[go: up one dir, main page]

CN105490604B - A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four - Google Patents

A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four Download PDF

Info

Publication number
CN105490604B
CN105490604B CN201410474341.2A CN201410474341A CN105490604B CN 105490604 B CN105490604 B CN 105490604B CN 201410474341 A CN201410474341 A CN 201410474341A CN 105490604 B CN105490604 B CN 105490604B
Authority
CN
China
Prior art keywords
msub
mrow
mover
msup
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410474341.2A
Other languages
Chinese (zh)
Other versions
CN105490604A (en
Inventor
赵金
周德洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201410474341.2A priority Critical patent/CN105490604B/en
Publication of CN105490604A publication Critical patent/CN105490604A/en
Application granted granted Critical
Publication of CN105490604B publication Critical patent/CN105490604B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种三相四开关感应电动机变频调速系统的预测控制方法,包括:A、通过感应电机驱动系统中电流传感器、电压传感器和速度传感器分别测出三相电流、两个直流侧电容电压和电机转速;B、通过测量的直流电容电压计算出四种开关组合(00,01,11,10)对应的电压矢量;C、根据测量的相电流和转速估算感应电机的定子、转子磁链;D、预测四个电压矢量对应定子磁链的绝对值、预测转矩和预测直流电压;E、计算四个电压矢量代价函数:预测值与参考值分别相减后取绝对值,各项乘以权重系数相加。F、将使得代价函数最小的电压矢量所对应的开关状态施加到逆变器中。该方法适用于三相四开关驱动的各种变频调速系统。

The invention discloses a predictive control method for a frequency conversion speed regulation system of a three-phase four-switch induction motor, comprising: A. respectively measuring the three-phase current, two DC side Capacitor voltage and motor speed; B. Calculate the voltage vector corresponding to the four switch combinations (00, 01, 11, 10) through the measured DC capacitor voltage; C. Estimate the stator and rotor of the induction motor based on the measured phase current and speed Flux linkage; D. Predict the absolute value of the four voltage vectors corresponding to the stator flux linkage, the predicted torque and the predicted DC voltage; E. Calculate the cost function of the four voltage vectors: subtract the predicted value from the reference value and then take the absolute value, each Items are multiplied by weight coefficients and added. F. Apply the switch state corresponding to the voltage vector that minimizes the cost function to the inverter. This method is suitable for various frequency conversion speed regulation systems driven by three-phase four switches.

Description

一种三相四开关感应电动机变频调速系统的预测控制方法A predictive control method for frequency conversion speed regulation system of three-phase four-switch induction motor

技术领域technical field

本发明属于感应电动机变频调速领域,更具体地,涉及一种三相四开关功率变换器拓扑下感应电机变频调速系统的预测控制方法。The invention belongs to the field of frequency conversion speed regulation of induction motors, and more specifically relates to a predictive control method for induction motor frequency conversion speed regulation systems under the topology of a three-phase four-switch power converter.

背景技术Background technique

以感应电动机为主体的变频调速系统在航空航天、军事、工业等领域得到了广泛应用,其功率变换器均由六开关三相全控型电力电子器件组成。这其中,变换器能量密度高,电力电子器件又相对“脆弱”,一旦变换器某只功率管发生开路或短路故障,整个系统便丧失了正常工作的能力,甚至发生灾难性后果。Frequency conversion speed regulation systems based on induction motors have been widely used in aerospace, military, industrial and other fields, and their power converters are composed of six-switch three-phase full-control power electronic devices. Among them, the energy density of the converter is high, and the power electronic devices are relatively "fragile". Once an open circuit or short circuit fault occurs in a power tube of the converter, the entire system will lose the ability to work normally, and even catastrophic consequences will occur.

随着对变频调速系统安全性、可靠性的要求越来越高,实时容错控制受到高度重视,然而大部分变频调速系统不配备冗余备份,这使得无冗余备份的三相四开关拓扑结构受到更大的关注。在众多针对三相四开关变频调速系统控制策略的专利和文献中,其大致方法分为两类:一类是假定直流电容电压是恒定不变的,在此基础上设计控制算法,由于电机的一相直接接到了电容中性点,相电流的流动会导致电容电压的波动和漂移,因此这类方法并不能用于实际系统;另一类是针对电容电压波动和漂移设计控制算法,但是这种算法一般是开环的控制策略,调速系统的动态性能差。As the requirements for the safety and reliability of frequency conversion speed control systems are getting higher and higher, real-time fault-tolerant control is highly valued. However, most frequency conversion speed control systems are not equipped with redundant backup, which makes the three-phase four-switch without redundant backup Topology has received greater attention. In many patents and literatures on the control strategy of the three-phase four-switch frequency conversion speed regulation system, the general methods are divided into two categories: one is to assume that the DC capacitor voltage is constant, and design the control algorithm on this basis. One phase of the capacitor is directly connected to the neutral point of the capacitor, and the flow of the phase current will cause the fluctuation and drift of the capacitor voltage, so this method cannot be used in the actual system; the other is to design a control algorithm for the capacitor voltage fluctuation and drift, but This algorithm is generally an open-loop control strategy, and the dynamic performance of the speed control system is poor.

