CN105502604A - Preparation of modified nano-iron and application of modified nano-iron in antibiotic drug manufacture wastewater treatment - Google Patents
Preparation of modified nano-iron and application of modified nano-iron in antibiotic drug manufacture wastewater treatment Download PDFInfo
- Publication number
- CN105502604A CN105502604A CN201510963537.2A CN201510963537A CN105502604A CN 105502604 A CN105502604 A CN 105502604A CN 201510963537 A CN201510963537 A CN 201510963537A CN 105502604 A CN105502604 A CN 105502604A
- Authority
- CN
- China
- Prior art keywords
- iron
- modified nano
- nano iron
- preparation
- prepared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 46
- 230000003115 biocidal effect Effects 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000004065 wastewater treatment Methods 0.000 title abstract description 5
- 229940079593 drug Drugs 0.000 title description 7
- 239000003814 drug Substances 0.000 title description 7
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000002351 wastewater Substances 0.000 claims abstract description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims abstract description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 6
- 239000002244 precipitate Substances 0.000 claims abstract description 6
- 239000003513 alkali Substances 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 3
- 229960005404 sulfamethoxazole Drugs 0.000 claims description 9
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical group [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 2
- 239000011790 ferrous sulphate Substances 0.000 claims description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 2
- 239000012279 sodium borohydride Substances 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 4
- 239000003795 chemical substances by application Substances 0.000 claims 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 2
- -1 polyoxyethylene Polymers 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims 1
- 150000004684 trihydrates Chemical class 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 18
- 230000010757 Reduction Activity Effects 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000003607 modifier Substances 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- 239000007791 liquid phase Substances 0.000 abstract 1
- 239000004530 micro-emulsion Substances 0.000 abstract 1
- 239000010826 pharmaceutical waste Substances 0.000 abstract 1
- 239000003242 anti bacterial agent Substances 0.000 description 9
- 229940088710 antibiotic agent Drugs 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 229960003022 amoxicillin Drugs 0.000 description 8
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 8
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 8
- 229960001180 norfloxacin Drugs 0.000 description 8
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000002957 persistent organic pollutant Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/343—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/08—Nanoparticles or nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
本发明公开了一种改性纳米铁的制备及在抗生素制药废水处理中的方法,采用液相还原法,反应溶液在微乳液状态下,制备改性纳米铁。其步骤如下:在氮气条件下,亚铁盐的乙醇水溶液中加入表面改性剂,搅拌混匀;将配制的硼氢化物的碱水溶液逐滴加入亚铁盐的乙醇水溶液中,滴加完毕后,持续反应20-30min,生成黑色沉淀;黑色沉淀过滤、洗涤、离心、分离,干燥,得到改性纳米铁。本发明制备成本低廉,低于商用纳米铁,操作流程简单;制备的改性纳米铁比表面积大、颗粒大小均匀、分散性好和还原活性高;用于抗生素制药废水处理中,能够快速、高效降解污染。
The invention discloses a method for preparing modified nano-iron and its use in antibiotic pharmaceutical waste water treatment. The modified nano-iron is prepared by using a liquid phase reduction method, and the reaction solution is in the state of microemulsion. The steps are as follows: under nitrogen conditions, add a surface modifier to the ethanol aqueous solution of the ferrous salt, stir and mix; add the prepared borohydride alkali aqueous solution dropwise into the ethanol aqueous solution of the ferrous salt, and after the addition is completed, , and continue to react for 20-30 minutes to form a black precipitate; the black precipitate is filtered, washed, centrifuged, separated, and dried to obtain modified nano-iron. The preparation cost of the present invention is low, which is lower than that of commercial nano-iron, and the operation process is simple; the prepared modified nano-iron has large specific surface area, uniform particle size, good dispersibility and high reduction activity; it can be used in the treatment of antibiotic pharmaceutical wastewater, which can be fast and efficient degrade pollution.
Description
技术领域 technical field
本发明属于废水处理技术领域,涉及一种改性纳米铁的制备方法及在处理抗生素制药废水中的应用。 The invention belongs to the technical field of wastewater treatment, and relates to a preparation method of modified nano-iron and its application in treating antibiotic pharmaceutical wastewater.
