CN105529345A - An organic near-infrared upconverter with a double heterojunction as the photosensitive layer - Google Patents
An organic near-infrared upconverter with a double heterojunction as the photosensitive layer Download PDFInfo
- Publication number
- CN105529345A CN105529345A CN201610079906.6A CN201610079906A CN105529345A CN 105529345 A CN105529345 A CN 105529345A CN 201610079906 A CN201610079906 A CN 201610079906A CN 105529345 A CN105529345 A CN 105529345A
- Authority
- CN
- China
- Prior art keywords
- layer
- photosensitive layer
- double heterojunction
- organic
- upconverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 description 9
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N hydrazine Substances NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K65/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/20—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
- H10K30/211—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/60—OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及一种以双异质结为光敏层的有机近红外光上转换器,属于固体电子器件技术领域。The invention relates to an organic near-infrared light up-converter with a double heterojunction as a photosensitive layer, belonging to the technical field of solid electronic devices.
【背景技术】【Background technique】
近红外(NIR)成像器件在夜视、安全、半导体晶片检查以及医学成像,等方面具有广阔的应用前景。一种重要的近红外光谱成像的替代方法是利用光上转换器将近红外光向上转换为可见光,以便通过肉眼或商用数码相机就可以有效地检测到。近年来,各种结构的无机、混合有机/无机和有机近红外光上转换器件已有报道。有机近红外光上转换器可以看成是由一个有机光敏二极管与一个有机发光二极管(organiclight-emittingdiode,OLED)层叠串联而成,但去掉了连接电极层。而OLED可看作由OLED活性层、底电极和顶电极组成。N,N`-联二苯-N,N`-bis(1-萘基)-(1,1`-联苯)-4,4`-联氨(NPB)/八羟基喹啉铝(Alq3)异质结是常用的最简单的OLED活性层。有机光敏二极管可看作由光敏层、底电极和顶电极组成。有机近红外光上转换器的工作原理是,在无近红外光照时,有机光敏二极管电阻很大,从而与其串联的OLED不发光;在近红外光照下,有机光敏二极管电阻急剧减小,流过OLED的电流迅速增大,从而使OLED发光。通常,有机近红外光上转换器由底电极、光敏层、OLED活性层和底电极组成。根据光敏层和OLED活性层的相对位置不同,有机上转换器可采用上置和下置两种结构。在上置结构中,光敏层位于OLED活性层之上,而在下置结构中,光敏层位于OLED活性层之下。Near-infrared (NIR) imaging devices have broad application prospects in night vision, security, semiconductor wafer inspection, and medical imaging. An important alternative to NIR spectral imaging is the use of optical upconverters to upconvert NIR light to visible light, so that it can be efficiently detected by the naked eye or by commercially available digital cameras. In recent years, inorganic, hybrid organic/inorganic, and organic near-infrared upconversion devices with various structures have been reported. The organic near-infrared light up-converter can be regarded as being composed of an organic photosensitive diode and an organic light-emitting diode (organic light-emitting diode, OLED) stacked in series, but the connecting electrode layer is removed. The OLED can be regarded as composed of OLED active layer, bottom electrode and top electrode. N,N`-biphenyl-N,N`-bis(1-naphthyl)-(1,1`-biphenyl)-4,4`-hydrazine (NPB)/aluminum octahydroxyquinoline (Alq 3 ) Heterojunction is the simplest OLED active layer commonly used. An organic photodiode can be regarded as composed of a photosensitive layer, a bottom electrode, and a top electrode. The working principle of the organic near-infrared light up-converter is that when there is no near-infrared light, the resistance of the organic photodiode is very large, so that the OLED in series with it does not emit light; under the near-infrared light, the resistance of the organic photodiode decreases sharply, and the flow The current to the OLED increases rapidly, causing the OLED to emit light. Generally, an organic near-infrared light upconverter consists of a bottom electrode, a photosensitive layer, an OLED active layer, and a bottom electrode. According to the relative positions of the photosensitive layer and the active layer of the OLED, the organic up-converter can adopt two types of structures: top-mounted and bottom-mounted. In the upper structure, the photosensitive layer is located above the OLED active layer, while in the lower structure, the photosensitive layer is located below the OLED active layer.
