CN105506008A - Preparation method for monoglyceride rich in omega-3 fatty acid - Google Patents
Preparation method for monoglyceride rich in omega-3 fatty acid Download PDFInfo
- Publication number
- CN105506008A CN105506008A CN201510874165.6A CN201510874165A CN105506008A CN 105506008 A CN105506008 A CN 105506008A CN 201510874165 A CN201510874165 A CN 201510874165A CN 105506008 A CN105506008 A CN 105506008A
- Authority
- CN
- China
- Prior art keywords
- omega
- rich
- fatty acid
- tegin
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 235000020660 omega-3 fatty acid Nutrition 0.000 title abstract description 43
- 229940012843 omega-3 fatty acid Drugs 0.000 title abstract description 40
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 title abstract description 30
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 title abstract description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 59
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims abstract description 48
- 238000000605 extraction Methods 0.000 claims abstract description 27
- 241000195493 Cryptophyta Species 0.000 claims abstract description 20
- 108090001060 Lipase Proteins 0.000 claims abstract description 19
- 239000004367 Lipase Substances 0.000 claims abstract description 19
- 102000004882 Lipase Human genes 0.000 claims abstract description 19
- 235000019421 lipase Nutrition 0.000 claims abstract description 19
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 239000012043 crude product Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000003960 organic solvent Substances 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000002390 rotary evaporation Methods 0.000 claims abstract description 5
- 239000000741 silica gel Substances 0.000 claims abstract description 5
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 5
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- 239000000194 fatty acid Substances 0.000 claims description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 9
- ZKQFHRVKCYFVCN-UHFFFAOYSA-N ethoxyethane;hexane Chemical compound CCOCC.CCCCCC ZKQFHRVKCYFVCN-UHFFFAOYSA-N 0.000 claims description 9
- 235000013305 food Nutrition 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 238000006136 alcoholysis reaction Methods 0.000 claims description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 238000010828 elution Methods 0.000 claims description 4
- 239000004519 grease Substances 0.000 claims description 4
- 238000000899 pressurised-fluid extraction Methods 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 claims 13
- 238000004587 chromatography analysis Methods 0.000 claims 2
- 238000004090 dissolution Methods 0.000 claims 1
- 125000005908 glyceryl ester group Chemical group 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000006555 catalytic reaction Methods 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 4
- 239000006014 omega-3 oil Substances 0.000 description 26
- 239000003921 oil Substances 0.000 description 25
- 235000019198 oils Nutrition 0.000 description 25
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 17
- 235000021323 fish oil Nutrition 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 150000002759 monoacylglycerols Chemical class 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 241000585705 Alicia <angiosperm> Species 0.000 description 2
- 108010084311 Novozyme 435 Proteins 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000008157 edible vegetable oil Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 241001501885 Isochrysis Species 0.000 description 1
- 241000224474 Nannochloropsis Species 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 241001474977 Palla Species 0.000 description 1
- 241001125046 Sardina pilchardus Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 235000004626 essential fatty acids Nutrition 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 235000013350 formula milk Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000021281 monounsaturated fatty acids Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000019512 sardine Nutrition 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6472—Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种富含ω-3脂肪酸单甘脂的制备方法。 The invention relates to a preparation method of monoglyceride rich in omega-3 fatty acid.