背景技术 Background technique
随着我国制药工业的快速发展,抗生素类药品是目前应用最为广泛的药物之一,在其生产过程中所产生的废水具有COD浓度高、色度大、硫酸盐浓度高、难生物降解等特点,其中不少难降解有机物如残留抗生素对微生物有抑制作用。 With the rapid development of my country's pharmaceutical industry, antibiotics are currently one of the most widely used drugs, and the wastewater produced in the production process has the characteristics of high COD concentration, large chroma, high sulfate concentration, and difficult biodegradation. , many of which are refractory organics such as residual antibiotics have inhibitory effect on microorganisms.
常见的多数传统废水处理工艺对抗生素的去除效率不高,很难达到预期效果。目前大部分传统活性污泥法污水处理厂主要是通过污泥吸附去除抗生素,但只有部分抗生素得到降解,吸附了抗生素的污泥通过施肥将抗生素带入土壤中,进而会渗滤到地下水,或进入地表水中,不但造成更大的生态环境危害,而且抗生素并没有从根本上得以去除。 Most of the common traditional wastewater treatment processes are not efficient in removing antibiotics, and it is difficult to achieve the expected effect. At present, most traditional activated sludge sewage treatment plants mainly remove antibiotics through sludge adsorption, but only part of the antibiotics are degraded, and the sludge with adsorbed antibiotics will bring antibiotics into the soil through fertilization, which will infiltrate into groundwater, or Entering the surface water will not only cause greater harm to the ecological environment, but the antibiotics have not been fundamentally eliminated.
化学法可以使有机污染物特别是难降解有机污染物氧化为无机物,彻底破坏有机物,以达到无害处理的要求。但一般的化学法因为成本高的问题很难被普及利用。因此寻找低成本、高效率的化学处理方法是解决这一难题的关键。 Chemical methods can oxidize organic pollutants, especially refractory organic pollutants, into inorganic substances, completely destroying organic substances, so as to meet the requirements of harmless treatment. However, the general chemical method is difficult to be widely used because of the high cost. Therefore, finding low-cost and high-efficiency chemical treatment methods is the key to solving this problem.
纳米零价铁除了具备零价铁的特性外,还具有尺寸小、比表面积大、等纳米材料特征,比普通零价铁具有更高的还原活性,已成为一种具有广阔应用前景的水处理材料。但购买的纳米零价铁价格昂贵,价格约为自制纳米铁的100倍,无法解决化学法存在成本高这一问题,而且商用纳米铁活性组分有限。因此采用制备的纳米铁不仅可以有效提高抗生素降解率,而且由于制备原材料成本低廉,制备工艺简单,可以有效解决处理成本高问题。 In addition to the characteristics of zero-valent iron, nano-zero-valent iron also has the characteristics of nano-materials such as small size, large specific surface area, and higher reduction activity than ordinary zero-valent iron. It has become a water treatment with broad application prospects. Material. However, the purchased nano-zero-valent iron is expensive, and the price is about 100 times that of self-made nano-iron, which cannot solve the problem of high cost in chemical methods, and the active components of commercial nano-iron are limited. Therefore, the prepared nano-iron can not only effectively improve the degradation rate of antibiotics, but also can effectively solve the problem of high processing cost due to the low cost of raw materials and simple preparation process.
此外,由于纳米铁颗粒相互之间由于磁性吸引及分子间作用力,容易产生团聚现象。因此,还需要在此方面进行改进,防止团聚现象。 In addition, due to the magnetic attraction and intermolecular force between the nano-iron particles, it is easy to agglomerate. Therefore, it is also necessary to improve in this respect to prevent agglomeration.
发明内容 Contents of the invention
本发明要解决的技术问题是,克服现有技术中的不足,提供一种制备工艺简单、成本低廉、比表面积大、还原活性高、颗粒大小均匀、分散性好的改性纳米铁的制备方法。 The technical problem to be solved by the present invention is to overcome the deficiencies in the prior art and provide a method for preparing modified nano-iron with simple preparation process, low cost, large specific surface area, high reduction activity, uniform particle size and good dispersibility .
本发明还提供了一种快速、高效降解抗生素制药废水的方法。 The invention also provides a method for rapidly and efficiently degrading antibiotic pharmaceutical wastewater.