在已报导的全有机近红外光上转换器中,采用纯净有机薄膜或施体-受体有机混合薄膜作为近红外光敏层。有机光吸收薄膜的结构和光电特性与衬底的表面形貌密切相关。在衬底和待生长的有机光吸收薄膜之间加入一层适当的模板层,能有效优化有机光吸收薄膜的结构和光吸收特性。In the reported all-organic near-infrared upconverters, pure organic films or donor-acceptor organic hybrid films are used as near-infrared photosensitive layers. The structure and optoelectronic properties of organic light-absorbing thin films are closely related to the surface morphology of the substrate. Adding a proper template layer between the substrate and the organic light-absorbing film to be grown can effectively optimize the structure and light-absorbing properties of the organic light-absorbing film.
【发明内容】【Content of invention】
本发明的目的是提供一种以双异质结为光敏层的有机近红外光上转换器,其特征在于,它采用“衬底/透明阳极/双异质结光敏层/OLED活性层/阴极”的常规结构,或者“衬底/透明阴极/OLED活性层/双异质结光敏层/阳极”的倒置结构。无论采用常规结构或者倒置结构,双异质结光敏层从下往上依次为模板层、近红外光吸收层和电子受体层。The object of the present invention is to provide a kind of organic near-infrared light upconverter with double heterojunction as photosensitive layer, it is characterized in that, it adopts "substrate/transparent anode/double heterojunction photosensitive layer/OLED active layer/cathode "The conventional structure, or the inverted structure of "substrate/transparent cathode/OLED active layer/double heterojunction photosensitive layer/anode". Regardless of the conventional structure or the inverted structure, the double heterojunction photosensitive layer consists of a template layer, a near-infrared light absorbing layer and an electron acceptor layer from bottom to top.
在无近红外光照时,由于电荷载流子浓度小,双异质结光敏层电阻很大,从而与其串联的OLED活性层不发光。在近红外光照下,双异质结光敏层中产生大量光生载流子,使其电阻急剧减小,从而使OLED活性层发光。When there is no near-infrared light, due to the low concentration of charge carriers, the resistance of the double heterojunction photosensitive layer is very high, so the OLED active layer connected in series with it does not emit light. Under near-infrared light, a large number of photogenerated carriers are generated in the double heterojunction photosensitive layer, which makes its resistance decrease sharply, so that the OLED active layer emits light.
本发明的技术分析:Technical analysis of the present invention:
在有机光吸收薄膜中,晶粒存在多种晶相,而每一种晶相对近红外光的吸收大为不同。选择适当的模板层,可以有效提高对近红外光吸收强的晶相,从而提高器件性能。例如,酞菁铅薄膜(PbPc)中,晶粒存在单斜和三斜两种晶相,而三斜相对近红外光的吸收远远大于单斜相。当PbPc生长在酞菁铜(CuPc)薄膜上时,三斜相的成份明显增加,从而有效提高了薄膜的近红外吸收系数。CuPc和富勒烯(C60)对近红外光几乎没有吸收。当有近红外光入射时,酞菁铅薄膜吸收近红外光,产生大量光生激子。一部分激子扩散至PbPc/C60异质界面而离解,转换为产生电子和光生空穴。由于大量光生电子和空穴的产生,双异质结活性层的电阻急剧减小,OLED活性层发光。In the organic light-absorbing thin film, there are multiple crystal phases in the crystal grains, and each crystal has a large difference in the absorption of near-infrared light. Selecting an appropriate template layer can effectively improve the crystal phase with strong absorption of near-infrared light, thereby improving device performance. For example, in the lead phthalocyanine film (PbPc), there are two crystal phases, monoclinic and triclinic, and the absorption of triclinic to near-infrared light is much greater than that of the monoclinic phase. When PbPc grows on the copper phthalocyanine (CuPc) film, the composition of the triclinic phase increases obviously, thereby effectively improving the near-infrared absorption coefficient of the film. CuPc and fullerene (C 60 ) hardly absorb near-infrared light. When near-infrared light is incident, the lead phthalocyanine film absorbs near-infrared light and generates a large number of photogenerated excitons. Part of the excitons diffused to the PbPc/C 60 heterointerface and dissociated, converted to generate electrons and photogenerated holes. Due to the generation of a large number of photogenerated electrons and holes, the resistance of the double heterojunction active layer decreases sharply, and the OLED active layer emits light.
下面结合附图通过具体实施方式、实施例加以说明,本发明可以变得更加清楚。The present invention will become clearer by describing the specific implementation modes and examples below in conjunction with the accompanying drawings.
【附图说明】【Description of drawings】
图1为下置结构的本发明示意图。Fig. 1 is a schematic diagram of the present invention with a lower structure.
图2为采用上置结构的本发明示意图。Fig. 2 is a schematic diagram of the present invention adopting an upper structure.
图3为采用CuPc/PbPc/C60为双异质结光敏层,NPB/Alq3为OLED活性层的上置结构的本发明示意图。图中,有机上转换器,由玻璃衬底(10)、铟锡氧化物(ITO)(20)、双异结光敏层(30)、OLED活性层(40)、Au顶电极(50)组成。其中双异结光敏层(30)从下到上,依次为CuPc(301)、PbPc(302)和C60(303);OLED活性层(40)从下到上,依次为2,9-二甲基-4,7-二苯基-1,10-菲咯啉(BCP)(401)、Alq3(402)、NPB(403)和CuPc(404)。Fig. 3 is a schematic diagram of the present invention using CuPc/PbPc/C60 as the double heterojunction photosensitive layer and NPB/Alq 3 as the OLED active layer. In the figure, the organic upconverter consists of a glass substrate (10), indium tin oxide (ITO) (20), double heterojunction photosensitive layer (30), OLED active layer (40), and Au top electrode (50) . Among them, the double heterojunction photosensitive layer (30) is CuPc (301), PbPc (302) and C60 (303) from bottom to top; the OLED active layer (40) is 2,9-dimethyl yl-4,7-diphenyl-1,10-phenanthroline (BCP) (401), Alq 3 (402), NPB (403) and CuPc (404).
【具体实施方式】【detailed description】
下面以采用CuPc/PbPc/C60为双异质结光敏层,NPB/Alq3为OLED活性层,倒置结构的双异质结有机近红外光上转换器为例,对本发明作进一步说明。Taking CuPc/PbPc/C60 as the double heterojunction photosensitive layer, NPB/Alq 3 as the OLED active layer, and an inverted double heterojunction organic near-infrared optical upconverter as an example, the present invention will be further described.
实施例Example
本实施例按照下述步骤制备供体/受体体异质结和倒置有机发光二极管以及电极:In this example, donor/acceptor heterojunction and inverted organic light-emitting diodes and electrodes were prepared according to the following steps:
1)以镀有ITO薄膜的玻璃为基板,用丙酮,乙醇和去离子水分别超声清洗10分钟,氮气吹干,在温度60℃烘箱中烘干20分钟。1) Take the glass coated with ITO film as the substrate, ultrasonically clean it with acetone, ethanol and deionized water for 10 minutes, blow dry with nitrogen, and dry it in an oven at a temperature of 60°C for 20 minutes.
2)将基板在紫外线照射下处理10分钟。2) Treat the substrate under UV irradiation for 10 minutes.
3)加载到一个有六个有机材料热蒸发源的真空蒸发系统。在真空度高于10-4Pa的条件下将有机薄膜依次热蒸发沉积到衬底上,沉积率保持在(0.75nm-1nm)/分钟的范围(由石英晶体振荡器控制)。沉积顺序和厚度为:BCP(50nm),Alq3(30nm),NPB(30nm),CuPc(50nm),PbPc(30nm),C60(50nm)和BCP(50nm)。3) Loading into a vacuum evaporation system with six sources of thermal evaporation of organic materials. Under the condition of vacuum higher than 10 -4 Pa, the organic thin film is sequentially thermally evaporated and deposited on the substrate, and the deposition rate is kept in the range of (0.75nm-1nm)/minute (controlled by a quartz crystal oscillator). The deposition sequence and thickness are: BCP (50nm), Alq3 (30nm), NPB (30nm), CuPc (50nm), PbPc (30nm), C60 (50nm) and BCP (50nm).