背景技术 Background technique
单甘脂(monoacylglycerols,MAGs)是一类具有疏水基团和亲水基团的非极性物质,其产量约占国内乳化剂总产量的50%。MAGs作为乳化剂,已广泛应用于食品、制药、化妆品等领域。开发富含ω-3脂肪酸的单甘脂作为乳化剂或添加剂应用到食品领域的研究是当前研发改性油脂领域的热门方向之一。众所周知,ω-3脂肪酸(如SDA(18:4n-3)、EPA(20:5n-3)和DHA(22:6n-3)是人体的必须脂肪酸,它们具有促进婴幼儿生长发育、增强人体免疫力、抗肿瘤、预防中风和痛风等方面的生物学功能。当前,单甘脂的生产技术主要是化学催化法和酶催化法。虽然化学催化法是目前主要生产具有饱和脂肪酸的单甘脂的方法,具有低成本和短时的优势,但高温下易导致油的氧化,进而产生副产物、色变等现象。由化学法生产单甘脂具有熔点高的缺点,直接影响了单甘脂的应用。酶催化制备富含ω-3脂肪酸的单甘脂具有高效、专一、反应条件温和、副产物少、重复利用酶等优点,将是应用于工业化生产的首选技术。欧美、日本等发达国家在油脂改性及其工业化应用的研究一直处于领先地位(CamilaA.Pallaetal,2014;Adityaetal,2014;LalitMohanNegietal,2014)。近年来,国外对开发富含ω-3脂肪酸的单甘脂的研究已进入到中试水平,如Alicia.R等(Alicia.Retal,2012)人利用诺维信435酶醇解鲱鱼肝脏的鱼油制备可达20-25%(wt%=60-75mol%)的2-单甘脂,其ω-3脂肪酸含量可达35.5%,主要用于开发功能性甘三脂替代婴幼儿奶脂。在Feltes(FeltesM.M.Cetal,2013)的综述论文中指出,利用鱼油开发富含ω-3脂肪酸的单甘脂和甘二脂应用于食品领域,具有广阔市场前景。随后,丹麦奥胡斯大学ZhengGuo团队(Angelaetal,2016)研究利用诺维信435酶催化沙丁鱼鱼油与甘油进行甘油解反应制备含31.7%(wt%)ω-3脂肪酸的单甘脂,成功放大到中试水平。而国内对该方面的研究暂处于空白。因此,研究开发富含ω-3脂肪酸的功能性单甘脂应用到食品、制药等领域,具有重要的意义。 Monoacylglycerols (MAGs) are a class of non-polar substances with hydrophobic groups and hydrophilic groups, and their production accounts for about 50% of the total production of emulsifiers in China. As emulsifiers, MAGs have been widely used in food, pharmaceutical, cosmetic and other fields. The development of monoglycerides rich in omega-3 fatty acids as emulsifiers or additives in the food field is one of the hot directions in the field of research and development of modified oils. As we all know, omega-3 fatty acids (such as SDA (18:4n-3), EPA (20:5n-3) and DHA (22:6n-3) are essential fatty acids for the human body. Biological functions in immunity, anti-tumor, prevention of stroke and gout, etc. At present, the production technology of monoglyceride is mainly chemical catalysis and enzyme catalysis. Although chemical catalysis is currently the main production of monoglyceride with saturated fatty acids The method has the advantages of low cost and short time, but it is easy to cause the oxidation of oil at high temperature, and then produce by-products, discoloration and other phenomena. The production of monoglyceride by chemical method has the disadvantage of high melting point, which directly affects the production of monoglyceride. The application of enzyme-catalyzed preparation of monoglyceride rich in omega-3 fatty acids has the advantages of high efficiency, specificity, mild reaction conditions, less by-products, and repeated use of enzymes. It will be the preferred technology for industrial production. Europe, America, Japan, etc. Developed countries have always been in the leading position in research on oil modification and its industrial application (CamilaA.Palla et al , 2014; Aditya et al , 2014; LalitMohanNegi et al , 2014). In recent years, foreign countries have developed monoglycerides rich in omega-3 fatty acids Lipid research has entered the pilot test level, such as Alicia.R et al. (Alicia.R etal , 2012) who used Novozymes 435 enzyme alcoholysis herring liver fish oil preparation can reach 20-25% (wt% = 60-75mol %) of 2-monoglyceride, its omega-3 fatty acid content can reach 35.5%, and it is mainly used to develop functional triglycerides to replace infant milk fat. In the review paper of Feltes (FeltesM.MC etal , 2013), it was pointed out , the use of fish oil to develop monoglycerides and diglycerides rich in omega-3 fatty acids can be applied in the food field, which has broad market prospects. Subsequently, ZhengGuo’s team at Aarhus University in Denmark (Angela et al , 2016) studied the use of Novozymes 435 enzyme Catalyzed sardine fish oil and glycerol for glycerolysis reaction to prepare monoglyceride containing 31.7% (wt%) omega-3 fatty acids, which was successfully scaled up to the pilot test level. However, domestic research on this aspect is currently blank. Therefore, research and development are rich in The functional monoglyceride of omega-3 fatty acid is applied to the fields of food and pharmacy, which is of great significance.
富含ω-3脂肪酸的可食用油主要是鱼油和海洋微藻藻油。近年来,水产养殖业消耗了全球83%的鱼油,人类直接食用鱼油仅仅占总量的6%。2015年6月,FAOGlobefish已公布了鱼油的价格为2400$/吨,比去年鱼油价格高了300$/吨;此外,今年的上半年,我国已进口25.3万吨鱼油,以满足国内市场需求。高价格的鱼油和依赖进口的因素直接制约了开发富含ω-3脂肪酸的功能性单甘脂。基于海洋食物链角度分析,海鱼富集ω-3脂肪酸主要来自富含ω-3脂肪酸的海洋微藻。在一定程度上,富含ω-3脂肪酸的藻油可替代鱼油开发功能性单甘脂是可行的;而且,2009年,欧盟委员会(文件:Decisions2009/777)已批准裂殖壶藻藻油可作为食品添加剂。因此,利用富含ω-3的藻油开发高营养价值的功能性单甘脂,可以解决该技术所面临油源问题。 Edible oils rich in omega-3 fatty acids are mainly fish oils and algae oils from marine microalgae. In recent years, the aquaculture industry has consumed 83% of the world's fish oil, and human direct consumption of fish oil only accounts for 6% of the total. In June 2015, FAOGlobefish announced that the price of fish oil was 2,400$/ton, which was 300$/ton higher than the price of fish oil last year; in addition, in the first half of this year, my country has imported 253,000 tons of fish oil to meet the domestic market demand. The high price of fish oil and dependence on imports directly restrict the development of functional monoglycerides rich in omega-3 fatty acids. Based on the analysis of the marine food chain, the omega-3 fatty acids enriched in marine fish mainly come from marine microalgae rich in omega-3 fatty acids. To a certain extent, it is feasible to develop functional monoglycerides with algal oil rich in omega-3 fatty acids as an alternative to fish oil; As a food additive. Therefore, the use of omega-3-rich algae oil to develop functional monoglycerides with high nutritional value can solve the oil source problem faced by this technology.
发达国家开发功能性单甘脂还面临如何筛选具有专一性强、催化效率高和绿色环保的脂肪酶。目前常用的商用脂肪酶有非选择性的固定化脂肪酶(如,Novozyme435,CALA等)和1,3选择性的酶(如TLIM,RMIM,AK-20等)。正如上述所述,利用Novozyme435等酶催化制备的单甘脂,其ω-3脂肪酸总含量相等或稍高于原料鱼油的总ω-3脂肪酸含量。寻找具有水解食用油的饱和脂肪酸和单不饱和脂肪酸的脂肪酶,是当前开发富含ω-3脂肪酶的单甘脂技术的难题。2011年,丹麦奥胡斯大学的XuebingXu教授研究CALA脂肪酶的生物印记发现:在乙醇条件,该酶能水解油脂的8个碳链和油酸;但他们未进一步利用该酶醇解鱼油开发功能性单甘脂。 The development of functional monoglycerides in developed countries is still faced with how to screen lipases with strong specificity, high catalytic efficiency and environmental protection. Currently commonly used commercial lipases include non-selective immobilized lipases (such as Novozyme 435, CALA, etc.) and 1,3 selective enzymes (such as TLIM, RMIM, AK-20, etc.). As mentioned above, the total content of omega-3 fatty acids in monoglycerides prepared by enzymes such as Novozyme 435 is equal to or slightly higher than that of raw fish oil. Finding a lipase capable of hydrolyzing saturated fatty acids and monounsaturated fatty acids of edible oils is currently a difficult problem in the development of omega-3 lipase-rich monoglyceride technology. In 2011, Professor Xuebing Xu from Aarhus University in Denmark studied the biomarker of CALA lipase and found that the enzyme could hydrolyze 8 carbon chains and oleic acid of oil under ethanol conditions; however, they did not further use the enzyme to alcoholyze fish oil to develop its function Monoglycerides.
发明内容 Contents of the invention
本发明的目的就是以富含ω-3脂肪酸的藻油为原料,利用绿色环保、高效的酶催化法制备富含ω-3脂肪酸的单甘脂。 The purpose of the present invention is to prepare the monoglyceride rich in omega-3 fatty acid by using the algae oil rich in omega-3 fatty acid as raw material and utilizing the environment-friendly and high-efficiency enzymatic catalysis method.
为实现本发明的目的而采用的技术方案和步骤是: The technical scheme and steps adopted for realizing the purpose of the present invention are:
1、藻油提取。称取一定量的微藻藻粉,以有机溶剂作为萃取剂,利用加速溶剂萃取仪萃取藻油,萃取温度为40~125℃,萃取时间25~120min,萃取次数为2~5次。萃取结束后将萃取液置于真空旋转蒸发器将有机溶解蒸发,蒸发后所得剩余物即为藻油。 1. Algae oil extraction. Weigh a certain amount of microalgae powder, use an organic solvent as an extraction agent, and use an accelerated solvent extraction device to extract algae oil. The extraction temperature is 40-125°C, the extraction time is 25-120 minutes, and the extraction times are 2-5 times. After the extraction is completed, the extract is placed in a vacuum rotary evaporator to evaporate the organic solution, and the residue obtained after evaporation is algae oil.
本发明所述的有机溶剂是指氯仿、正己烷、乙醇或甲醇。 The organic solvent of the present invention refers to chloroform, n-hexane, ethanol or methanol.
本发明所述的微藻藻粉中加入有机溶剂,其比例为微藻藻粉(g):有机溶剂(mL)=1:15~35。 An organic solvent is added to the microalgae powder of the present invention, and the ratio is microalgae powder (g):organic solvent (mL)=1:15-35.
2、三酰甘油分离。色谱柱加入己烷,同时加入80g硅胶,然后将步骤1得到的藻油加入到色谱柱中; 2. Triacylglycerol separation. The chromatographic column is added with hexane, and 80g of silica gel is added simultaneously, and then the algal oil obtained in step 1 is added to the chromatographic column;
用500mL正己烷-乙醚洗脱色谱柱分离并去除非极性组分的油脂,其中正己烷:乙醚的体积比为90:5; Use 500mL n-hexane-ether to elute the chromatographic column to separate and remove the grease of non-polar components, wherein the volume ratio of n-hexane:ether is 90:5;
用1000mL正己烷-乙醚洗脱色谱柱分离获得富含ω-3脂肪酸的三酰甘油,其中正己烷:乙醚的体积比为90:10; Use 1000mL n-hexane-ether to elute the chromatographic column to separate and obtain triacylglycerol rich in omega-3 fatty acids, wherein the volume ratio of n-hexane:ether is 90:10;
3、富含ω-3脂肪酸的单甘脂的合成。 3. Synthesis of monoglycerides rich in omega-3 fatty acids.