本发明提供的一种制备改性纳米铁的方法,其特征在于,包括以下步骤: A method for preparing modified nano-iron provided by the invention is characterized in that it comprises the following steps:
(1)在氮气保护下,将亚铁盐的乙醇水溶液(乙醇∶水=3∶7-1∶9)中加入表面改性剂,电动搅拌15-20min,混合混匀;将含硼氢化物的碱水溶液逐滴加入上述混合液,滴加完毕后,在15℃-35℃温度下,继续反应20-30min,得到黑色固体沉淀; (1) Under the protection of nitrogen, add a surface modifier to the ethanol aqueous solution of ferrous salt (ethanol: water = 3:7-1:9), stir electrically for 15-20min, and mix well; The aqueous alkali solution was added dropwise to the above mixed solution, and after the dropwise addition was completed, the reaction was continued for 20-30 minutes at a temperature of 15°C-35°C to obtain a black solid precipitate;
(2)将获得的黑色沉淀在0.22μm过滤膜中过滤,用去离子水和乙醇各洗2-3次,离心机(转速为1500-3500r/min)离心10-15min,使用磁性材料进行分离。分离所得的黑色固体沉淀20℃-60℃温度下,真空干燥12h-48h,得到改性纳米铁。 (2) Filter the obtained black precipitate in a 0.22 μm filter membrane, wash with deionized water and ethanol 2-3 times, centrifuge (1500-3500r/min) for 10-15min, and use a magnetic material to separate . The separated black solid is precipitated at a temperature of 20°C-60°C and vacuum-dried for 12h-48h to obtain the modified nano-iron.
1.如权利要求1所述改性纳米铁的制备方法,其特征在于,优选的,所述亚铁盐为硫酸亚铁、硝酸亚铁或氯化亚铁。所述表面改性剂为CTAB+聚乙二醇或SDS+聚乙二醇。所述硼氢化物为硼氢化钠或硼氢化钾。 1. The preparation method of modified nano-iron as claimed in claim 1, characterized in that, preferably, the ferrous salt is ferrous sulfate, ferrous nitrate or ferrous chloride. The surface modifier is CTAB+polyethylene glycol or SDS+polyethylene glycol. The borohydride is sodium borohydride or potassium borohydride.
2.如权利要求1所述改性纳米铁的制备方法,其特征在于,优选的,所述亚铁盐与硼氢化物的物质的量的比为1∶1-1∶3;所述表面改性剂的浓度为0.005-0.03mol/L。 2. the preparation method of modified nanometer iron as claimed in claim 1 is characterized in that, preferably, the ratio of the amount of substance of described ferrous salt and borohydride is 1: 1-1: 3; The concentration of modifier is 0.005-0.03mol/L.
3.如权利要求1所述改性纳米铁的制备方法,其特征在于,优选的,所述的改性纳米铁的粒径范围在20-80nm。 3. The method for preparing modified nano-iron according to claim 1, characterized in that, preferably, the particle size range of the modified nano-iron is 20-80nm.
4.如权利要求1-4所述制备的改性纳米铁在抗生素制药废水中的应用,其特征在于,优选的,所述制药废水含有的抗生素是磺胺甲恶唑、阿莫西林、诺氟沙星。 4. the application of the modified nano-iron prepared as claimed in claim 1-4 in antibiotic pharmaceutical wastewater, is characterized in that, preferably, the antibiotic that described pharmaceutical wastewater contains is sulfamethoxazole, amoxicillin, norfloxacin sand star.
5.如权利要求1-5所述制备的改性纳米铁在抗生素制药废水中的应用,其特征在于,优选的,处理废水的反应时间为0.1-4h,反应温度为15℃-35℃,所述改性纳米铁的终浓度为1.0-36mmol/L。 5. The application of the modified nano-iron prepared according to claim 1-5 in antibiotic pharmaceutical wastewater, characterized in that, preferably, the reaction time for treating wastewater is 0.1-4h, and the reaction temperature is 15°C-35°C, The final concentration of the modified nanometer iron is 1.0-36mmol/L.
本发明有益效果: Beneficial effects of the present invention:
本发明所使用的改性纳米铁纸杯原材料制低廉易得,操作流程简单;制备的改性纳米铁比表面积大、颗粒大小均匀、分散性好和还原活性高;在处理抗生素制药废水中,能够快速、高效降解有机污染物,能耗低,污染低,在处理抗生素制药废水中具有一定的应用前景。 The raw material of the modified nano-iron paper cup used in the present invention is cheap and easy to obtain, and the operation process is simple; the prepared modified nano-iron has a large specific surface area, uniform particle size, good dispersibility and high reduction activity; in the treatment of antibiotic pharmaceutical wastewater, it can It can quickly and efficiently degrade organic pollutants, has low energy consumption and low pollution, and has certain application prospects in the treatment of antibiotic pharmaceutical wastewater.
附图说明 Description of drawings
图1为实施例1制得的改性纳米铁的TEM图。 FIG. 1 is a TEM image of the modified nano-iron prepared in Example 1.
图2为实施例3中不同来源的铁粉去除抗生素制药废水的处理效果图。 Fig. 2 is the effect diagram of the treatment effect of removing antibiotic pharmaceutical wastewater by iron powder from different sources in Example 3.
具体实施方式 detailed description
下面结合具体实施例对本发明作进一步详细说明。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。 The present invention will be described in further detail below in conjunction with specific embodiments. The methods are conventional methods unless otherwise specified. The raw materials can be obtained from open commercial channels unless otherwise specified.
实施例1 Example 1
改性纳米铁的制备及在抗生素制药废水处理中的应用,包括以下步骤:在氮气保护下,将亚铁盐的乙醇水溶液(乙醇∶水=3∶7-1∶9)中加入表面改性剂,电动搅拌15-20min,混合混匀;将含硼氢化物的碱水溶液逐滴加入上述混合液,滴加完毕后,在15℃-35℃温度下,继续反应20-30min,得到黑色固体沉淀; The preparation of modified nano-iron and its application in the treatment of antibiotic pharmaceutical wastewater include the following steps: under the protection of nitrogen, adding ferrous salt to ethanol aqueous solution (ethanol: water = 3:7-1:9) for surface modification Add the aqueous solution of alkali containing borohydride to the above mixture drop by drop. After the dropwise addition, continue the reaction at 15°C-35°C for 20-30min to obtain a black solid precipitation;
(2)将获得的黑色沉淀在0.22μm过滤膜中过滤,用去离子水和乙醇各洗2-3次,离心机(转速为1500-3500r/min)离心10-15min,使用磁性材料进行分离。分离所得的黑色固体沉淀20℃-60℃温度下,真空干燥12h-48h,得到改性纳米铁。 (2) Filter the obtained black precipitate in a 0.22 μm filter membrane, wash with deionized water and ethanol 2-3 times, centrifuge (1500-3500r/min) for 10-15min, and use a magnetic material to separate . The separated black solid is precipitated at a temperature of 20°C-60°C and vacuum-dried for 12h-48h to obtain the modified nano-iron.
实施例2 Example 2
将实施例1中改性纳米铁用于磺胺甲恶唑制药废水处理。 The modified nano-iron in Example 1 was used for the treatment of sulfamethoxazole pharmaceutical wastewater.
将实施例1中改性纳米铁用于阿莫西林制药废水处理。 The modified nano-iron in Example 1 was used for the treatment of amoxicillin pharmaceutical wastewater.
将实施例1中改性纳米铁用于诺氟沙星制药废水处理。 The modified nano-iron in Example 1 was used for norfloxacin pharmaceutical wastewater treatment.
本发明选取磺胺甲恶唑、阿莫西林、诺氟沙星污染废水作为制药废水评价指标,因该三种药物磺胺甲恶唑、阿莫西林、诺氟沙星等抗生素废水含有大量难降解有机物,残留在水中对为生物具有强烈抑制作用,长期存在于水环境中,将对生态环境带来巨大威胁。如何能快速有效降解废水中的抗生素药物,对处理制药废水具有重要意义。 The present invention selects sulfamethoxazole, amoxicillin, norfloxacin polluted wastewater as pharmaceutical wastewater evaluation index, because antibiotic wastewater such as these three kinds of drugs sulfamethoxazole, amoxicillin, norfloxacin contains a large amount of refractory organic matter , the residues in the water have a strong inhibitory effect on organisms, and if they exist in the water environment for a long time, they will pose a huge threat to the ecological environment. How to quickly and effectively degrade antibiotic drugs in wastewater is of great significance to the treatment of pharmaceutical wastewater.
实施例3 Example 3
改性纳米铁用于抗生素制药废水的处理,采用还原活性评价试验,如以下步骤所示: Modified nano-iron is used in the treatment of antibiotic pharmaceutical wastewater, and the reduction activity evaluation test is used, as shown in the following steps:
(1)模拟抗生素制药废水组成:废水:100ml;含磺胺甲恶唑浓度10mg/L。 (1) Composition of simulated antibiotic pharmaceutical wastewater: Wastewater: 100ml; sulfamethoxazole concentration 10mg/L.
活性评价方法:在上述模拟磺胺甲恶唑制药废水中,加入实施例1制备的改性纳米铁0.08g,反应1.0h后,使用离心机以3000r/min的速度将反应后溶液离心10min,经0.22μm有机系滤膜真空超滤后,收集滤液,待测。 Activity evaluation method: In the above-mentioned simulated sulfamethoxazole pharmaceutical wastewater, add 0.08g of modified nano-iron prepared in Example 1, after reacting for 1.0h, use a centrifuge to centrifuge the solution after reaction at a speed of 3000r/min for 10min, and After vacuum ultrafiltration with a 0.22 μm organic filter membrane, the filtrate was collected for testing.
(2)模拟抗生素制药废水组成:废水:100ml;含阿莫西林浓度10mg/L。 (2) Composition of simulated antibiotic pharmaceutical wastewater: Wastewater: 100ml; the concentration of amoxicillin is 10mg/L.
活性评价方法:在上述模拟阿莫西林药物废水中,加入实施例1改性纳米铁0.14g,反应3.5h后,使用离心机以3000r/min的速度将反应后溶液离心10min,经0.22μm有机系滤膜真空超滤后,收集滤液,待测。 Activity evaluation method: Add 0.14 g of modified nano-iron in Example 1 to the above-mentioned simulated amoxicillin drug wastewater. After reacting for 3.5 hours, use a centrifuge to centrifuge the reacted solution at a speed of 3000 r/min for 10 min. After vacuum ultrafiltration of the filter membrane, the filtrate was collected for testing.
(3)模拟抗生素制药废水组成:废水:100ml;含诺氟沙星浓度10mg/L。 (3) Composition of simulated antibiotic pharmaceutical wastewater: Wastewater: 100ml; containing norfloxacin concentration 10mg/L.
活性评价方法:在上述模拟诺氟沙星制药废水中,加入实施例1改性纳米铁0.1g,反应3.0h后,使用离心机以3000r/min的速度将反应后溶液离心10min,经0.22μm有机系滤膜真空超滤后,收集滤液,待测。 Activity evaluation method: In the above-mentioned simulated norfloxacin pharmaceutical wastewater, add 0.1 g of modified nano-iron in Example 1, and react for 3.0 h, use a centrifuge to centrifuge the reacted solution at a speed of 3000 r/min for 10 min, and pass through a 0.22 μm After vacuum ultrafiltration with an organic filter membrane, the filtrate was collected for testing.
使用高效液相色谱仪器(HPLC)分别绘制三种药物标准浓度曲线,通过测定待测液看,进而计算药物去除率。 Use high-performance liquid chromatography (HPLC) to draw the standard concentration curves of three kinds of drugs respectively, and then calculate the drug removal rate by measuring the liquid to be tested.
对比例1 Comparative example 1
商用铁粉用于处理磺胺甲恶唑制药废水。具体操作方法按上述还原活性评价试验进行。 Commercial iron powder used to treat sulfamethoxazole pharmaceutical wastewater. The specific operation method is carried out according to the above-mentioned reducing activity evaluation test.
对比例2 Comparative example 2
商用铁粉用于处理阿莫西林制药废水。具体操作方法按上述还原活性评价试验进行。 Commercial iron powder used to treat amoxicillin pharmaceutical wastewater. The specific operation method is carried out according to the above-mentioned reducing activity evaluation test.
对比例3 Comparative example 3
商用铁粉用于处理诺氟沙星制药废水。具体操作方法按上述还原活性评价试验进行。 Commercial iron powder used to treat norfloxacin pharmaceutical wastewater. The specific operation method is carried out according to the above-mentioned reducing activity evaluation test.
对比例中所用商用铁粉为天津市津科精细化工研究所购买得到。 The commercial iron powder used in the comparative example was purchased from Tianjin Jinke Fine Chemical Research Institute.
该实施例所得改性纳米铁和商用铁粉的还原活性评价结果如图2所示。 The reduction activity evaluation results of the modified nano-iron and commercial iron powder obtained in this example are shown in FIG. 2 .
本发明中的改性纳米铁应用与于抗生素制药废水处理后,当时用的改性纳米铁浓度为0.1-36mmol/L,反应时间为0.1-4h,反应温度为15-35℃,抗生素制药废水中磺胺甲恶唑、阿莫西林、诺氟沙星去除率分别达到99.52%、83.94%、90.60%。 The modified nano-iron in the present invention is applied after the treatment of antibiotic pharmaceutical wastewater. The removal rates of sulfamethoxazole, amoxicillin and norfloxacin reached 99.52%, 83.94% and 90.60%, respectively.
本发明的制备的改性纳米铁制备工艺简单,制备周期短操作简单,原料廉价低廉,其粒径改性纳米铁的粒径尺寸在范围在20-80nm之间,具有比表面积大、颗粒大小均匀、分散性较好、反应活性高和修复效率高、能快速能够快速、高效降解有机污染物的特点。 The modified nano-iron prepared by the present invention has a simple preparation process, short preparation period, simple operation, and low-cost raw materials. It has the characteristics of uniformity, good dispersion, high reactivity and high repair efficiency, and can quickly and efficiently degrade organic pollutants.
以上所述,仅为本发明的具体实施例而已,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员,在不脱离本发明技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出等效变化或修饰,或修改为等同变化的等效实施例。因此,凡根据本发明的技术方案所作的等效变化或修饰,都应涵盖在本发明的保护范围内。 The above description is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any person familiar with the art can use the above disclosure without departing from the technical solution of the present invention. Equivalent changes or modifications are made to the technical solutions of the present invention, or modifications are made to equivalent embodiments of equivalent changes. Therefore, all equivalent changes or modifications made according to the technical solutions of the present invention shall fall within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510963537.2A CN105502604A (en) | 2015-12-22 | 2015-12-22 | Preparation of modified nano-iron and application of modified nano-iron in antibiotic drug manufacture wastewater treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510963537.2A CN105502604A (en) | 2015-12-22 | 2015-12-22 | Preparation of modified nano-iron and application of modified nano-iron in antibiotic drug manufacture wastewater treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105502604A true CN105502604A (en) | 2016-04-20 |
Family
ID=55710990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510963537.2A Pending CN105502604A (en) | 2015-12-22 | 2015-12-22 | Preparation of modified nano-iron and application of modified nano-iron in antibiotic drug manufacture wastewater treatment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105502604A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106044921A (en) * | 2016-06-20 | 2016-10-26 | 昆明理工大学 | Preparation method and application of carbon sphere loaded nanoscale zero valent iron composite material |
CN109453807A (en) * | 2018-09-12 | 2019-03-12 | 东南大学 | It is a kind of to utilize chelating agent MODIFIED Fe3O4The method of sulfa drugs in material catalytic degradation water body |
CN110697862A (en) * | 2019-11-21 | 2020-01-17 | 北京工业大学 | A method for removing antibiotic resistance genes in effluent from sewage treatment plants by modifying bimetallic bimetals with Ginkgo biloba |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09150146A (en) * | 1995-11-29 | 1997-06-10 | Japan Raito Service Kk | Treatment of oil component in grease trap and device therefore |
CN101343096A (en) * | 2008-09-04 | 2009-01-14 | 上海交通大学 | Treatment Method of Produced Water by ASP Flooding in Oilfield |
CN102614918A (en) * | 2012-03-08 | 2012-08-01 | 昆明理工大学 | Preparation method of dispersant modified iron nanoparticles |
-
2015
- 2015-12-22 CN CN201510963537.2A patent/CN105502604A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09150146A (en) * | 1995-11-29 | 1997-06-10 | Japan Raito Service Kk | Treatment of oil component in grease trap and device therefore |
CN101343096A (en) * | 2008-09-04 | 2009-01-14 | 上海交通大学 | Treatment Method of Produced Water by ASP Flooding in Oilfield |
