞(GFAP:84.1±12.1;IBA1:57.3±7.5;n=3只小鼠)都明显多于玻璃电极注射的小鼠(GFAP:18.3 ±0.6;IBA1:18.4±2.9;n=3只小鼠)。这些结果表明,用31G针头注射AAV比玻璃电极注射造成脑组织更大的损伤。Furthermore, in most experiments involving stereotaxic injection of AAV virus, glass electrodes with a diameter of 18-20 μm were used for injection, whereas injections were performed with a 31G needle with a diameter of about 260 μm in the injury model. To compare the difference in damage between these two injection conditions, immunofluorescence experiments were performed on
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned herein are incorporated by reference in this application as if each document were individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510662939.9A CN105535992B (en) | 2014-10-17 | 2015-10-14 | Application of Ascl1 in inducing transdifferentiation of astrocytes into functional neurons |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2014105551157 | 2014-10-17 | ||
CN201410555115 | 2014-10-17 | ||
CN201510662939.9A CN105535992B (en) | 2014-10-17 | 2015-10-14 | Application of Ascl1 in inducing transdifferentiation of astrocytes into functional neurons |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105535992A CN105535992A (en) | 2016-05-04 |
CN105535992B true CN105535992B (en) | 2020-08-18 |
Family
ID=55746141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510662939.9A Active CN105535992B (en) | 2014-10-17 | 2015-10-14 | Application of Ascl1 in inducing transdifferentiation of astrocytes into functional neurons |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105535992B (en) |
WO (1) | WO2016058537A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110305846A (en) * | 2018-03-20 | 2019-10-08 | 中山大学中山眼科中心 | The preparation method of pattern of retinal ganglion cells |
CN111073855A (en) * | 2018-10-19 | 2020-04-28 | 中国科学院上海生命科学研究院 | Method and application of inducing transdifferentiation of astrocytes into serotonergic neurons |
CN111484977B (en) * | 2019-01-25 | 2023-05-16 | 中国科学院脑科学与智能技术卓越创新中心 | Method of reprogramming to produce functional noradrenergic neurons |
CN113652402A (en) * | 2020-05-12 | 2021-11-16 | 再康医药科技(上海)有限公司 | Method for inducing glial cell to transdifferentiate into functional neuron and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796696A (en) * | 2011-05-27 | 2012-11-28 | 复旦大学附属华山医院 | Neurons directly induced from human skin cells and preparation method for neurons |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011091048A1 (en) * | 2010-01-19 | 2011-07-28 | The Board Of Trustees Of The Leland Stanford Junior University | Direct conversion of cells to cells of other lineages |
US9770471B2 (en) * | 2011-08-17 | 2017-09-26 | President And Fellows Of Harvard College | Conversion of somatic cells into functional spinal motor neurons, and methods and uses thereof |
CN103773771A (en) * | 2013-11-28 | 2014-05-07 | 南京医科大学 | Transcription factor system as well as preparation method and application thereof |
-
2015
- 2015-10-14 WO PCT/CN2015/091944 patent/WO2016058537A1/en active Application Filing
- 2015-10-14 CN CN201510662939.9A patent/CN105535992B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796696A (en) * | 2011-05-27 | 2012-11-28 | 复旦大学附属华山医院 | Neurons directly induced from human skin cells and preparation method for neurons |
Non-Patent Citations (2)
Title |
---|
"Mash1 efficiently reprograms rat astrocytes into neurons";Daofang Ding 等;《NEURAL REGENERAT10N RESEARCH》;20140131;第9卷;第26-30页,"结果"与"讨论" * |
"Mash1在室管膜前下区神经干细胞向神经元分化中的作用";张治元 等;《中华神经医学杂志》;20060531;第5卷(第5期);第471-474页 * |
Also Published As
Publication number | Publication date |
---|---|
WO2016058537A1 (en) | 2016-04-21 |
CN105535992A (en) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo | |
US20210260217A1 (en) | GENERATING GABAergic NEURONS IN BRAINS | |
Yamashita et al. | Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum | |
Luo et al. | Promoting survival, migration, and integration of transplanted Schwann cells by over‐expressing polysialic acid | |
CN105535992B (en) | Application of Ascl1 in inducing transdifferentiation of astrocytes into functional neurons | |
Johansson et al. | Nestin enhancer requirements for expression in normal and injured adult CNS | |
Li et al. | Conversion of astrocytes and fibroblasts into functional noradrenergic neurons | |
Mao et al. | miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions | |
CN107075504B (en) | Schwann cells and preparation method thereof | |
WO2021031810A1 (en) | Application of ptbp1 inhibitor in preventing and/or treating nervous system disease related to functional neuronal death | |
JP7680072B2 (en) | Reprogramming functional fragments, combinations and uses thereof | |
WO2021032068A1 (en) | Application of ptbp1 inhibitor in preventing and/or treating nervous system disease related to functional neuronal death | |
Kagiava et al. | Gene delivery targeted to oligodendrocytes using a lentiviral vector | |
US20220098255A1 (en) | Neurod1 combination vector | |
US20210228741A1 (en) | Methods and compositions to stimulate retinal regeneration | |
US20090246870A1 (en) | De-differentiation of astrocytes into neural stem cell using nanog | |
Mortazavi et al. | The evaluation of nerve growth factor over expression on neural lineage specific genes in human mesenchymal stem cells | |
KR101269124B1 (en) | Method for Proliferating Stem Cells Using Activating c-MET/HGF Signaling | |
JP7620338B2 (en) | Neurog2 functional fragment delivery system, host cell and pharmaceutical composition for inducing transdifferentiation of glial cells into functional neurons | |
Richard et al. | Electroporation-based gene transfer for efficient transfection of neural precursor cells | |
KR101269125B1 (en) | Stem Cell Proliferation Method Using Notch Signal Activation Gene | |
LU500595B1 (en) | miR-16 and miR-30c joint Expression Vector, Construction Method and their Use | |
IL300374A (en) | Method for the treatment of wwox associated diseases | |
US20250213729A1 (en) | Method to stimulate regeneration of retinal ganglion cells | |
Liu et al. | EGF signaling promotes the lineage conversion of astrocytes into oligodendroglias |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200526 Address after: 200031 No. 320, Yueyang Road, Shanghai, Xuhui District Applicant after: Center for excellence and innovation of brain science and intelligent technology, Chinese Academy of Sciences Address before: 200031 Yueyang Road, Shanghai, No. 319, No. Applicant before: SHANGHAI INSTITUTES FOR BIOLOGICAL SCIENCES, CHINESE ACADEMY OF SCIENCES |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240902 Address after: 215127 Unit E613, 5/F, Le Orange Plaza, Phase II, Bio-Pharmaceutical Industrial Park, No. 218, Sangtian Street, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou, Jiangsu Province Patentee after: Nulunjie biomedical technology (Suzhou) Co.,Ltd. Country or region after: China Address before: 200031 No. 320, Yueyang Road, Shanghai, Xuhui District Patentee before: Center for excellence and innovation of brain science and intelligent technology, Chinese Academy of Sciences Country or region before: China |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241121 Address after: 215127 Unit E613, 5/F, Le Orange Plaza, Phase II, Bio-Pharmaceutical Industrial Park, No. 218, Sangtian Street, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou, Jiangsu Province Patentee after: Nulunjie biomedical technology (Suzhou) Co.,Ltd. Country or region after: China Patentee after: Nulunjie Biomedical Technology (Shanghai) Co.,Ltd. Address before: 215127 Unit E613, 5/F, Le Orange Plaza, Phase II, Bio-Pharmaceutical Industrial Park, No. 218, Sangtian Street, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou, Jiangsu Province Patentee before: Nulunjie biomedical technology (Suzhou) Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |