CN105505383A - A kind of synthesis method of fluorescent copper nanocluster - Google Patents
A kind of synthesis method of fluorescent copper nanocluster Download PDFInfo
- Publication number
- CN105505383A CN105505383A CN201610031586.7A CN201610031586A CN105505383A CN 105505383 A CN105505383 A CN 105505383A CN 201610031586 A CN201610031586 A CN 201610031586A CN 105505383 A CN105505383 A CN 105505383A
- Authority
- CN
- China
- Prior art keywords
- reducing agent
- glucose
- ascorbic acid
- sodium borohydride
- fluorescent copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/58—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种荧光铜纳米簇的合成方法,属于生物化学技术领域。The invention relates to a method for synthesizing fluorescent copper nanoclusters, belonging to the technical field of biochemistry.
背景技术Background technique
近年来,包含几个到几十个金属原子的超小荧光金属纳米簇,将原子和大尺寸的纳米粒子连接起来,由于其依赖于尺寸独特的物理和化学性质,引起广泛关注。由于金属纳米簇的尺寸类似于电子的费米波长,其呈现出离散的能级以及类似于分子的性质,例如:尺寸可调的电子过渡态和强烈的荧光性质。金属纳米簇被认为是新型的、潜在的和实用的纳米材料,在许多领域具有实际的应用,例如:细胞成像、离子传感和催化。与传统的荧光量子点相比,金属纳米簇有许多优越的性质,例如:低毒、超小尺寸、良好的生物相容性和多功能的表面化学性质使其在生物学领域得到越来越多的关注。In recent years, ultrasmall fluorescent metal nanoclusters containing a few to tens of metal atoms, linking atoms and large-sized nanoparticles, have attracted extensive attention due to their size-dependent unique physical and chemical properties. Since the size of metal nanoclusters is similar to the Fermi wavelength of electrons, it exhibits discrete energy levels and molecular-like properties, such as size-tunable electronic transition states and strong fluorescence properties. Metal nanoclusters are considered as novel, potential, and practical nanomaterials with practical applications in many fields, such as: cell imaging, ion sensing, and catalysis. Compared with traditional fluorescent quantum dots, metal nanoclusters have many superior properties, such as: low toxicity, ultra-small size, good biocompatibility and multifunctional surface chemical properties, which make them more and more popular in the field of biology. Much attention.
在过去的十几年中,荧光金属纳米簇的广泛研究主要集中在合成荧光Au、Ag和Pt纳米簇,应用各种类型的模板,例如:多肽、蛋白质、DNA、聚合物、树枝状大分子聚合物和生物硫醇小分子。但是,Au、Ag和Pt是贵金属,因此,Au、Ag和Pt纳米簇的合成是非常昂贵的。众所周知,非贵金属元素Cu在地球上的含量丰富,在日常生活中更是廉价易得。铜纳米簇作为一种潜在的纳米材料,能被应用在催化、传感、细胞标记和细胞成像等多个研究领域。然而,由于合成超小尺寸的铜纳米簇是非常困难的,即使合成出的铜纳米簇在空气中也容易被氧化,制备超小尺寸和高稳定性的铜纳米簇仍然是目前的一个重大挑战,因此,与Au和Ag纳米簇的合成方法相比,铜纳米簇的合成仍处于一个初步阶段。In the past ten years, extensive research on fluorescent metal nanoclusters has mainly focused on the synthesis of fluorescent Au, Ag, and Pt nanoclusters, applying various types of templates, such as: peptides, proteins, DNA, polymers, dendrimers Polymers and biothiol small molecules. However, Au, Ag, and Pt are noble metals, and thus, the synthesis of Au, Ag, and Pt nanoclusters is very expensive. As we all know, Cu, a non-precious metal element, is abundant on the earth, and it is cheap and easy to get in daily life. As a potential nanomaterial, copper nanoclusters can be applied in many research fields such as catalysis, sensing, cell labeling and cell imaging. However, since the synthesis of ultra-small sized copper nanoclusters is very difficult, and even the synthesized copper nanoclusters are easily oxidized in air, the preparation of ultra-small sized and highly stable copper nanoclusters is still a major challenge at present. , therefore, the synthesis of Cu nanoclusters is still at a preliminary stage compared with the synthetic methods of Au and Ag nanoclusters.
发明内容Contents of the invention
本发明通过加入新的还原剂体系,合成出具有发射荧光明亮、水溶性好、稳定性高、生物相容性好和毒性低的荧光铜纳米簇。The invention synthesizes fluorescent copper nano-clusters with bright emission fluorescence, good water solubility, high stability, good biocompatibility and low toxicity by adding a new reducing agent system.
本发明提供了一种荧光铜纳米簇的合成方法,所述合成方法为将含有Cu2+溶液与牛血清蛋白溶液混匀后,再加入还原剂,调节pH至10~13,静置反应6~30h;The invention provides a method for synthesizing fluorescent copper nanoclusters. The synthesis method is to mix the solution containing Cu 2+ with the bovine serum albumin solution, then add a reducing agent, adjust the pH to 10-13, and stand for 6 ~30h;
所述Cu2+、牛血清蛋白与还原剂的摩尔比为1:4:1~320;The molar ratio of Cu 2+ , bovine serum albumin and reducing agent is 1:4:1-320;
所述还原剂为盐酸羟胺、L-抗坏血酸、D-葡萄糖、硼氢化钠和柠檬酸钠中的至少一种。The reducing agent is at least one of hydroxylamine hydrochloride, L-ascorbic acid, D-glucose, sodium borohydride and sodium citrate.
本发明所述还原剂优选为盐酸羟胺、L-抗坏血酸、D-葡萄糖、硼氢化钠和柠檬酸钠中的一种。The reducing agent of the present invention is preferably one of hydroxylamine hydrochloride, L-ascorbic acid, D-glucose, sodium borohydride and sodium citrate.
本发明所述还原剂优选为盐酸羟胺,所述Cu2+、牛血清蛋白与盐酸羟胺的摩尔比进一步优选为1:4:40~240。The reducing agent in the present invention is preferably hydroxylamine hydrochloride, and the molar ratio of Cu 2+ , bovine serum albumin and hydroxylamine hydrochloride is more preferably 1:4:40-240.
本发明所述还原剂优选为L-抗坏血酸,所述Cu2+、牛血清蛋白与L-抗坏血酸的摩尔比进一步优选为1:4:2~60。The reducing agent in the present invention is preferably L-ascorbic acid, and the molar ratio of Cu 2+ , bovine serum albumin and L-ascorbic acid is more preferably 1:4:2-60.
本发明所述还原剂优选为D-葡萄糖,所述Cu2+、牛血清蛋白与D-葡萄糖的摩尔比进一步优选为1:4:20~160。The reducing agent in the present invention is preferably D-glucose, and the molar ratio of Cu 2+ , bovine serum albumin and D-glucose is more preferably 1:4:20-160.
本发明所述还原剂优选为硼氢化钠,所述Cu2+、牛血清蛋白与硼氢化钠的摩尔比进一步优选为1:4:4~8。The reducing agent in the present invention is preferably sodium borohydride, and the molar ratio of Cu 2+ , bovine serum albumin and sodium borohydride is more preferably 1:4:4-8.
本发明所述还原剂优选为柠檬酸钠,所述Cu2+、牛血清蛋白与柠檬酸钠的摩尔比进一步优选为1:4:40~320。The reducing agent in the present invention is preferably sodium citrate, and the molar ratio of Cu 2+ , bovine serum albumin and sodium citrate is more preferably 1:4:40-320.
本发明所述还原剂优选为硼氢化钠和柠檬酸钠共还原剂体系、或硼氢化钠和D-葡萄糖共还原剂体系、或硼氢化钠和L-抗坏血酸共还原剂体系、或D-葡萄糖和L-抗坏血酸共还原剂体系、或D-葡萄糖和盐酸羟胺共还原剂体系、或L-抗坏血酸和盐酸羟胺共还原剂体系。The reducing agent of the present invention is preferably a co-reductant system of sodium borohydride and sodium citrate, or a co-reductant system of sodium borohydride and D-glucose, or a co-reductant system of sodium borohydride and L-ascorbic acid, or D-glucose and L-ascorbic acid co-reductant system, or D-glucose and hydroxylamine hydrochloride co-reductant system, or L-ascorbic acid and hydroxylamine hydrochloride co-reductant system.
本发明所述还原剂优选为硼氢化钠和柠檬酸钠共还原剂体系,所述Cu2+、牛血清蛋白、硼氢化钠与柠檬酸钠的摩尔比进一步优选为1:4:1~8:20~160。The reducing agent in the present invention is preferably a co-reducing agent system of sodium borohydride and sodium citrate, and the molar ratio of Cu 2+ , bovine serum albumin, sodium borohydride and sodium citrate is more preferably 1:4:1-8 : 20-160.
本发明所述还原剂优选为硼氢化钠和D-葡萄糖共还原剂体系,所述Cu2+、牛血清蛋白、硼氢化钠与D-葡萄糖的摩尔比进一步优选为1:4:1~8:20~160。The reducing agent in the present invention is preferably a co-reducing agent system of sodium borohydride and D-glucose, and the molar ratio of Cu 2+ , bovine serum albumin, sodium borohydride and D-glucose is more preferably 1:4:1-8 : 20-160.
本发明所述还原剂优选为硼氢化钠和L-抗坏血酸共还原剂体系,所述Cu2+、牛血清蛋白、硼氢化钠与L-抗坏血酸的摩尔比进一步优选为1:4:1~8:20~160。The reducing agent of the present invention is preferably a co-reducing agent system of sodium borohydride and L-ascorbic acid, and the molar ratio of Cu 2+ , bovine serum albumin, sodium borohydride and L-ascorbic acid is more preferably 1:4:1-8 : 20-160.
本发明所述还原剂优选为D-葡萄糖和L-抗坏血酸共还原剂体系所述Cu2+、牛血清蛋白、D-葡萄糖与L-抗坏血酸的摩尔比进一步优选为1:4:40~320:10~140。The reducing agent in the present invention is preferably D-glucose and L-ascorbic acid co-reducing agent system. The molar ratio of Cu 2+ , bovine serum albumin, D-glucose and L-ascorbic acid is more preferably 1:4:40-320: 10~140.
本发明所述还原剂优选为D-葡萄糖和盐酸羟胺共还原剂体系,所述Cu2+、牛血清蛋白、D-葡萄糖与盐酸羟胺的摩尔比进一步优选为1:4:40~320:40~320。The reducing agent in the present invention is preferably a co-reducing agent system of D-glucose and hydroxylamine hydrochloride, and the molar ratio of Cu 2+ , bovine serum albumin, D-glucose and hydroxylamine hydrochloride is more preferably 1:4:40-320:40 ~320.
本发明所述还原剂优选为L-抗坏血酸和盐酸羟胺共还原剂体系,所述Cu2+、牛血清蛋白、L-抗坏血酸与盐酸羟胺的摩尔比进一步优选为1:4:10~140:40~320。The reducing agent in the present invention is preferably a co-reducing agent system of L-ascorbic acid and hydroxylamine hydrochloride, and the molar ratio of Cu 2+ , bovine serum albumin, L-ascorbic acid and hydroxylamine hydrochloride is more preferably 1:4:10-140:40 ~320.
本发明合成的荧光铜纳米簇具有发射荧光明亮、尺寸小、稳定性高和水溶性好等优点。The fluorescent copper nano-cluster synthesized by the invention has the advantages of bright emission of fluorescence, small size, high stability, good water solubility and the like.
附图说明Description of drawings
本发明附图13幅,13 pieces of accompanying drawings of the present invention,
图1为实施例1~6不同浓度的盐酸羟胺对合成荧光铜纳米簇荧光强度的影响;Fig. 1 is the influence of the hydroxylamine hydrochloride of different concentrations of embodiment 1~6 on the fluorescence intensity of synthetic fluorescent copper nanocluster;
图2为实施例7~13不同浓度的L-抗坏血酸对合成荧光铜纳米簇荧光强度的影响;Fig. 2 is the influence of the L-ascorbic acid of embodiment 7~13 different concentrations on the fluorescence intensity of synthetic fluorescent copper nanocluster;
图3为实施例14~21不同浓度的D-葡萄糖对合成荧光铜纳米簇荧光强度的影响;Fig. 3 is the influence of the D-glucose of different concentrations of embodiment 14~21 on the fluorescence intensity of synthetic fluorescent copper nanocluster;
图4为实施例22~26不同浓度的硼氢化钠对合成荧光铜纳米簇荧光强度的影响;Fig. 4 is the influence of the sodium borohydride of different concentrations of embodiment 22~26 on the fluorescence intensity of synthetic fluorescent copper nanocluster;
图5为实施例43~50不同浓度的硼氢化钠和D-葡萄糖共还原剂体系对合成荧光铜纳米簇荧光强度的影响;Fig. 5 is the effect of sodium borohydride and D-glucose co-reductant system of different concentrations in Examples 43 to 50 on the fluorescence intensity of the synthesized fluorescent copper nanoclusters;
图6为实施例51~58不同浓度的硼氢化钠和L-抗坏血酸共还原剂体系对合成荧光铜纳米簇荧光强度的影响;Fig. 6 is the effect of sodium borohydride and L-ascorbic acid co-reductant system of different concentrations in Examples 51 to 58 on the fluorescence intensity of the synthesized fluorescent copper nanoclusters;
图7为实施例59~66不同浓度的D-葡萄糖和L-抗坏血酸共还原剂体系对合成荧光铜纳米簇荧光强度的影响;Fig. 7 is the effect of the D-glucose and L-ascorbic acid co-reductant system of different concentrations in Examples 59 to 66 on the fluorescence intensity of the synthesized fluorescent copper nanoclusters;
图8为实施例67~74不同浓度的D-葡萄糖和盐酸羟胺共还原剂体系对合成荧光铜纳米簇荧光强度的影响;Fig. 8 is the effect of D-glucose and hydroxylamine hydrochloride co-reductant system of different concentrations in Examples 67 to 74 on the fluorescence intensity of the synthesized fluorescent copper nanoclusters;
图9为实施例75~82不同浓度的L-抗坏血酸和盐酸羟胺共还原剂体系对合成荧光铜纳米簇荧光强度的影响;Fig. 9 is the effect of the co-reductant system of L-ascorbic acid and hydroxylamine hydrochloride with different concentrations in Examples 75 to 82 on the fluorescence intensity of the synthesized fluorescent copper nanoclusters;
图10为实施例2合成的荧光铜纳米簇与牛血清蛋白的UV-vis吸收光谱图;Fig. 10 is the UV-vis absorption spectrogram of the fluorescent copper nanocluster and bovine serum albumin synthesized in embodiment 2;
图11为实施例2合成的荧光铜纳米簇的荧光激发和发射光谱图;Fig. 11 is the fluorescence excitation and emission spectrograms of the fluorescent copper nanocluster synthesized in Example 2;
图12a为实施例2合成的荧光铜纳米簇的透射电子显微镜成像;Figure 12a is a transmission electron microscope image of the fluorescent copper nanocluster synthesized in Example 2;
图12b为根据实施例2合成的荧光铜纳米簇的透射电子显微镜成像得到的70个粒子的粒径统计分布;Figure 12b is the particle size distribution of 70 particles obtained by transmission electron microscope imaging of fluorescent copper nanoclusters synthesized according to Example 2;
图13为4℃避光保存4个月的实施例2合成的荧光铜纳米簇与刚合成的实施例2的荧光铜纳米簇稳定性的光谱图。Fig. 13 is a spectrogram showing the stability of the fluorescent copper nanoclusters synthesized in Example 2 and the newly synthesized fluorescent copper nanoclusters of Example 2 stored at 4°C in the dark for 4 months.
具体实施方式detailed description
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。The following non-limiting examples can enable those skilled in the art to understand the present invention more fully, but do not limit the present invention in any way.
下述实施例中,如无特殊说明,所使用的实验方法均为常规方法,所用试剂等均可从化学或生物试剂公司购买。In the following examples, unless otherwise specified, the experimental methods used are conventional methods, and the reagents used can be purchased from chemical or biological reagent companies.
以下结合技术方案详细叙述本发明的具体实施方式。The specific implementation manner of the present invention will be described in detail below in conjunction with the technical solutions.
实施例1~6Embodiment 1~6
一种荧光铜纳米簇的合成方法,所述合成方法为将5mL浓度为5mM的Cu(NO3)2溶液与5mL浓度为20mg/mL的牛血清蛋白溶液25℃搅拌10min,再加入盐酸羟胺,用NaOH调节pH至12,25℃静置反应24h;A kind of synthetic method of fluorescent copper nanocluster, described synthetic method is that 5mL concentration is the Cu(NO 3 ) 2 solution of 5mM and 5mL concentration is the bovine serum albumin solution of 20mg/mL 25 ℃ and stirs 10min, then adds hydroxylamine hydrochloride, Adjust the pH to 12 with NaOH, and let it stand at 25°C for 24 hours;
所述实施例1~6的盐酸羟胺的体积与浓度数值见表1。See Table 1 for the volume and concentration values of hydroxylamine hydrochloride in Examples 1-6.
表1实施例1~6的盐酸羟胺的体积与浓度The volume and concentration of the hydroxylamine hydrochloride of table 1 embodiment 1~6
实施例7~13Examples 7-13
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为L-抗坏血酸;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is L-ascorbic acid;
所述实施例7~13的L-抗坏血酸的体积与浓度数值见表2。See Table 2 for the volume and concentration values of L-ascorbic acid in Examples 7-13.
表2实施例7~13的L-抗坏血酸的体积与浓度The volume and concentration of the L-ascorbic acid of table 2 embodiment 7~13
实施例14~21Examples 14-21
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为D-葡萄糖;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is D-glucose;
所述实施例14~21的D-葡萄糖的体积与浓度数值见表3。See Table 3 for the volume and concentration of D-glucose in Examples 14-21.
表3实施例14~21的D-葡萄糖的体积与浓度The volume and concentration of the D-glucose of table 3 embodiment 14~21
实施例22~26Examples 22-26
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为硼氢化钠;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is sodium borohydride;
所述实施例22~26的硼氢化钠的体积与浓度数值见表4。See Table 4 for the volume and concentration values of the sodium borohydride in Examples 22 to 26.