将上述提取的三酰甘油与乙醇混合,同时加入固定化脂肪酶A-CALA和少许水进行醇解反应得到富含ω-3脂肪酸的单甘脂粗品。醇解反应条件为:三酰甘油和乙醇的质量比1:1~4、反应温度25~55℃、固定化脂肪酶A-CALA的用量占单甘脂质量的5~12.5%、加水量占单甘脂和乙醇的总质量的2~9%、反应时间为10h~48h,搅拌速度500r/min。 The above-mentioned extracted triacylglycerol is mixed with ethanol, and at the same time, immobilized lipase A-CALA and a little water are added to carry out alcoholysis reaction to obtain crude monoglyceride rich in omega-3 fatty acid. The alcoholysis reaction conditions are: the mass ratio of triacylglycerol and ethanol is 1:1~4, the reaction temperature is 25~55°C, the amount of immobilized lipase A-CALA accounts for 5~12.5% of the mass of monoglyceride, and the amount of water added accounts for The total mass of monoglyceride and ethanol is 2-9%, the reaction time is 10h-48h, and the stirring speed is 500r/min.
所述的固定化脂肪酶A-CALA购自丹麦诺维信公司。 The immobilized lipase A-CALA was purchased from Novozymes, Denmark.
4、富含ω-3脂肪酸的单甘脂的纯化。 4. Purification of monoglycerides rich in omega-3 fatty acids.
将步骤3得到的富含ω-3脂肪酸的反应产物单甘脂粗品与食品级正己烷按照1:9的体积份比例混合,经3次萃取,收集乙醇相,旋转蒸发去除乙醇和水后获得纯化后的富含ω-3脂肪酸的单甘脂。 The reaction product monoglyceride rich in omega-3 fatty acids obtained in step 3 is mixed with food-grade n-hexane according to the volume ratio of 1:9, after three extractions, the ethanol phase is collected, and the ethanol and water are removed by rotary evaporation to obtain Purified monoglycerides rich in omega-3 fatty acids.
采用本发明专利所述的工艺条件,酶催化反应后单甘脂中ω-3脂肪酸的总含量可达90%以上。 Using the process conditions described in the patent of the present invention, the total content of omega-3 fatty acids in monoglyceride can reach more than 90% after the enzyme-catalyzed reaction.
具体实施方式 detailed description
实施例1 Example 1
1、提取藻油。称取10g微绿球藻藻粉,加350mL正己烷:乙醇(1:2,v/v)的混合液,利用加速溶剂萃取仪提取藻油,提取条件为:温度75℃、萃取时间50min,重复萃取3次。萃取结束后将提取液置于真空旋转蒸发器将正己烷、乙醇蒸发,蒸发后所得剩余物即为藻油。 1. Extract algae oil. Weigh 10g of Nannochloropsis algae powder, add 350mL of n-hexane:ethanol (1:2, v/v) mixture, and extract the algal oil with an accelerated solvent extraction apparatus. The extraction conditions are: temperature 75°C, extraction time 50min, Repeat the extraction 3 times. After the extraction is completed, the extract is placed in a vacuum rotary evaporator to evaporate n-hexane and ethanol, and the residue obtained after evaporation is algae oil.
2、不同成分藻油的分离。色谱柱加入己烷,同时加入80g硅胶,然后将步骤1得到的藻油加入到色谱柱中; 2. Separation of different components of algae oil. The chromatographic column is added with hexane, and 80g of silica gel is added simultaneously, and then the algal oil obtained in step 1 is added to the chromatographic column;
用500mL正己烷-乙醚洗脱色谱柱分离去除非极性组分的油脂,其中正己烷:乙醚的体积比为90:5; Use 500mL n-hexane-ether to elute the chromatographic column to separate and remove the grease of non-polar components, wherein the volume ratio of n-hexane:ether is 90:5;
用1000mL正己烷-乙醚洗脱色谱柱分离获得三酰甘油,其中正己烷:乙醚的体积比为90:10。 Triacylglycerol was obtained by elution of the chromatographic column with 1000 mL of n-hexane-ether, wherein the volume ratio of n-hexane:ether was 90:10.
3、富含ω-3脂肪酸的单甘脂的合成。利用上述提取的藻油的三酰甘油与乙醇混合,同时加入固定化脂肪酶A-CALA和少许水进行醇解反应制备富含ω-3脂肪酸的单甘脂,反应条件为:三酰甘油和乙醇的质量比1:3、反应温度35℃、固定化脂肪酶A-CALA的用量占三酰甘油质量的12.5%、加水量占单甘脂和乙醇的总质量的6%、反应时间46h,搅拌速度500r/min条件下反应制备富含ω-3脂肪酸的单甘脂粗品。 3. Synthesis of monoglycerides rich in omega-3 fatty acids. Utilize the triacylglycerol of the algae oil extracted above to mix with ethanol, add immobilized lipase A-CALA and a little water at the same time to carry out alcoholysis reaction and prepare the monoglyceride rich in omega-3 fatty acid, the reaction condition is: triacylglycerol and The mass ratio of ethanol is 1:3, the reaction temperature is 35°C, the amount of immobilized lipase A-CALA accounts for 12.5% of the mass of triacylglycerol, the amount of water added accounts for 6% of the total mass of monoglyceride and ethanol, and the reaction time is 46h. The crude product of monoglyceride rich in omega-3 fatty acid was prepared by reaction at a stirring speed of 500 r/min.
所述的脂肪酶(固定化脂肪酶A-CALA)购自丹麦诺维信公司。 The lipase (immobilized lipase A-CALA) was purchased from Novozymes, Denmark.
4、富含ω-3脂肪酸的单甘脂的纯化。 4. Purification of monoglycerides rich in omega-3 fatty acids.
将上述反应产物与食品级正己烷(1:9,v/v)混合,经3次萃取,每次萃取时间50min,收集乙醇相,旋转蒸发去除乙醇和水后获得富含ω-3脂肪酸的单甘脂。 The above reaction product was mixed with food-grade n-hexane (1:9, v/v), extracted three times, each extraction time was 50 minutes, and the ethanol phase was collected, and the ethanol and water were removed by rotary evaporation to obtain omega-3 fatty acid-rich monoglycerides.
采用本发明专利所述的工艺条件,酶催化反应后单甘脂中ω-3脂肪酸的总含量可达92%。 Using the process conditions described in the patent of the present invention, the total content of omega-3 fatty acids in monoglyceride can reach 92% after the enzyme-catalyzed reaction.
实施例2 Example 2
1、提取藻油。称取10g等鞭金藻藻粉,加200mL正己烷:甲醇(1:2,v/v)的混合液,利用加速溶剂萃取仪提取藻油,萃取条件为:温度为75℃,萃取时间为45min,重复提取5次。提取结束后将提取液置于真空旋转蒸发器将有机溶解蒸发,蒸发后所得剩余物即为藻油。 1. Extract algae oil. Weigh 10g of Isochrysis algae powder, add 200mL of n-hexane:methanol (1:2, v/v) mixture, and extract the algal oil with an accelerated solvent extraction apparatus. The extraction conditions are: temperature is 75°C, extraction time is 45min, Repeat the extraction 5 times. After the extraction is completed, the extract is placed in a vacuum rotary evaporator to evaporate the organic solution, and the residue obtained after evaporation is algae oil.
2、不同成分藻油的分离。色谱柱加入己烷,同时加入80g硅胶,然后将步骤1得到的藻油加入到色谱柱中; 2. Separation of different components of algae oil. The chromatographic column is added with hexane, and 80g of silica gel is added simultaneously, and then the algal oil obtained in step 1 is added to the chromatographic column;
用500mL正己烷-乙醚洗脱色谱柱去除非极性组分的油脂,其中正己烷:乙醚的体积比为90:5; Use 500mL n-hexane-ether to elute the chromatographic column to remove the grease of non-polar components, wherein the volume ratio of n-hexane:ether is 90:5;
用1000mL正己烷-乙醚洗脱色谱柱分离获得三酰甘油粗品,其中正己烷:乙醚的体积比为90:10。 The crude product of triacylglycerol was obtained by elution of the chromatographic column with 1000 mL of n-hexane-ether, wherein the volume ratio of n-hexane:ether was 90:10.
3、富含ω-3脂肪酸的三酰甘油粗品的合成。利用上述萃取的藻油的三酰甘油与乙醇进行醇解反应制备富含ω-3脂肪酸的单甘脂粗品;反应条件为:三酰甘油和乙醇的质量比为1:4、反应温度为30℃、固定化脂肪酶A-CALA的用量占三酰甘油质量的12.5%、加水量占单甘脂和乙醇的总质量的5%、反应时间为40h,搅拌速度500r/min条件下反应制备得到富含ω-3脂肪酸的单甘脂。 3. Synthesis of crude triacylglycerol rich in omega-3 fatty acids. Utilize the triacylglycerol and ethanol of the algal oil extracted above to carry out the alcoholysis reaction to prepare the monoglyceride crude product rich in omega-3 fatty acids; the reaction conditions are: the mass ratio of triacylglycerol and ethanol is 1:4, and the reaction temperature is 30 ℃, the amount of immobilized lipase A-CALA accounts for 12.5% of the mass of triacylglycerol, the amount of water added accounts for 5% of the total mass of monoglyceride and ethanol, the reaction time is 40h, and the stirring speed is 500r/min. Monoglyceride rich in omega-3 fatty acids.
所述的脂肪酶(固定化脂肪酶A-CALA)购自丹麦诺维信公司。 The lipase (immobilized lipase A-CALA) was purchased from Novozymes, Denmark.
4、富含ω-3脂肪酸的单甘脂的纯化。 4. Purification of monoglycerides rich in omega-3 fatty acids.
将上述反应产物与食品级正己烷(1:9,v/v)提取3次,收集乙醇相,每次萃取时间50min,收集乙醇相,旋转蒸发去除乙醇和水后获得富含ω-3脂肪酸的单甘脂。 Extract the above reaction product with food-grade n-hexane (1:9, v/v) for 3 times, collect the ethanol phase, each extraction time is 50min, collect the ethanol phase, and remove ethanol and water by rotary evaporation to obtain fatty acids rich in omega-3 of monoglycerides.
采用本发明专利所述的工艺条件,酶催化反应后单甘脂中ω-3脂肪酸的总含量可达90%。 Using the process conditions described in the patent of the present invention, the total content of omega-3 fatty acids in monoglyceride can reach 90% after the enzyme-catalyzed reaction.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510874165.6A CN105506008A (en) | 2015-12-03 | 2015-12-03 | Preparation method for monoglyceride rich in omega-3 fatty acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510874165.6A CN105506008A (en) | 2015-12-03 | 2015-12-03 | Preparation method for monoglyceride rich in omega-3 fatty acid |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105506008A true CN105506008A (en) | 2016-04-20 |
Family
ID=55714299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510874165.6A Pending CN105506008A (en) | 2015-12-03 | 2015-12-03 | Preparation method for monoglyceride rich in omega-3 fatty acid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105506008A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108486177A (en) * | 2018-02-12 | 2018-09-04 | 广州富诺健康科技股份有限公司 | A method of it is prepared using algae oil and is rich in omega-fatty acid phosphatide |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046943A2 (en) * | 2004-10-22 | 2006-05-04 | Martek Biosciences Corporation | Methods for producing lipids by liberation from biomass |
CN102046801A (en) * | 2008-04-07 | 2011-05-04 | 诺维信公司 | Method for producing monounsaturated glycerides |
US20130084272A1 (en) * | 2011-09-29 | 2013-04-04 | Philippe Perrin | Compositions, kits and methods for nutritional supplementation with twelve carbon chain fatty acids and twelve carbon chain acylglycerols |
CN105189769A (en) * | 2013-03-07 | 2015-12-23 | 阿尔吉斯有限责任公司 | Production of omega-3 fatty acids from pythium species |
-
2015
- 2015-12-03 CN CN201510874165.6A patent/CN105506008A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046943A2 (en) * | 2004-10-22 | 2006-05-04 | Martek Biosciences Corporation | Methods for producing lipids by liberation from biomass |
CN102046801A (en) * | 2008-04-07 | 2011-05-04 | 诺维信公司 | Method for producing monounsaturated glycerides |
US20130084272A1 (en) * | 2011-09-29 | 2013-04-04 | Philippe Perrin | Compositions, kits and methods for nutritional supplementation with twelve carbon chain fatty acids and twelve carbon chain acylglycerols |
CN105189769A (en) * | 2013-03-07 | 2015-12-23 | 阿尔吉斯有限责任公司 | Production of omega-3 fatty acids from pythium species |
Non-Patent Citations (1)
Title |
---|
李秀波等: "五种微绿球藻产油和产多不饱和脂肪酸的研究", 《水生生物学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108486177A (en) * | 2018-02-12 | 2018-09-04 | 广州富诺健康科技股份有限公司 | A method of it is prepared using algae oil and is rich in omega-fatty acid phosphatide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7213184B2 (en) | Enzymatic enrichment of n-3 fatty acids in the form of glycerides | |
JP5111363B2 (en) | Method for producing highly unsaturated fatty acid concentrated oil | |
JP5204776B2 (en) | Method for producing EPA concentrated oil and DHA concentrated oil | |
CN111088296B (en) | Method for enriching n-3 polyunsaturated fatty acid glyceride in grease | |
KR100538480B1 (en) | Process for the prodcution of glycerides with lipases | |
CN104186705B (en) | Method based on enzymatic acidolysis palmitic acid three Lipase absobed structured lipid | |
Yan et al. | Enzymatic enrichment of polyunsaturated fatty acids using novel lipase preparations modified by combination of immobilization and fish oil treatment | |
EP2147088A1 (en) | A polyunsaturated fatty acid (pufa) enriched marine oil comprising eicosapentaenoic acid (epa) and docosahexaenoic acid (dha), and a process of production thereof | |
CN105821089A (en) | Method for enzymatically synthesizing medium-long chain structure triglyceride | |
CN112280810A (en) | Preparation method of medium-long chain triglyceride rich in polyunsaturated fatty acid | |
CN103436563B (en) | The method preparing the glyceride type fish oil rich in n-3 polyunsaturated fatty acid | |
Chen et al. | Synthesis of the structured lipid 1, 3-dioleoyl-2-palmitoylglycerol from palm oil | |
WO2012118173A1 (en) | Method of producing oil/fat comprising highly-unsaturated fatty acids by means of lipase | |
CN105296556A (en) | Method for preparing omega-3 fatty acid-rich phospholipid by using algae oil | |
WO2020050303A1 (en) | Production method for highly unsaturated fatty acid-containing glyceride using lipase hydrolysis reaction | |
CN106086098A (en) | The method improving enzyme process esterification enrichment fish oil n 3 fatty acid with ionic liquid | |
CN108486177A (en) | A method of it is prepared using algae oil and is rich in omega-fatty acid phosphatide | |
CN112980898B (en) | Method for concentrating DHA in schizochytrium limacinum grease | |
US20220119852A1 (en) | METHOD FOR IMPROVING n-3 POLYUNSATURATED FATTY ACIDS ENRICHMENT EFFICIENCY IN GLYCERIDE | |
CN105506008A (en) | Preparation method for monoglyceride rich in omega-3 fatty acid | |
CN111838676A (en) | Medium-long chain fatty acid grease rich in 1, 3-dilaurate-2-palmitic acid triglyceride and preparation and application thereof | |
CN106124665B (en) | A method of sn-2 fatty acid compositions in measurement sweet three ester of polyunsaturated fatty acid | |
CN115651938A (en) | Method for producing high EPA ethyl ester and high DHA glyceride by two-step enzymatic method | |
CN105296555A (en) | Method for preparing structure glyceride by adopting two-step lipase-catalyzed method | |
Kim et al. | Production of Omega-3 fatty acid ethyl esters from menhaden oil using Proteus vulgaris lipase-mediated one-step transesterification and urea complexation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160420 |
|
WD01 | Invention patent application deemed withdrawn after publication |