发明内容Contents of the invention

为了克服现有三相四开关变频调速系统控制策略的不足,本发明提出了一种三相四开关功率变换器拓扑下预测控制方法。该方法能在电容电压波动的情况下,实现高性能的磁链和转矩闭环控制,而且还能抑制电容电压的漂移,不需要脉宽调制器和坐标变换。该方法适用于三相四开关驱动的各种变频调速系统。In order to overcome the deficiency of the control strategy of the existing three-phase four-switch frequency conversion speed regulation system, the present invention proposes a predictive control method under the topology of the three-phase four-switch power converter. The method can realize high-performance flux linkage and torque closed-loop control under the condition of capacitor voltage fluctuation, and can also suppress the drift of capacitor voltage, without the need of pulse width modulator and coordinate transformation. This method is suitable for various frequency conversion speed regulation systems driven by three-phase four switches.

为了实现上述目的,本发明提供了一种三相四开关功率变换器拓扑下感应电机变频调速系统的预测控制方法,所述方法包括:In order to achieve the above object, the present invention provides a predictive control method for an induction motor frequency conversion speed regulation system under the topology of a three-phase four-switch power converter, the method comprising:

(1)通过感应电机驱动系统中已有的电流霍尔传感器、电压霍尔传感器和光电码盘速度传感器分别测出三相电流ia k,ib k,ic k,两个直流侧电容电压UC1 k,UC2 k和电机转速ω;(1) The three-phase currents i a k , i b k , ick k are respectively measured by the existing current hall sensor, voltage hall sensor and photoelectric encoder speed sensor in the induction motor drive system, and the two DC side capacitors Voltage U C1 k , U C2 k and motor speed ω;

(2)通过测量的两个直流侧电容电压UC1 k,UC2 k计算四种开关组合对应的电压矢量V1,V2,V3,V4当前时刻的值,并根据测量的三相电流ia k,ib k,ic k信号计算电流矢量的值,其中四种开关组合为00,10,11,01;(2) Calculate the current moment values of the voltage vectors V 1 , V 2 , V 3 , and V 4 corresponding to the four switch combinations through the measured two DC side capacitor voltages U C1 k , U C2 k , and according to the measured three-phase current i a k , i b k , i c k signals to calculate current vector The value of , the four switch combinations are 00,10,11,01;

(3)通过测量的电机转速ω和电流矢量估算定子磁链和转子磁链 (3) By measuring the motor speed ω and the current vector Estimating stator flux linkage and rotor flux linkage

(4)根据电机模型和逆变器模型预测所有电压矢量V1,V2,V3,V4对应电容电压定子磁链和电磁转矩 (4) Predict all voltage vectors V 1 , V 2 , V 3 , and V 4 corresponding to capacitor voltages according to the motor model and inverter model Stator flux linkage and electromagnetic torque

(5)利用预测得到的各个电压矢量V1,V2,V3,V4对应的电容电压定子磁链和电磁转矩计算代价函数,取使得代价函数最小化的电压矢量为最优的电压矢量;(5) Use the predicted capacitor voltages corresponding to each voltage vector V 1 , V 2 , V 3 , V 4 Stator flux linkage and electromagnetic torque Calculate the cost function, and take the voltage vector that minimizes the cost function as the optimal voltage vector;

(6)施加最优电压矢量对应的开关信号,其中电压矢量与开关信号的对应关系如步骤(2)中相同。(6) Applying the switch signal corresponding to the optimal voltage vector, wherein the corresponding relationship between the voltage vector and the switch signal is the same as in step (2).