4)用真空热蒸发方法制备顶电极,其面积通过掩膜版确定。4) The top electrode is prepared by vacuum thermal evaporation, and its area is determined by a mask.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610079906.6A CN105529345A (en) | 2016-01-29 | 2016-01-29 | An organic near-infrared upconverter with a double heterojunction as the photosensitive layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610079906.6A CN105529345A (en) | 2016-01-29 | 2016-01-29 | An organic near-infrared upconverter with a double heterojunction as the photosensitive layer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105529345A true CN105529345A (en) | 2016-04-27 |
Family
ID=55771462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610079906.6A Pending CN105529345A (en) | 2016-01-29 | 2016-01-29 | An organic near-infrared upconverter with a double heterojunction as the photosensitive layer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105529345A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110649083A (en) * | 2019-10-10 | 2020-01-03 | 苏州英凡瑞得光电技术有限公司 | Up-conversion device for realizing conversion from near infrared light to visible light and preparation method thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244678A (en) * | 1987-03-30 | 1988-10-12 | Mitsubishi Electric Corp | Organic semiconductor device |
CN101044640A (en) * | 2004-08-05 | 2007-09-26 | 普林斯顿大学理事会 | Stacked organic photosensitive devices |
CN101351904A (en) * | 2005-11-02 | 2009-01-21 | 普林斯顿大学理事会 | Organic photovoltaic cells using ultra-thin sensitive layers |
CN101567423A (en) * | 2009-06-08 | 2009-10-28 | 中国科学院长春应用化学研究所 | Organic solar energy cell |
CN102148331A (en) * | 2010-02-08 | 2011-08-10 | 海洋王照明科技股份有限公司 | Solar cell with small organic molecule mixture heterojunction and preparation method of solar cell |
CN102280589A (en) * | 2011-09-08 | 2011-12-14 | 深圳市创益科技发展有限公司 | Organic solar cell and preparation method thereof |
CN102725616A (en) * | 2009-11-24 | 2012-10-10 | 佛罗里达大学研究基金会公司 | Method and apparatus for sensing infrared radiation |
JP2013179158A (en) * | 2012-02-28 | 2013-09-09 | Japan Advanced Institute Of Science & Technology Hokuriku | Method for producing photoelectric conversion device, photoelectric conversion device and production device of photoelectric conversion device |
KR20130131747A (en) * | 2012-05-24 | 2013-12-04 | 서울대학교산학협력단 | Organic small molecular solar cells with a double interfacial layer |
CN103460404A (en) * | 2011-02-28 | 2013-12-18 | 佛罗里达大学研究基金会有限公司 | Up-conversion devices with a broad band absorber |
CN203434207U (en) * | 2013-02-01 | 2014-02-12 | 兰州大学 | Hybrid planar-bulk heterojunction photosensitive organic field-effect transistor |
CN203932118U (en) * | 2014-03-12 | 2014-11-05 | 兰州大学 | A kind of infrared organic photosensitive diode based on exciplex photosensitive layer |
CN104393176A (en) * | 2008-10-27 | 2015-03-04 | 密歇根大学董事会 | Inverted organic photosensitive devices |
-
2016
- 2016-01-29 CN CN201610079906.6A patent/CN105529345A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63244678A (en) * | 1987-03-30 | 1988-10-12 | Mitsubishi Electric Corp | Organic semiconductor device |
CN101044640A (en) * | 2004-08-05 | 2007-09-26 | 普林斯顿大学理事会 | Stacked organic photosensitive devices |
CN101351904A (en) * | 2005-11-02 | 2009-01-21 | 普林斯顿大学理事会 | Organic photovoltaic cells using ultra-thin sensitive layers |
CN104393176A (en) * | 2008-10-27 | 2015-03-04 | 密歇根大学董事会 | Inverted organic photosensitive devices |
CN101567423A (en) * | 2009-06-08 | 2009-10-28 | 中国科学院长春应用化学研究所 | Organic solar energy cell |
CN102725616A (en) * | 2009-11-24 | 2012-10-10 | 佛罗里达大学研究基金会公司 | Method and apparatus for sensing infrared radiation |
CN102148331A (en) * | 2010-02-08 | 2011-08-10 | 海洋王照明科技股份有限公司 | Solar cell with small organic molecule mixture heterojunction and preparation method of solar cell |
CN103460404A (en) * | 2011-02-28 | 2013-12-18 | 佛罗里达大学研究基金会有限公司 | Up-conversion devices with a broad band absorber |
CN102280589A (en) * | 2011-09-08 | 2011-12-14 | 深圳市创益科技发展有限公司 | Organic solar cell and preparation method thereof |