CN102614918A (en) * | 2012-03-08 | 2012-08-01 | 昆明理工大学 | Preparation method of dispersant modified iron nanoparticles |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106044921A (en) * | 2016-06-20 | 2016-10-26 | 昆明理工大学 | Preparation method and application of carbon sphere loaded nanoscale zero valent iron composite material |
CN106044921B (en) * | 2016-06-20 | 2019-05-14 | 昆明理工大学 | A kind of preparation method and applications of carbon ball load nano zero-valence iron composite material |
CN109453807A (en) * | 2018-09-12 | 2019-03-12 | 东南大学 | It is a kind of to utilize chelating agent MODIFIED Fe3O4The method of sulfa drugs in material catalytic degradation water body |
CN110697862A (en) * | 2019-11-21 | 2020-01-17 | 北京工业大学 | A method for removing antibiotic resistance genes in effluent from sewage treatment plants by modifying bimetallic bimetals with Ginkgo biloba |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104031651B (en) | Passivation improver for heavy metal pollution farmland and using method thereof | |
CN106000335B (en) | Cladding nanometer Zero-valent Iron and its preparation method and application | |
CN103896389B (en) | Control release type potassium ferrate complex body and Synthesis and applications thereof | |
CN102614840B (en) | Preparation method for magnetic nano material for efficiently removing phosphate radicals and nitrates | |
CN104801280A (en) | Preparation method for biomass charcoal adsorbent loaded with chitosan magnetic nanoparticles | |
CN105921763B (en) | The preparation method of sodium alginate/inorganic mineral combined loading type nano zero valence iron | |
CN100536983C (en) | Nanoparticle water purification material for removing heavy metals and preparation method thereof | |
CN111778035A (en) | A kind of soil remediation agent and preparation method thereof | |
CN102531237B (en) | Method for treating money-printing wastewater with combination of modified bentonite and photo-Fenton method | |
CN105502604A (en) | Preparation of modified nano-iron and application of modified nano-iron in antibiotic drug manufacture wastewater treatment | |
CN103252216B (en) | Adsorbent, preparation process thereof and application of adsorbent to purification of ammonia-nitrogen wastewater with medium-low concentration | |
Chai et al. | A comparative study of abiological granular sludge (ABGS) formation in different processes for zinc removal from wastewater | |
CN104475040B (en) | Modified magnetic nano adsorption material as well as preparation method and application thereof | |
CN106064836A (en) | A kind of modified green syt nano-sized iron oxide and its preparation method and application | |
CN104353407A (en) | Fe-Mn system adsorbent and preparation and application method of Fe-Mn system adsorbent | |
CN104525103B (en) | Magnetic iron oxide/sepiolite nano composite material and preparation method and application thereof | |
CN110655905A (en) | Multifunctional synergistic negative ion release material and preparation method thereof | |
CN104826601B (en) | A kind of diatomaceous preparation method of magnetism | |
CN106238005A (en) | A kind of chitosan Concha Ostreae complex microsphere and preparation method thereof | |
CN108284126B (en) | A kind of purification and restoration agent for polluted soil and purification and restoration treatment method | |
CN106944630B (en) | Seaweed slag stable nano zero-valent iron and preparation method and application thereof | |
CN104587967B (en) | Method for synchronously preparing biological adsorbent and flocculant for heavy metal adsorption and products of biological adsorbent and flocculant | |
CN104876318B (en) | A kind of method for treating water of manganese dioxide/oxalic acid material reduction removal Cr VI | |
CN111514859B (en) | A composite adsorbent for efficiently removing mixed pollutants in wastewater and preparation method thereof | |
CN107684902B (en) | Preparation of magnesium hydroxide and method for treating heavy metal ion wastewater by using magnesium hydroxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160420 |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
DD01 | Delivery of document by public notice |
Addressee: Tian Huifang Document name: Notification that Application Deemed to be Withdrawn |
|
DD01 | Delivery of document by public notice |