本发明的优点在于,通过对电机模型的精确建模,在电容电压波动的情况下,能够实现感应电动机的磁场,转矩和转速的闭环高性能控制,同时实现了在这种不对称电力电子变换器拓扑下,三相电流的均衡控制。为了保证系统的可靠性,本发明对电容电压的漂移进行抑制。本发明直接输出开关信号,不需要脉宽调制器。所有变量均在定子坐标系下完成,不需要坐标变换。控制结构简单易懂,易于物理实现。The advantage of the present invention is that, through the accurate modeling of the motor model, in the case of capacitor voltage fluctuations, the closed-loop high-performance control of the magnetic field, torque and rotational speed of the induction motor can be realized, and at the same time, it realizes the Balanced control of three-phase current in converter topology. In order to ensure the reliability of the system, the present invention suppresses the drift of the capacitor voltage. The invention directly outputs the switch signal without the need of a pulse width modulator. All variables are completed under the stator coordinate system, no coordinate transformation is required. The control structure is simple and easy to understand and easy to implement physically.

附图说明Description of drawings

图1为本发明方法适用的感应电机驱动系统及其基本结构图;Fig. 1 is the applicable induction motor drive system of the inventive method and basic structural diagram thereof;

图2为本发明方法的控制原理框图;Fig. 2 is the control principle block diagram of the inventive method;

图3为本发明三相四开关驱动的感应电动机模型预测控制方法的控制流程图。Fig. 3 is a control flow chart of the model predictive control method of the induction motor driven by three-phase four switches according to the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.

如图1所示,本发明所涉及的是感应电动机变频调速系统的功率变换器结构和感应电动机的连接模型。电机的三相中的两相接正常的开关桥臂,第三相接直流侧的电容中性点。As shown in Fig. 1, what the present invention relates to is the power converter structure of the frequency conversion speed regulation system of the induction motor and the connection model of the induction motor. Two of the three phases of the motor are connected to the normal switching bridge arm, and the third phase is connected to the neutral point of the capacitor on the DC side.

如图2所示,本发明所涉及的控制框图,以及与三相四开关驱动的感应电机系统的连接框图,结合附图2说明本发明采用的技术方案的原理:As shown in Figure 2, the control block diagram involved in the present invention, and the connection block diagram with the induction motor system driven by three-phase four switches, in conjunction with accompanying drawing 2 illustrate the principle of the technical solution adopted by the present invention:

为了实现高性能的闭环控制策略,速度外环控制采用传统的比例积分控制器获得转矩的给定值,电流内环控制采用模型预测控制器,本方案包含磁链估计,转矩、磁链和电容电压预测,代价函数最优化三个步骤。In order to realize a high-performance closed-loop control strategy, the speed outer loop control adopts the traditional proportional integral controller to obtain the given value of the torque, and the current inner loop control adopts the model predictive controller. This scheme includes flux linkage estimation, torque, flux linkage And capacitor voltage prediction, cost function optimization in three steps.

首先,采用感应电机电流模型估计当前的感应电动机定子和转子磁链。电容电压的波动会导致逆变器的电压矢量在相角和幅值上产生波动,这种波动会导致基于电压模型磁链估计算法产生巨大误差,导致磁链估计不精确,本方案采用基于电流模型的磁链估计算法,利用转速,相电流可测量估算当前的定子和转子磁链,克服电容电压波动对磁链估计的影响。First, the induction motor current model is used to estimate the current stator and rotor flux linkage of the induction motor. The fluctuation of the capacitor voltage will cause the voltage vector of the inverter to fluctuate in phase angle and amplitude. This fluctuation will cause a huge error in the flux linkage estimation algorithm based on the voltage model, resulting in inaccurate flux linkage estimation. This scheme uses a current-based The flux linkage estimation algorithm of the model can measure and estimate the current stator and rotor flux linkage by using the speed and phase current, and overcome the influence of capacitor voltage fluctuation on the flux linkage estimation.

其次,利用电压传感器,测量电容的实时电压,计算当前电压矢量的精确值,然后,利用感应电机的数学模型,将当前四种开关状态对应的四个电压矢量一一代入模型中,预测不同电压矢量下的下一采样周期的定子磁链,定子电流,电磁转矩,电容电压。Secondly, use the voltage sensor to measure the real-time voltage of the capacitor and calculate the accurate value of the current voltage vector. Then, use the mathematical model of the induction motor to put the four voltage vectors corresponding to the current four switch states into the model one by one, and predict different The stator flux linkage, stator current, electromagnetic torque, and capacitor voltage of the next sampling period under the voltage vector.

最后,将预测的磁链绝对值,电磁转矩,电容电压同参考值分别作差,求其绝对值,并乘以相应的权重系数,相加后得到代价函数,四个电压矢量对应四个代价函数取值,将代价函数取值的最小电压矢量对应的开关信号施加到逆变器。Finally, the predicted absolute value of flux linkage, electromagnetic torque, and capacitor voltage are different from the reference value, and their absolute values are calculated, multiplied by the corresponding weight coefficients, and added to obtain the cost function. The four voltage vectors correspond to four The cost function takes a value, and the switch signal corresponding to the minimum voltage vector of the cost function is applied to the inverter.