表4实施例22~26的硼氢化钠的体积与浓度The volume and concentration of the sodium borohydride of table 4 embodiment 22~26
实施例27~34Examples 27-34
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为柠檬酸钠;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is sodium citrate;
所述实施例27~34的柠檬酸钠的体积与浓度数值见表5。See Table 5 for the volume and concentration values of the sodium citrate in Examples 27-34.
表5实施例27~34的柠檬酸钠的体积与浓度The volume and concentration of the sodium citrate of table 5 embodiment 27~34
实施例35~42Examples 35-42
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为硼氢化钠与柠檬酸钠;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is sodium borohydride and sodium citrate;
所述实施例35~42的硼氢化钠与柠檬酸钠的体积与浓度数值见表6。See Table 6 for the volume and concentration values of sodium borohydride and sodium citrate in Examples 35-42.
表6实施例35~42的硼氢化钠与柠檬酸钠的体积与浓度The volume and concentration of sodium borohydride and sodium citrate of table 6 embodiment 35~42
实施例43~50Examples 43-50
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为硼氢化钠与D-葡萄糖;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is sodium borohydride and D-glucose;
所述实施例43~50的硼氢化钠与D-葡萄糖的体积与浓度数值见表7。See Table 7 for the volume and concentration values of sodium borohydride and D-glucose in Examples 43-50.
表7实施例43~50的硼氢化钠与D-葡萄糖的体积与浓度The volume and concentration of sodium borohydride and D-glucose of table 7 embodiment 43~50
实施例51~58Examples 51-58
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为硼氢化钠与L-抗坏血酸;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is sodium borohydride and L-ascorbic acid;
所述实施例51~58的硼氢化钠与L-抗坏血酸的体积与浓度数值见表8。See Table 8 for the volume and concentration values of sodium borohydride and L-ascorbic acid in Examples 51-58.
表8实施例51~58的硼氢化钠与L-抗坏血酸的体积与浓度The volume and the concentration of sodium borohydride and L-ascorbic acid of table 8 embodiment 51~58
实施例59~66Examples 59-66
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为D-葡萄糖与L-抗坏血酸;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is D-glucose and L-ascorbic acid;
所述实施例59~66的D-葡萄糖与L-抗坏血酸的体积与浓度数值见表9。The volumes and concentrations of D-glucose and L-ascorbic acid in Examples 59-66 are shown in Table 9.
表9实施例59~66的D-葡萄糖与L-抗坏血酸的体积与浓度The volume and concentration of D-glucose and L-ascorbic acid of table 9 embodiment 59~66
实施例67~74Examples 67-74
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为D-葡萄糖与盐酸羟胺;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is D-glucose and hydroxylamine hydrochloride;
所述实施例67~74的D-葡萄糖与盐酸羟胺的体积与浓度数值见表10。See Table 10 for the volume and concentration values of D-glucose and hydroxylamine hydrochloride in Examples 67-74.
表10实施例67~74的D-葡萄糖与盐酸羟胺的体积与浓度The volume and concentration of the D-glucose and hydroxylamine hydrochloride of table 10 embodiment 67~74
实施例75~82Examples 75-82
一种荧光铜纳米簇的合成方法,与实施例1的区别为:还原剂为L-抗坏血酸与盐酸羟胺;A method for synthesizing fluorescent copper nanoclusters, the difference from Example 1 is that the reducing agent is L-ascorbic acid and hydroxylamine hydrochloride;
所述实施例75~82的L-抗坏血酸与盐酸羟胺的体积与浓度数值见表11。See Table 11 for the volume and concentration values of L-ascorbic acid and hydroxylamine hydrochloride in Examples 75-82.
表11实施例75~82的L-抗坏血酸与盐酸羟胺的体积与浓度The volume and concentration of L-ascorbic acid and hydroxylamine hydrochloride of table 11 embodiment 75~82
效果例1Effect Example 1
将实施例2合成的荧光铜纳米簇与牛血清蛋白测试UV-vis吸收光谱图,结果见图10,a为实施例2合成的荧光铜纳米簇的UV-vis吸收光谱图,b为牛血清蛋白的UV-vis吸收光谱图,由图10得,与280nm处的牛血清蛋白明显的吸收峰相比,实施例2合成的荧光铜纳米簇在整个UV-vis光区没有明显的吸收峰,在280nm附近出现的微小驼峰是由于未反应的牛血清蛋白引起的。另外,在560~600nm没有明显的表面等离子体共振吸收带,证明没有大尺寸的铜纳米粒子生成。Test the UV-vis absorption spectrum of the fluorescent copper nanocluster synthesized in Example 2 and bovine serum albumin, the results are shown in Figure 10, a is the UV-vis absorption spectrum of the fluorescent copper nanocluster synthesized in Example 2, and b is bovine serum The UV-vis absorption spectrogram of protein is obtained by Fig. 10. Compared with the obvious absorption peak of bovine serum albumin at 280nm, the fluorescent copper nanocluster synthesized in Example 2 has no obvious absorption peak in the entire UV-vis light region, The tiny hump around 280nm is due to unreacted bovine serum albumin. In addition, there is no obvious surface plasmon resonance absorption band at 560-600nm, which proves that no large-sized copper nanoparticles are formed.
效果例2Effect example 2
将实施例2合成的荧光铜纳米簇测试荧光激发和发射光谱图,结果见图11,a为荧光激发光谱,b为荧光发射光谱,由图11得,Stokes位移为260nm,证明发射光谱可以有效避免来自激发光源的干扰。与有机染料相比,大尺度的Stokes位移可以有效避免激发光谱和发射光谱之间的交叉。The fluorescent copper nanoclusters synthesized in Example 2 are tested for fluorescence excitation and emission spectra, the results are shown in Figure 11, a is the fluorescence excitation spectrum, b is the fluorescence emission spectrum, obtained from Figure 11, the Stokes shift is 260nm, which proves that the emission spectrum can be effectively Avoid interference from excitation light sources. Compared with organic dyes, the large-scale Stokes shift can effectively avoid the crossover between excitation and emission spectra.
效果例3Effect example 3
将实施例2合成的荧光铜纳米簇利用透射电子显微镜来表征形貌和粒子尺寸,结果见图12a和图12b,由图12a和图12b得,实施例2合成的荧光铜纳米簇呈圆形且均匀分布,由于牛血清蛋白的空间保护作用,才没有观察到大尺寸的金属纳米粒子和聚集体的形成,对70个粒子的粒径分布做统计学分析计算得实施例2合成的荧光铜纳米簇的平均尺寸为2.47nm。The fluorescent copper nanoclusters synthesized in Example 2 were characterized by transmission electron microscopy for their morphology and particle size. The results are shown in Figure 12a and Figure 12b. From Figure 12a and Figure 12b, the fluorescent copper nanoclusters synthesized in Example 2 are circular And evenly distributed, due to the steric protection of bovine serum albumin, the formation of large-sized metal nanoparticles and aggregates was not observed, and the particle size distribution of 70 particles was statistically analyzed and calculated to obtain the fluorescent copper synthesized in Example 2 The average size of the nanoclusters is 2.47 nm.
效果例4Effect Example 4
4℃避光保存4个月的实施例2合成的荧光铜纳米簇与刚合成的实施例2的荧光铜纳米簇相比,结果见图13,a为刚合成的实施例2的荧光铜纳米簇的荧光发射光谱,b为4℃避光保存4个月的实施例2合成的荧光铜纳米簇的荧光发射光谱,由图13得,虽然,最大发射波长由615nm红移至649nm,但是,荧光强度无变化,证明实施例2合成的荧光铜纳米簇稳定性高。The fluorescent copper nanoclusters synthesized in Example 2 stored at 4°C in the dark for 4 months were compared with the newly synthesized fluorescent copper nanoclusters of Example 2. The results are shown in Figure 13, a is the newly synthesized fluorescent copper nanoclusters of Example 2. The fluorescence emission spectrum of the cluster, b is the fluorescence emission spectrum of the fluorescent copper nanocluster synthesized in Example 2 stored in the dark at 4°C for 4 months, as shown in Figure 13, although the maximum emission wavelength is red-shifted from 615nm to 649nm, but, There is no change in the fluorescence intensity, which proves that the fluorescent copper nanoclusters synthesized in Example 2 have high stability.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610031586.7A CN105505383A (en) | 2016-01-18 | 2016-01-18 | A kind of synthesis method of fluorescent copper nanocluster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610031586.7A CN105505383A (en) | 2016-01-18 | 2016-01-18 | A kind of synthesis method of fluorescent copper nanocluster |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105505383A true CN105505383A (en) | 2016-04-20 |
Family
ID=55713693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610031586.7A Pending CN105505383A (en) | 2016-01-18 | 2016-01-18 | A kind of synthesis method of fluorescent copper nanocluster |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105505383A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106270546A (en) * | 2016-08-12 | 2017-01-04 | 中国人民解放军第三军医大学军事预防医学院 | A kind of method of protein mediated synthetic modification cerium nano material |
CN107116232A (en) * | 2017-06-14 | 2017-09-01 | 江南大学 | A kind of synthetic method of pltine nano-cluster |
CN107159899A (en) * | 2017-04-26 | 2017-09-15 | 大连理工大学 | A kind of method that overstable copper nano-cluster is synthesized by protective agent of proline |
CN108115127A (en) * | 2017-11-29 | 2018-06-05 | 上海师范大学 | A kind of Nanometer Copper biomimetic material and preparation method and application |
CN110102775A (en) * | 2019-05-22 | 2019-08-09 | 西南大学 | A kind of copper nano-cluster synthesized using Cu-MOFs as precursor and synthetic method |