JP2013179158A (en) * | 2012-02-28 | 2013-09-09 | Japan Advanced Institute Of Science & Technology Hokuriku | Method for producing photoelectric conversion device, photoelectric conversion device and production device of photoelectric conversion device |
KR20130131747A (en) * | 2012-05-24 | 2013-12-04 | 서울대학교산학협력단 | Organic small molecular solar cells with a double interfacial layer |
CN203434207U (en) * | 2013-02-01 | 2014-02-12 | 兰州大学 | Hybrid planar-bulk heterojunction photosensitive organic field-effect transistor |
CN203932118U (en) * | 2014-03-12 | 2014-11-05 | 兰州大学 | A kind of infrared organic photosensitive diode based on exciplex photosensitive layer |
Non-Patent Citations (1)
Title |
---|
于军胜,钟建,林慧: "《太阳能光伏器件技术》" * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110649083A (en) * | 2019-10-10 | 2020-01-03 | 苏州英凡瑞得光电技术有限公司 | Up-conversion device for realizing conversion from near infrared light to visible light and preparation method thereof |
CN110649083B (en) * | 2019-10-10 | 2022-02-08 | 苏州英凡瑞得光电技术有限公司 | Up-conversion device for realizing conversion from near infrared light to visible light and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9099652B2 (en) | Organic electronic devices with multiple solution-processed layers | |
CN108511616B (en) | Preparation method of perovskite film layer and perovskite light-emitting diode device | |
CN108767125B (en) | A QD-3D-QD light-emitting layer perovskite light-emitting diode and preparation method thereof | |
CN102024906B (en) | An organic solar cell structure based on oxide-doped organic materials | |
TW201345013A (en) | Metal oxide charge transport material doped with organic molecules | |
JP5682571B2 (en) | Organic photoelectric conversion element | |
CN108630825B (en) | A kind of perovskite material and preparation method and device | |
Aslan et al. | Sol–gel derived In2S3 buffer layers for inverted organic photovoltaic cells | |
CN106025070A (en) | Photomultiplier organic light detector with spectral selectivity and preparation method of photomultiplier organic light detector | |
CN105118921B (en) | An organic photodetector with high external quantum efficiency and wide spectral response and its preparation method | |
JP2011524463A (en) | Conductive structure for light transmissive devices | |
CN106384769B (en) | Quantum dot light-emitting diode and preparation method thereof | |
CN108336244A (en) | A kind of perovskite light emitting diode and preparation method thereof based on modifying interface | |
Zanoni et al. | ITO Top‐Electrodes via Industrial‐Scale PLD for Efficient Buffer‐Layer‐Free Semitransparent Perovskite Solar Cells | |
CN108864414A (en) | Embellishing cathode interface material, solar battery and preparation method thereof and application | |
CN108461590A (en) | A kind of light emitting diode with quantum dots device and preparation method thereof | |
CN106356457B (en) | A kind of perovskite photodetector accelerating electronic filter | |
CN110197860A (en) | Light emitting phototransistor and its preparation method and application is converted in one kind | |
CN106025078B (en) | A kind of planar heterojunction perovskite photovoltaic cell and preparation method thereof | |
CN108807683B (en) | Wide-spectral-response multiplication type organic photoelectric detector | |
CN113140678B (en) | Full-polymer photodetector with high detectivity and low dark current | |
CN101882664B (en) | Organic solar cells whose functional layer is a single layer of organic materials | |
CN111048672B (en) | Perovskite electroluminescence-based white light LED and preparation method thereof | |
CN105529345A (en) | An organic near-infrared upconverter with a double heterojunction as the photosensitive layer | |
CN109390491A (en) | Light emitting diode and the preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou, Zhejiang Applicant after: China Jiliang University Address before: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou, Zhejiang Applicant before: China Jiliang University |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160427 |
|
RJ01 | Rejection of invention patent application after publication |