通过霍尔传感器从电机中获取电机的三相电流,从光电码盘速度传感器测出转速信号。从功率变换器中,通过电压霍尔传感器获取电容电压。以上变量作为控制系统的输入量参与系统控制。控制系统直接输出离散的开关信号,简化了控制结构。控制系统分为内外两个控制环:外环为传统的PI调节器,实现转速的闭环控制,并通过速度调节器产生转矩给定;内环为模型预测控制器,实现电机转矩和磁链的闭环控制,同时在内环也实现了电容电压漂移的抑制。The three-phase current of the motor is obtained from the motor through the Hall sensor, and the speed signal is measured from the photoelectric encoder speed sensor. From the power converter, the capacitor voltage is obtained through the voltage Hall sensor. The above variables participate in the system control as the input quantity of the control system. The control system directly outputs discrete switching signals, which simplifies the control structure. The control system is divided into inner and outer control loops: the outer loop is a traditional PI regulator, which realizes the closed-loop control of the speed, and generates a given torque through the speed regulator; the inner loop is a model predictive controller, which realizes the motor torque and magnetic The closed-loop control of the chain, and the inner loop also realizes the suppression of the capacitor voltage drift.

如图3所示,为本发明三相四开关驱动的感应电动机模型预测控制方法的控制流程图,如图所示,所述方法包括:As shown in Figure 3, it is a control flow chart of the induction motor model predictive control method driven by three-phase four switches of the present invention, as shown in the figure, the method includes:

1、初始化将代价函数g初始化为一个足够大的值。1. Initialization Initialize the cost function g to a sufficiently large value.

2、通过感应电机驱动系统中已有的电流霍尔传感器、电压霍尔传感器和光电码盘速度传感器分别测出三相电流ia k,ib k,ic k,两个直流侧电容电压UC1 k,UC2 k和电机转速ω;2. Measure the three-phase current i a k , i b k , ick k and the two DC side capacitor voltages respectively through the existing current hall sensor, voltage hall sensor and photoelectric encoder speed sensor in the induction motor drive system U C1 k , U C2 k and motor speed ω;

3、通过测量的两个直流侧电容电压UC1 k,UC2 k计算四种开关组合对应的电压矢量V1,V2,V3,V4当前时刻的值,并根据测量的三相电流ia k,ib k,ic k信号计算电流矢量的值,其中四种开关组合为00,10,11,01;电压矢量的计算方法,按表1所示。3. Calculate the current moment values of the voltage vectors V 1 , V 2 , V 3 , and V 4 corresponding to the four switch combinations through the measured two DC side capacitor voltages U C1 k and U C2 k , and according to the measured three-phase current i a k , i b k , ick k signal to calculate current vector The value of the four switch combinations are 00, 10, 11, 01; the calculation method of the voltage vector is shown in Table 1.

表1Table 1

电流矢量的计算方法如下:The calculation method of the current vector is as follows:

其中上标k为采样时刻。where the superscript k is the sampling time.

4、通过测量的电机转速ω和电流矢量估算定子磁链和转子磁链 4. The measured motor speed ω and current vector Estimating stator flux linkage and rotor flux linkage

其中,Ls,Lm,Lr分别是定子电感,励磁电感和转子电感,RsRr分别是转子电阻和定子电阻。Ts是采样时间,kr=Lm/Lr是转子互感系数,是漏磁系数,τr=Lr/Rr是转子时间常数。Among them, L s , L m , L r are stator inductance, excitation inductance and rotor inductance respectively, R s R r are rotor resistance and stator resistance respectively. T s is the sampling time, k r =L m /L r is the rotor mutual inductance coefficient, is the flux leakage coefficient, and τ r =L r /R r is the rotor time constant.

5、根据电机模型和逆变器模型预测所有电压矢量V1,V2,V3,V4对应电容电压定子磁链和电磁转矩 5. Predict all voltage vectors V 1 , V 2 , V 3 , and V 4 corresponding to capacitor voltages according to the motor model and inverter model Stator flux linkage and electromagnetic torque

预测的下一时刻的电流矢量如下:The predicted current vector at the next moment as follows:

其中,是等效电阻,Lσ=σLs是电机的漏磁电感,τσ=σLs/Rσ表示电压矢量, in, is the equivalent resistance, L σ =σL s is the leakage inductance of the motor, τ σ =σL s /R σ , represents the voltage vector,

根据预测的电流矢量预测定子磁链和电磁转矩。Stator flux linkage and electromagnetic torque are predicted from the predicted current vectors.

其中,p为感应电机极对数,Im符号表示取复数的虚部。Among them, p is the number of pole pairs of the induction motor, and the symbol of Im means taking the imaginary part of the complex number.

对于四开关三相拓扑结构,由于上下管不能直通,因此,开关组合SbSc只能取值为00,10,01,11,电容电流idc1,idc2的取值如下For the four-switch three-phase topology, since the upper and lower tubes cannot be connected directly, the switch combination S b S c can only take values of 00, 10, 01, 11, and the values of the capacitor currents i dc1 and i dc2 are as follows

idc1 k=ib k·Sb+ic k·Sc (0.7)i dc1 k =i b k S b +i c k S c (0.7)

idc2 k=ib k·(1-Sb)+ic k·(1-Sc)i dc2 k =i b k ·(1-S b )+ ic k ·(1-S c )

电容电压的预测值UC1(k+1),UC2(k+1)为The predicted value of capacitor voltage U C1 (k+1), U C2 (k+1) is

(0.8) (0.8)

6、利用预测得到的各个电压矢量V1,V2,V3,V4对应的电容电压定子磁链和电磁转矩计算代价函数,取使得代价函数最小化的电压矢量为最优的电压矢量;6. Use the predicted capacitor voltages corresponding to each voltage vector V 1 , V 2 , V 3 , V 4 Stator flux linkage and electromagnetic torque Calculate the cost function, and take the voltage vector that minimizes the cost function as the optimal voltage vector;

设计的代价函数控制率gi如下:The designed cost function control rate g i is as follows:

其中分别是感应电机的额定转矩和额定磁链,为转矩给定,为磁链绝对值的给定,|·|符号是求解绝对值,||·||是复数量求解绝对值,根据电机铭牌参数获得。λ0,λdc均为可调参数,通过凑试法获得参数,使系统整体性能最优。下标i分别代表由四个电压矢量计算出来的参数。in are the rated torque and rated flux linkage of the induction motor, respectively, is torque given, The absolute value of the flux linkage is given, the symbol |·| is the absolute value of the solution, and ||·|| is the absolute value of the complex quantity solution, which is obtained according to the parameters on the motor nameplate. Both λ 0 and λ dc are adjustable parameters, and the parameters are obtained by trial and error to optimize the overall performance of the system. The subscript i respectively represents the parameters calculated from the four voltage vectors.

7、施加最优电压矢量对应的开关信号。其中电压矢量与开关信号的对应关系如步骤(2)中相同。使得代价函数最小的gi的电压矢量被认为是四个电压矢量中最优的的电压矢量,施加最佳电压矢量所对应的开关组合,其对应关系如表1,实现系统的最优控制。7. Apply the switching signal corresponding to the optimal voltage vector. The corresponding relationship between the voltage vector and the switch signal is the same as in step (2). The voltage vector of g i that minimizes the cost function is considered to be the optimal voltage vector among the four voltage vectors, and the switch combination corresponding to the optimal voltage vector is applied, and its corresponding relationship is shown in Table 1 to achieve the optimal control of the system.

8、下一时刻重复1-7,以获取下一时刻的最优电压矢量。8. Repeat 1-7 at the next moment to obtain the optimal voltage vector at the next moment.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (7)

1. A predictive control method for a variable-frequency speed control system of an induction motor under a three-phase four-switch power converter topology is characterized by comprising the following steps:
(1) three-phase current i is respectively measured by the existing current Hall sensor, voltage Hall sensor and photoelectric coded disc speed sensor in the induction motor driving systema k,ib k,ic kTwo DC side capacitor voltages UC1 k,UC2 kAnd motor speed ω;
(2) by measuring two DC-side capacitor voltages UC1 k,UC2 kCalculating voltage vectors V corresponding to four switch combinations1,V2,V3,V4Value at the present moment and based on the measured three-phase currents ia k,ib k,ic kSignal calculation of current vectorWherein the four switch combinations are 00,10,11, 01;
(3) by measuring motor speed omega and current vectorEstimating stator flux linkageAnd rotor flux linkage
(4) Predicting all voltage vectors V from a motor model and an inverter model1,V2,V3,V4Corresponding capacitor voltageStator flux linkageAnd electromagnetic torque
(5) Using predicted individual voltage vectors V1,V2,V3,V4Corresponding capacitor voltageStator flux linkageAnd electromagnetic torqueCalculating a cost function, and taking a voltage vector which minimizes the cost function as an optimal voltage vector;
(6) and (3) applying a switching signal corresponding to the optimal voltage vector, wherein the corresponding relation between the voltage vector and the switching signal is the same as that in the step (2).
2. The method of claim 1, wherein step (2) is performed by measuring the capacitance voltage UC1 k,UC2 kCalculating voltage vectors V corresponding to four switch combinations1,V2,V3,V4The current time value is specifically:
voltage vector V corresponding to switch combination 001=2·UC2 k/3;
Voltage vector corresponding to switch combination 10
Voltage vector corresponding to switch combination 11
Voltage vector V corresponding to switch combination 014=-2·UC1 k/3。
3. A method according to claim 1 or 2, characterized in that in step (2) the measured three-phase currents i are used as a basisa k,ib k,ic kSignal calculation of current vectorValue of (2), concrete rootCalculated according to the following formula:
<mrow> <msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>=</mo> <msup> <msub> <mi>i</mi> <mi>a</mi> </msub> <mi>k</mi> </msup> <mo>+</mo> <mi>j</mi> <mo>&amp;CenterDot;</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>3</mn> </mfrac> <mrow> <mo>(</mo> <msup> <msub> <mi>i</mi> <mi>a</mi> </msub> <mi>k</mi> </msup> <mo>+</mo> <mn>2</mn> <mo>&amp;times;</mo> <msup> <msub> <mi>i</mi> <mi>b</mi> </msub> <mi>k</mi> </msup> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
4. a method according to claim 1 or 2, characterized in that step (3) is performed by measuring the motor speed ω and the current vectorEstimating stator flux linkageAnd rotor flux linkageThe method specifically comprises the following steps:
<mrow> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>r</mi> </msub> <mi>k</mi> </msup> <mo>=</mo> <mfrac> <mi>&amp;tau;</mi> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;tau;</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>r</mi> </msub> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <mrow> <mn>1</mn> <mo>-</mo> <mi>j</mi> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>&amp;tau;</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>,</mo> </mrow>
<mrow> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>=</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>r</mi> </msub> <mi>k</mi> </msup> <mo>+</mo> <msub> <mi>&amp;sigma;L</mi> <mi>s</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>,</mo> </mrow>
wherein L iss,Lm,LrRespectively stator inductance, excitation inductance and rotor inductance, Rr、RsRespectively rotor resistance and stator resistance, TsIs the sampling time, kr=Lm/LrIs the mutual inductance coefficient of the rotor,is the magnetic leakage coefficient, τr=Lr/RrIs the rotor time constant.
5. The method according to claim 4, wherein all the voltage vectors V are predicted in the step (4) based on the motor model and the inverter model1,V2,V3,V4Corresponding capacitor voltage The method specifically comprises the following steps:
predicted value of capacitor voltage Is composed of
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mi>k</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>C</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>c</mi> <mn>1</mn> </mrow> </msub> <mi>k</mi> </msup> <mo>&amp;CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <msub> <mi>U</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mi>k</mi> </msup> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>C</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <msub> <mi>i</mi> <mrow> <mi>d</mi> <mi>c</mi> <mn>2</mn> </mrow> </msub> <mi>k</mi> </msup> <mo>&amp;CenterDot;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> </mrow>
Wherein the capacitance current idc1,idc2Is taken as follows
idc1 k=ib k·Sb+ic k·Sc