CN110560160A (en) * | 2019-09-18 | 2019-12-13 | 河南大学 | Preparation method and application of Phe @ CuNCs composite material |
CN111014716A (en) * | 2019-12-10 | 2020-04-17 | 大连理工大学 | A method for preparing AIE copper nanoclusters with cysteamine macroscale |
CN112098380A (en) * | 2020-08-21 | 2020-12-18 | 四川大学华西医院 | A biological analysis method based on the selective recognition reaction of quantum dots and its application |
WO2022032871A1 (en) * | 2020-08-11 | 2022-02-17 | 苏州大学 | Infrared ii region fluorogold nanocluster, preparation and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060234248A1 (en) * | 2003-12-29 | 2006-10-19 | Lei Sun | Composite organic inorganic nanoclusters |
CN102019431A (en) * | 2010-09-30 | 2011-04-20 | 大连理工大学 | Metallic nano cluster/silicon dioxide hollow nuclear shell structured nanoparticles and preparation method thereof |
CN102365127A (en) * | 2009-03-24 | 2012-02-29 | 巴斯夫欧洲公司 | Preparation of shaped metal particles and their uses |
CN103962150A (en) * | 2013-02-06 | 2014-08-06 | 中国中化股份有限公司 | Catalyst for preparation of chlorinated aromatic amine and preparation method thereof |
CN104745194A (en) * | 2015-03-24 | 2015-07-01 | 南昌大学 | Preparation method of quantum dot@copper nanocluster ratiometric fluorescent probe and its Cu2+ detection application |
CN104972135A (en) * | 2015-05-28 | 2015-10-14 | 天津师范大学 | Synthesis method for near-infrared fluorescent probe copper nano-cluster and application of synthesis method |
CN105087765A (en) * | 2014-05-16 | 2015-11-25 | 深圳先进技术研究院 | Polythymine template, fluorescent copper nano-cluster based on same, preparation method of fluorescent copper nano-cluster and ATP detection method |
-
2016
- 2016-01-18 CN CN201610031586.7A patent/CN105505383A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060234248A1 (en) * | 2003-12-29 | 2006-10-19 | Lei Sun | Composite organic inorganic nanoclusters |
CN102365127A (en) * | 2009-03-24 | 2012-02-29 | 巴斯夫欧洲公司 | Preparation of shaped metal particles and their uses |
CN102019431A (en) * | 2010-09-30 | 2011-04-20 | 大连理工大学 | Metallic nano cluster/silicon dioxide hollow nuclear shell structured nanoparticles and preparation method thereof |
CN103962150A (en) * | 2013-02-06 | 2014-08-06 | 中国中化股份有限公司 | Catalyst for preparation of chlorinated aromatic amine and preparation method thereof |
CN105087765A (en) * | 2014-05-16 | 2015-11-25 | 深圳先进技术研究院 | Polythymine template, fluorescent copper nano-cluster based on same, preparation method of fluorescent copper nano-cluster and ATP detection method |
CN104745194A (en) * | 2015-03-24 | 2015-07-01 | 南昌大学 | Preparation method of quantum dot@copper nanocluster ratiometric fluorescent probe and its Cu2+ detection application |
CN104972135A (en) * | 2015-05-28 | 2015-10-14 | 天津师范大学 | Synthesis method for near-infrared fluorescent probe copper nano-cluster and application of synthesis method |
Non-Patent Citations (1)
Title |
---|
C. WANG ET AL.,: ""Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis"", 《NANOSCALE》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106270546A (en) * | 2016-08-12 | 2017-01-04 | 中国人民解放军第三军医大学军事预防医学院 | A kind of method of protein mediated synthetic modification cerium nano material |
CN107159899A (en) * | 2017-04-26 | 2017-09-15 | 大连理工大学 | A kind of method that overstable copper nano-cluster is synthesized by protective agent of proline |
CN107116232A (en) * | 2017-06-14 | 2017-09-01 | 江南大学 | A kind of synthetic method of pltine nano-cluster |
CN108115127A (en) * | 2017-11-29 | 2018-06-05 | 上海师范大学 | A kind of Nanometer Copper biomimetic material and preparation method and application |
CN110102775B (en) * | 2019-05-22 | 2022-04-29 | 西南大学 | Copper nano-cluster synthesized by taking Cu-MOFs as precursor and synthesis method |
CN110102775A (en) * | 2019-05-22 | 2019-08-09 | 西南大学 | A kind of copper nano-cluster synthesized using Cu-MOFs as precursor and synthetic method |
CN110560160A (en) * | 2019-09-18 | 2019-12-13 | 河南大学 | Preparation method and application of Phe @ CuNCs composite material |
CN110560160B (en) * | 2019-09-18 | 2020-11-20 | 河南大学 | A kind of preparation method and application of Phe@CuNCs composites |
CN111014716A (en) * | 2019-12-10 | 2020-04-17 | 大连理工大学 | A method for preparing AIE copper nanoclusters with cysteamine macroscale |
CN111014716B (en) * | 2019-12-10 | 2021-08-20 | 大连理工大学 | A method for preparing AIE copper nanoclusters with cysteamine macroscale |
WO2022032871A1 (en) * | 2020-08-11 | 2022-02-17 | 苏州大学 | Infrared ii region fluorogold nanocluster, preparation and application thereof |
CN112098380A (en) * | 2020-08-21 | 2020-12-18 | 四川大学华西医院 | A biological analysis method based on the selective recognition reaction of quantum dots and its application |
CN112098380B (en) * | 2020-08-21 | 2022-06-03 | 四川大学华西医院 | A biological analysis method based on the selective recognition reaction of quantum dots and its application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105505383A (en) | A kind of synthesis method of fluorescent copper nanocluster | |
Qing et al. | Recent progress in copper nanocluster-based fluorescent probing: a review | |
Panthi et al. | Synthesis of metal nanoclusters and their application in Hg2+ ions detection: A review | |
Lu et al. | Copper nanoclusters: Synthesis, characterization and properties | |
Zhang et al. | Photoreductive synthesis of water-soluble fluorescent metal nanoclusters | |
CN103008682B (en) | Method for synthesizing fluorescent silver nano clusters by taking general DNA (Deoxyribose Nucleic Acid) as stabilizer | |
Chakraborty et al. | High temperature nucleation and growth of glutathione protected∼ Ag 75 clusters | |
US9410950B2 (en) | Luminescent gold nanomaterial functionalized by N-(4-aminobutyl)-N-ethylisoluminol, preparation and application thereof | |
Shi et al. | A MXene of type Ti 3 C 2 T x functionalized with copper nanoclusters for the fluorometric determination of glutathione | |
CN105199717B (en) | 2 mercaptoimidazole bovine serum albumin(BSA) fluorescent au nanocluster materials and preparation method thereof | |
Wang et al. | Nanoclusters prepared from a silver/gold alloy as a fluorescent probe for selective and sensitive determination of lead (II) | |
CN104694117A (en) | Ratio-type fluorescent probe based on carbon dot as well as preparation method and application thereof | |
CN107556999A (en) | Gold nano cluster and its preparation method and application | |
CN102838984B (en) | Preparation method of chymotrypsin protected fluorescent au nanocluster material | |
CN103991895B (en) | A kind of Ag of aptamers induction 2the preparation method of S quantum dot | |
CN105328203B (en) | 1 H, 1,2,4 triazoles, 3 mercaptan bovine serum albumin(BSA) fluorescent au nanocluster material and preparation method thereof | |
Zhang et al. | Thiolated DNA-templated silver nanoclusters with strong fluorescence emission and a long shelf-life | |
CN109181678B (en) | Method for synthesizing green fluorescent gold nanocluster stabilized by mercapto-beta-cyclodextrin and application of green fluorescent gold nanocluster | |
CN105598466A (en) | A kind of synthesis method of fluorescent copper nanocluster | |
Liu et al. | Synthesis of luminescent ag nanoclusters with antibacterial activity | |
CN108672694B (en) | Method for enhancing fluorescence intensity and stability of gold nanoclusters | |
CN107603604B (en) | Copper nanocluster fluorescent material and preparation method thereof | |
CN105368447B (en) | 1‑methyl‑5‑mercaptotetrazolium‑bovine serum albumin‑gold nanocluster fluorescent material and preparation method thereof | |
CN110724519B (en) | Preparation method and application of fluorescent enhanced gold nanocluster composite material based on supermolecule macrocycle | |
CN104227016B (en) | A kind of quick preparation has the method for the silver nanoclusters that hyperfluorescence is launched |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160420 |
|
RJ01 | Rejection of invention patent application after publication |