idc2 k=ib k·(1-Sb)+ic k·(1-Sc),
Sb,ScIndicating the switch state.
6. The method according to claim 4, wherein all the voltage vectors V are predicted in the step (4) based on the motor model and the inverter model1,V2,V3,V4Corresponding stator flux linkageAnd electromagnetic torqueThe method specifically comprises the following steps:
predicting a current vector at a next time instantThe following were used:
<mrow> <msup> <msub> <mover> <mover> <mi>i</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>&amp;sigma;</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <mrow> <msub> <mi>&amp;tau;</mi> <mi>&amp;sigma;</mi> </msub> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mo>{</mo> <mfrac> <mn>1</mn> <msub> <mi>R</mi> <mi>&amp;sigma;</mi> </msub> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mo>(</mo> <mrow> <mfrac> <msub> <mi>k</mi> <mi>r</mi> </msub> <msub> <mi>&amp;tau;</mi> <mi>r</mi> </msub> </mfrac> <mo>-</mo> <mi>j</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>&amp;omega;</mi> </mrow> <mo>)</mo> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>r</mi> </msub> <mi>k</mi> </msup> <mo>+</mo> <msup> <msub> <mover> <mi>v</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>)</mo> </mrow> <mo>}</mo> <mo>,</mo> </mrow>
wherein,is the equivalent resistance, Lσ=σLsIs the leakage inductance, tau, of the motorσ=σLs/RσWhich represents a vector of voltages that is,
predicting stator flux linkage based on predicted current vectorAnd electromagnetic torque
<mrow> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>+</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mi>v</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>-</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mi>k</mi> </msup> <mo>,</mo> </mrow>
<mrow> <msubsup> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>e</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mi>p</mi> <mo>&amp;CenterDot;</mo> <mi>Im</mi> <mo>{</mo> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;CenterDot;</mo> <msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>}</mo> <mo>,</mo> </mrow>
Wherein p is the induction machine pole pair number, and Im is represented by the imaginary part of a complex number.
7. The method of claim 1 or 2, wherein the step (5) is performed by using predictionEach voltage vector V of1,V2,V3,V4Corresponding capacitor voltageStator flux linkageAnd electromagnetic torqueCalculating a cost function, specifically:
g according to a cost functioniCalculating each voltage vector V separately1,V2,V3,V4The value of the corresponding cost function is determined,
<mrow> <msub> <mi>g</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mrow> <msubsup> <mi>T</mi> <mi>e</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mrow> <mo>(</mo> <msubsup> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>e</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> <mo>|</mo> </mrow> <msub> <mi>T</mi> <msub> <mi>e</mi> <mrow> <mi>n</mi> <mi>o</mi> <mi>m</mi> </mrow> </msub> </msub> </mfrac> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mn>0</mn> </msub> <mfrac> <mrow> <mo>|</mo> <mrow> <mo>|</mo> <mo>|</mo> <msup> <msub> <mover> <mi>&amp;psi;</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mo>*</mo> </msup> <mo>|</mo> <mo>|</mo> <mo>-</mo> <mo>|</mo> <mo>|</mo> <msub> <mrow> <mo>(</mo> <msup> <msub> <mover> <mover> <mi>&amp;psi;</mi> <mo>^</mo> </mover> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mover> <mi>&amp;psi;</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mo>|</mo> <msub> <mo>|</mo> <mrow> <mi>n</mi> <mi>o</mi> <mi>m</mi> </mrow> </msub> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mrow> <mo>(</mo> <msup> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>i</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>(</mo> <msup> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>i</mi> </msub> </mrow> <mo>|</mo> </mrow> <msub> <mi>V</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> </mfrac> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>}</mo> </mrow>
wherein Respectively the rated torque and the rated flux linkage of the induction machine,for the purpose of the torque giving,for the given absolute value of the flux linkage, | - | symbol is the solving absolute value, | | | - | is the solving absolute value of the complex quantity, obtained according to the motor nameplate parameter, λ0,λdcAll the parameters are adjustable parameters, the parameters are obtained by a trial-and-error method, the overall performance of the system is optimal, and the index i is dividedRespectively, parameters calculated from the four voltage vectors.
CN201410474341.2A 2014-09-17 2014-09-17 A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four Active CN105490604B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410474341.2A CN105490604B (en) 2014-09-17 2014-09-17 A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410474341.2A CN105490604B (en) 2014-09-17 2014-09-17 A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four

Publications (2)

Publication Number Publication Date
CN105490604A CN105490604A (en) 2016-04-13
CN105490604B true CN105490604B (en) 2018-03-27

Family

ID=55677387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410474341.2A Active CN105490604B (en) 2014-09-17 2014-09-17 A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four

Country Status (1)

Country Link
CN (1) CN105490604B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017197473A1 (en) * 2016-05-16 2017-11-23 FUNDAÇÃO CPQD - Centro de Pesquisa e Desenvolvimento em Telecomunicações Predictive method for controlling a direct current bus and switching a two-level inverter for uses in electromechanical energy conversion
EP3320612A1 (en) * 2016-07-07 2018-05-16 Huawei Technologies Co., Ltd. Four-switch three phase dc-dc resonant converter
CN106788001B (en) * 2016-12-02 2019-04-26 天津大学 Current fluctuation suppression method of brushless DC motor driven by four-switch three-phase inverter
CN107070350B (en) * 2017-01-18 2020-05-22 西安交通大学 Prediction control method for reducing EMI (electro-magnetic interference) of inverter induction motor
CN108512473B (en) * 2018-03-12 2020-06-16 武汉科技大学 Direct torque control method of three-phase four-switch permanent magnet synchronous motor speed control system
CN108448986B (en) * 2018-03-28 2021-03-12 天津大学 Current control method of permanent magnet motor based on adjustable bandwidth predictive control
CN108599652B (en) * 2018-04-26 2019-11-08 浙江大学 Model predictive control method for three-phase four-switch permanent magnet synchronous motor system based on effective switching time
CN110112960B (en) * 2019-04-09 2020-05-19 华中科技大学 Control system and method under double-motor multi-power bridge arm fault
CN111654219B (en) * 2020-06-17 2023-09-19 中南大学 A kind of asynchronous motor fault-tolerant control method and equipment
CN111969914B (en) * 2020-07-21 2021-09-07 北方工业大学 Deadbeat current predictive control method and device for permanent magnet synchronous motor, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960157A (en) * 2006-11-10 2007-05-09 南京航空航天大学 Motor driver of biconvex poles
JP2008295161A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd Power converter
CN101453182A (en) * 2008-12-30 2009-06-10 天津大学 Motor uni-current sensor controlling method and apparatus based on four switch inversion bridge
CN101741299A (en) * 2010-01-20 2010-06-16 哈尔滨工业大学 Speed regulation method of brushless DC motor powered by four-switch three-phase inverter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960157A (en) * 2006-11-10 2007-05-09 南京航空航天大学 Motor driver of biconvex poles
JP2008295161A (en) * 2007-05-23 2008-12-04 Daikin Ind Ltd Power converter
CN101453182A (en) * 2008-12-30 2009-06-10 天津大学 Motor uni-current sensor controlling method and apparatus based on four switch inversion bridge
CN101741299A (en) * 2010-01-20 2010-06-16 哈尔滨工业大学 Speed regulation method of brushless DC motor powered by four-switch three-phase inverter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Predictive torque and flux control of a four-switch inverter-fed IM drive;Md Habibullah et al.;《Future Energy Electronics Conference (IFEEC), 2013 1st International》;20131219;第629-634页 *

Also Published As

Publication number Publication date
CN105490604A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105490604B (en) A kind of forecast Control Algorithm of the inductive switching motor variable speed system of three-phase four
CN108306568B (en) PMSM load disturbance resistant self-adaptive integral backstepping control method for elevator
CN109194219B (en) A method and system for permanent magnet synchronous motor control based on model-free non-singular terminal sliding mode
CN104022708B (en) Electric variable-pitch driving system by speed sensorless technology and method thereof
CN109560736A (en) Method for controlling permanent magnet synchronous motor based on second-order terminal sliding formwork
CN105075104B (en) Method for determining the excitation curve of induction machine and the system of rotor resistance and manufacturing it
CN104283478A (en) A permanent magnet synchronous motor current control system and control method for electric vehicles
CN104104301B (en) Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor
CN102035456A (en) Direct torque control system of permanent magnet synchronous motor based on terminal sliding mode
CN106026803A (en) Speed sensorless control method based on sliding-mode observer
CN107390071A (en) The simulation system of current-responsive type three-phase permanent magnet synchronous motor
CN105680754A (en) D-axis and A-axis current vector composite controller of permanent-magnet synchronous motor
CN106330038B (en) A Sensorless Control Method for PMLSM Based on Adaptive Gain Sliding Mode Observer
CN108233807A (en) Dead beat Direct Torque Control based on the identification of permanent magnet flux linkage sliding formwork
CN104270063A (en) Fault-tolerant direct torque control method for six-phase permanent magnet synchronous motor lacking any two phases of windings
CN105634364B (en) A kind of three-phase four switchs the suppressing method of capacitance voltage drift in frequency conversion speed-adjusting system
CN105471329B (en) Ac synchronous motor system torque impulse balance control method
CN108512473B (en) Direct torque control method of three-phase four-switch permanent magnet synchronous motor speed control system
CN109936320A (en) A direct torque control method for dual motors in series based on duty cycle modulation
CN104967365B (en) A kind of control method of Five-phase inverter double three-phase machine system
CN105007015B (en) A kind of model predictive control method of the controlled rectification frequency conversion speed-adjusting system of five bridge arms
CN108377117A (en) Permanent magnet synchronous motor recombination current control system based on PREDICTIVE CONTROL and method
CN107276479A (en) A kind of two-phase orthogonal winding permagnetic synchronous motor rotating speed determines method
CN105743404A (en) Model prediction control method for four-quadrant induction motor driving system
CN104977850B (en) It is a kind of based on fractional order fallout predictor without Time-delay Robust control method of servo motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant