CN105490530A - Quasi Z source converter employing switched inductor and voltage lifting technique - Google Patents
Quasi Z source converter employing switched inductor and voltage lifting technique Download PDFInfo
- Publication number
- CN105490530A CN105490530A CN201511010663.2A CN201511010663A CN105490530A CN 105490530 A CN105490530 A CN 105490530A CN 201511010663 A CN201511010663 A CN 201511010663A CN 105490530 A CN105490530 A CN 105490530A
- Authority
- CN
- China
- Prior art keywords
- diode
- capacitor
- inductor
- voltage
- inductance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 3
- 239000003990 capacitor Substances 0.000 claims abstract description 52
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种采用开关电感和电压举升技术的准Z源变换器。所述变换器包括直流输入电源<i>Vin</i>、第一二极管(<i>D</i>1)、第一电感(<i>L</i>1)、第二二极管(<i>D</i>2)、第二电感(<i>L</i>2)、第三二极管(<i>D</i>3)、第二电容(<i>C</i>2)、第四二极管(<i>D</i>4)、第一电容(<i>C</i>1)、第五二极管(<i>D</i>5)、第三电容(<i>C</i>3)、第三电感(<i>L</i>3)、第四电感(<i>L</i>4)、第六二极管(<i>D</i>6)、开关管(<i>S</i>)、第七二极管(<i>D</i>7)、输出电容(<i>Cout</i>)和负载。本发明相比于Boost变换器、开关电感型准Z源变换器等具有较高的电压增益,适用于非隔离型高增益直流电压变换的场合。
The invention provides a quasi-Z source converter adopting switching inductance and voltage lifting technology. The converter includes a DC input power source <i>V in </i>, a first diode (<i>D</i> 1 ), a first inductor (<i>L</i> 1 ), Second diode (<i>D</i> 2 ), second inductor (<i>L</i> 2 ), third diode (<i>D</i> 3 ), second Second capacitor (<i>C</i> 2 ), fourth diode (<i>D</i> 4 ), first capacitor (<i>C</i> 1 ), fifth diode tube (<i>D</i> 5 ), third capacitor (<i>C</i> 3 ), third inductor (<i>L</i> 3 ), fourth inductor (<i>L</i> 4 ), sixth diode (<i>D</i> 6 ), switch tube (<i>S</i>), seventh diode (<i>D</i>i> 7 ), the output capacitor (<i>C out </i>) and the load. Compared with Boost converters, switch inductance type quasi-Z source converters and the like, the invention has higher voltage gain, and is suitable for the occasion of non-isolated high-gain DC voltage conversion.
Description
技术领域technical field
本发明涉及DC/DC变换器领域,具体涉及一种采用开关电感和电压举升技术的准Z源变换器。The invention relates to the field of DC/DC converters, in particular to a quasi-Z source converter using switching inductance and voltage lifting technology.
背景技术Background technique
近年来,随着石油、煤炭等化石能源的日益枯竭,世界各国都在大力开发新型可再生清洁能源,如太阳能、燃料电池和风能等。而可再生能源发电系统通常需要具有较强升压能力的直流功率变换器,将从可再生能源中获得的低压直流电(18~50V)转换为足够高的直流电压(200~400V),然后再进行逆变以并网发电。但许多升压DC/DC变换器受到寄生参数、生热和损耗的限制,无法实现大幅度的升压,如Boost变换器,其电压增益为1/(1-D),D为占空比,但由于寄生参数的影响,其增益受到限制;又如双开关电感型准Z源变换器,其电压增益为(1+D)/(1-3D),较Boost变换器有了很大的提高,但仍有提升的空间。In recent years, with the depletion of fossil energy such as petroleum and coal, countries all over the world are vigorously developing new renewable clean energy, such as solar energy, fuel cells and wind energy. Renewable energy power generation systems usually require a DC power converter with strong boost capability to convert the low-voltage DC (18-50V) obtained from renewable energy into a high enough DC voltage (200-400V), and then Invert to generate electricity on the grid. However, many step-up DC/DC converters are limited by parasitic parameters, heat generation and loss, and cannot achieve a large boost. For example, the Boost converter has a voltage gain of 1/(1-D), where D is the duty cycle , but due to the influence of parasitic parameters, its gain is limited; another example is the dual-switch inductive quasi-Z source converter, its voltage gain is (1+D)/(1-3D), which has a great improvement compared with the Boost converter improved, but there is still room for improvement.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术的不足,提出一种采用开关电感和电压举升技术的准Z源变换器。The object of the present invention is to overcome the shortcomings of the above-mentioned prior art, and propose a quasi-Z source converter using switched inductance and voltage boosting technology.
本发明电路中具体包括直流输入电源Vin、第一二极管、第一电感、第二二极管、第二电感、第三二极管、第二电容、第四二极管、第一电容、第五二极管、第三电容、第三电感、第四电感、第六二极管、开关管、第七二极管、输出电容和负载。The circuit of the present invention specifically includes a DC input power supply V in , a first diode, a first inductance, a second diode, a second inductance, a third diode, a second capacitor, a fourth diode, a first Capacitor, fifth diode, third capacitor, third inductor, fourth inductor, sixth diode, switch tube, seventh diode, output capacitor and load.
本发明电路具体的连接方式为:所述的直流输入电源Vin的正极与第一二极管的阳极和第一电感的一端连接。所述的第一二极管的阴极与第二二极管的阴极和第二电感的一端连接。所述的第二二极管的阳极与第一电感的另外一端和第三二极管的阳极连接。所述的第二电感的另外一端与第三二极管的阴极、第二电容的一端和第四二极管的阳极连接。所述的第四二极管的阴极与第一电容的一端、第五二极管的阳极和第三电感的一端连接。所述的第五二极管的阴极与第三电容的一端和第四电感的一端连接。所述的第三电容的另外一端与第三电感的另外一端和第六二极管的阳极连接。所述的第六二极管的阴极与第四电感的另外一端、第二电容的另外一端、开关管的漏极和第七二极管的阳极连接。所述的第七二极管的阴极与输出电容的一端和负载的一端连接。所述的输出电容与负载并联。所述的直流输入电源Vin的负极与第一电容的另外一端、开关管的源极、输出电容的另外一端和负载的另外一端连接。The specific connection mode of the circuit of the present invention is as follows: the anode of the DC input power supply V in is connected to the anode of the first diode and one end of the first inductor. The cathode of the first diode is connected with the cathode of the second diode and one end of the second inductance. The anode of the second diode is connected with the other end of the first inductor and the anode of the third diode. The other end of the second inductor is connected to the cathode of the third diode, one end of the second capacitor and the anode of the fourth diode. The cathode of the fourth diode is connected with one end of the first capacitor, the anode of the fifth diode and one end of the third inductor. The cathode of the fifth diode is connected with one end of the third capacitor and one end of the fourth inductor. The other end of the third capacitor is connected to the other end of the third inductor and the anode of the sixth diode. The cathode of the sixth diode is connected with the other end of the fourth inductance, the other end of the second capacitor, the drain of the switch tube and the anode of the seventh diode. The cathode of the seventh diode is connected with one end of the output capacitor and one end of the load. The output capacitor is connected in parallel with the load. The negative pole of the DC input power supply Vin is connected to the other end of the first capacitor, the source of the switch tube, the other end of the output capacitor and the other end of the load.
与现有技术相比,本发明电路具有的优势为:相比于传统的Boost变换器(其输出电压为)和双开关电感型准Z源变换器(其输出电压为)等DC/DC变换器,在相同的占空比和输入电压的情况下,具有更高的输出电压,输出电压为在相同的输入电压和输出电压条件下,本发明电路只需要较小的占空比就可以将低等级电压升至高等级的电压,而且输入输出共地等,因此本发明电路具有很广泛的应用前景。Compared with prior art, the advantage that circuit of the present invention has is: compared with traditional Boost converter (its output voltage is ) and a two-switch inductive quasi-Z source converter (its output voltage is ) and other DC/DC converters, in the case of the same duty cycle and input voltage, have a higher output voltage, the output voltage is Under the same input voltage and output voltage conditions, the circuit of the present invention can raise the low-level voltage to a high-level voltage only with a small duty cycle, and the input and output share the same ground, so the circuit of the present invention has a wide range of applications prospect.
附图说明Description of drawings
图1为一种采用开关电感和电压举升技术的准Z源变换器结构图。Figure 1 is a structural diagram of a quasi-Z source converter using switched inductors and voltage boost technology.
图2为一个开关周期主要元件的电压电流波形图。Figure 2 is a voltage and current waveform diagram of the main components of a switching cycle.
图3a、图3b为一个开关周期内电路模态图。Figure 3a and Figure 3b are circuit modal diagrams in a switching cycle.
图4为提出的电路、Boost和双开关电感型准Z源变换器的增益Vout/Vin随占空比D变化的波形图。Fig. 4 is the waveform diagram of the gain V out /V in of the proposed circuit, Boost and dual-switch inductive quasi-Z source converters as a function of the duty cycle D.
具体实施方式detailed description
为以下结合实施例及附图对本发明作进一步详细的描述说明,但本发明的实施方式不限于此。需指出的是,以下若有未特别详细说明之过程或参数,均是本领域技术人员可参照现有技术理解或实现的。The present invention will be described in further detail in conjunction with the following examples and accompanying drawings, but the embodiments of the present invention are not limited thereto. It should be noted that, if there are any processes or parameters that are not specifically described in detail below, those skilled in the art can understand or implement them with reference to the prior art.
本发明的基本拓扑结构和各主要元件电压电流参考方向如图1所示。为了验证方便,电路结构中的器件均视为理想器件。开关管S的驱动信号vGS、第一二极管D1电流iD1、第二二极管D2电流iD2、第三二极管D3电流iD3、第四二极管D4电流iD4、第五二极管D5电流iD5、第六二极管D6电流iD6、第七二极管D7电流iD7、第一电感L1电流iL1、第二电感L2电流iL2、第三电感L3电流iL3、第四电感L4电流iL4、第一电容C1电压VC1、第二电容C2电压VC2、第三电容C3电压VC3的波形图如图2所示。The basic topological structure of the present invention and the reference directions of voltage and current of each main component are shown in FIG. 1 . For the convenience of verification, the devices in the circuit structure are regarded as ideal devices. The drive signal v GS of the switching tube S, the current i D1 of the first diode D 1 , the current i D2 of the second diode D 2 , the current i D3 of the third diode D 3 , the current i D 4 of the fourth diode D 4 i D4 , fifth diode D 5 current i D5 , sixth diode D 6 current i D6 , seventh diode D 7 current i D7 , first inductor L 1 current i L1 , second inductor L 2 Waveforms of current i L2 , current i L3 of the third inductor L 3 , current i L4 of the fourth inductor L 4 , voltage V C1 of the first capacitor C 1 , voltage V C2 of the second capacitor C 2 , and voltage V C3 of the third capacitor C 3 The picture is shown in Figure 2.
在t0~t1阶段,变换器在此阶段的模态图如图3a所示,开关管S的驱动信号vGS从低电平变为高电平,开关管S导通,第一二极管D1、第三二极管D3、第五二极管D5和第六二极管D6承受正向电压导通,第二二极管D2、第四二极管D4和第七二极管D7承受反向电压截止。直流输入电源Vin与第二电容C2通过第一二极管D1和开关管S同时给第二电感L2充电,直流输入电源Vin与第二电容C2通过第三二极管D3和开关管S同时给第一电感L1充电,第一电容C1通过第五二极管D5和开关管S给第四电感L4充电,第一电容C1通过第六二极管D6和开关管S给第三电感L3充电,第一电容C1通过第五二极管D5、第六二极管D6和开关管S给第三电容C3充电。此外,输出电容Cout给负载供电。In the t 0 ~ t 1 stage, the modal diagram of the converter at this stage is shown in Figure 3a, the driving signal v GS of the switch tube S changes from low level to high level, the switch tube S is turned on, and the first two The pole diode D 1 , the third diode D 3 , the fifth diode D 5 and the sixth diode D 6 are subjected to forward voltage conduction, and the second diode D 2 and the fourth diode D 4 And the seventh diode D7 withstands the reverse voltage cut-off. The DC input power V in and the second capacitor C 2 charge the second inductor L 2 simultaneously through the first diode D 1 and the switch tube S, and the DC input power V in and the second capacitor C 2 pass through the third diode D 3 and the switch tube S charge the first inductor L 1 at the same time, the first capacitor C 1 charges the fourth inductor L 4 through the fifth diode D 5 and the switch tube S, and the first capacitor C 1 charges the fourth inductor L 4 through the sixth diode D 6 and the switch tube S charge the third inductor L 3 , and the first capacitor C 1 charges the third capacitor C 3 through the fifth diode D 5 , the sixth diode D 6 and the switch tube S. In addition, the output capacitor C out supplies power to the load.
在t1~t2阶段,变换器在此阶段的模态图如图3b所示,开关管S的驱动信号vGS从高电平变为低电平,开关管S关断,第一二极管D1、第三二极管D3、第五二极管D5和第六二极管D6承受反向电压截止,第二二极管D2、第四二极管D4和第七二极管D7承受正向电压导通。直流输入电源Vin与第一电感L1和第二电感L2通过第二二极管D2、第四二极管D4和第七二极管D7同时给第一电容C1、第二电容C2、输出电容Cout和负载充电,第三电感L3、第四电感L4和第三电容C3通过第四二极管D4和第七二极管D7同时给第一电容C1、第二电容C2、输出电容Cout和负载充电。此外,直流输入电源Vin、第一电感L1、第二电感L2、第三电感L3、第四电感L4和第三电容C3通过第二二极管D2、第四二极管D4和第七二极管D7同时给输出电容Cout和负载供电。In the stage t 1 ~ t 2 , the modal diagram of the converter at this stage is shown in Figure 3b. The driving signal v GS of the switch tube S changes from high level to low level, and the switch tube S is turned off. Diode D 1 , third diode D 3 , fifth diode D 5 and sixth diode D 6 are cut off under reverse voltage, and second diode D 2 , fourth diode D 4 and The seventh diode D 7 is turned on under forward voltage. The DC input power supply V in and the first inductor L 1 and the second inductor L 2 simultaneously supply the first capacitor C 1 and the second capacitor C 1 through the second diode D 2 , the fourth diode D 4 and the seventh diode D 7 The second capacitor C 2 , the output capacitor C out and the load are charged, and the third inductance L 3 , the fourth inductance L 4 and the third capacitor C 3 simultaneously charge the first capacitor through the fourth diode D 4 and the seventh diode D 7 The capacitor C 1 , the second capacitor C 2 , the output capacitor C out and the load are charged. In addition, the DC input power supply V in , the first inductor L 1 , the second inductor L 2 , the third inductor L 3 , the fourth inductor L 4 and the third capacitor C 3 pass through the second diode D 2 , the fourth diode The tube D4 and the seventh diode D7 supply power to the output capacitor C out and the load at the same time.
本发明电路的稳态增益推导如下。The steady-state gain of the circuit of the present invention is derived as follows.
由于第一电感L1与第二电感L2的电感值相等,第三电感L3与第四电感L4的电感值相等,则第一电感L1与第二电感L2的电压、电流相等,第三电感L3与第四电感L4的电压、电流相等。Since the inductance values of the first inductance L1 and the second inductance L2 are equal, and the inductance values of the third inductance L3 and the fourth inductance L4 are equal, the voltage and current of the first inductance L1 and the second inductance L2 are equal , the voltage and current of the third inductor L3 and the fourth inductor L4 are equal.
由第一电感L1与第二电感L2、第三电感L3、第四电感L4的电压在一个开关周期内的平均值为零,可得到下列关系式。Since the average value of the voltages of the first inductor L 1 , the second inductor L 2 , the third inductor L 3 , and the fourth inductor L 4 is zero within one switching cycle, the following relationship can be obtained.
又当开关管(S)关断时,输出电压Vout满足下列关系式。And when the switch tube (S) is turned off, the output voltage V out satisfies the following relationship.
Vout=VC1+VC2(3)V out =V C1 +V C2 (3)
联立求解式(1)、(2)、(3)可得到输出电压Vout与直流输入电压Vin的关系。Simultaneously solving equations (1), (2) and (3) can obtain the relationship between the output voltage V out and the DC input voltage V in .
传统Boost变换器与双开关电感型准Z源变换器的稳态增益分别为1/(1-D)和(1+D)/(1-3D)(D为占空比),本发明所提电路与Boost变换器、开关电感型准Z源变换器的稳态增益比较图如图4所示,从图4可知,当输入电压为10V时,本发明提出的电路只需占空比为0.2就可以升至150V左右,而另两种变换器则需要较大的占空比。The steady-state gains of the traditional Boost converter and the double-switch inductance type quasi-Z source converter are respectively 1/(1-D) and (1+D)/(1-3D) (D is the duty cycle), and the present invention The steady-state gain comparison diagram of the proposed circuit and the Boost converter and the switched inductance type quasi-Z source converter is shown in Figure 4, as can be seen from Figure 4, when the input voltage is 10V, the circuit proposed by the present invention only needs a duty cycle of 0.2 can rise to about 150V, while the other two converters require a larger duty cycle.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511010663.2A CN105490530A (en) | 2015-12-27 | 2015-12-27 | Quasi Z source converter employing switched inductor and voltage lifting technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511010663.2A CN105490530A (en) | 2015-12-27 | 2015-12-27 | Quasi Z source converter employing switched inductor and voltage lifting technique |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105490530A true CN105490530A (en) | 2016-04-13 |
Family
ID=55677326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201511010663.2A Pending CN105490530A (en) | 2015-12-27 | 2015-12-27 | Quasi Z source converter employing switched inductor and voltage lifting technique |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105490530A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106374740A (en) * | 2016-10-19 | 2017-02-01 | 成都言行果科技有限公司 | Boosting circuit with high heat dissipation |
CN107070221A (en) * | 2017-04-11 | 2017-08-18 | 华南理工大学 | A kind of controllable high-gain DC voltage changer of output capacity |
CN113572360A (en) * | 2021-08-20 | 2021-10-29 | 南通大学 | Three-port converter with soft switching capability and control method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205336109U (en) * | 2015-12-27 | 2016-06-22 | 华南理工大学 | Adopt switched inductor and voltage lifting technology's accurate Z source converter |
-
2015
- 2015-12-27 CN CN201511010663.2A patent/CN105490530A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN205336109U (en) * | 2015-12-27 | 2016-06-22 | 华南理工大学 | Adopt switched inductor and voltage lifting technology's accurate Z source converter |
Non-Patent Citations (2)
Title |
---|
杨立强: "阻抗源DC-DC变换器的构造研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 * |
王嘉明,等: "改进型开关电感准Z源逆变器", 《电器与能效管理技术》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106374740A (en) * | 2016-10-19 | 2017-02-01 | 成都言行果科技有限公司 | Boosting circuit with high heat dissipation |
CN107070221A (en) * | 2017-04-11 | 2017-08-18 | 华南理工大学 | A kind of controllable high-gain DC voltage changer of output capacity |
CN113572360A (en) * | 2021-08-20 | 2021-10-29 | 南通大学 | Three-port converter with soft switching capability and control method thereof |
CN113572360B (en) * | 2021-08-20 | 2022-05-17 | 南通大学 | Three-port converter with soft switching capability and control method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016177011A1 (en) | Ground-sharing high-gain z source boost converter | |
CN105490523A (en) | Switching quasi-Z-source boost converter | |
CN105490536A (en) | High-gain voltage-lifting quasi Z source converter | |
CN107104590A (en) | A kind of quasi- boost switching DC/DC converters based on switched inductors | |
CN105490530A (en) | Quasi Z source converter employing switched inductor and voltage lifting technique | |
CN205336108U (en) | Mixed type Z source converter | |
CN205336109U (en) | Adopt switched inductor and voltage lifting technology's accurate Z source converter | |
CN105529918A (en) | A High Gain Trans-Z Source Boost Converter | |
CN205453494U (en) | A Hybrid Quasi-Z Source Converter with Continuous Input Current | |
CN205336112U (en) | High -gain trans -Z source booster converter | |
CN205622507U (en) | Take a percentage inductance and switched inductor's accurate Z source converter of adoption | |
CN206211838U (en) | A kind of quasi- Z sources DC DC converters of coupling inductance type | |
CN205622511U (en) | Accurate Z source converter of high -gain voltage type of lifting | |
CN205622506U (en) | Accurate Z source converter of inductor type that takes a percentage | |
CN206272489U (en) | An Improved Single-Switch DC High-Gain Converter | |
CN205336114U (en) | Accurate Z source converter of modified switched inductor type | |
CN105490529A (en) | Hybrid Z-source converter | |
CN205336111U (en) | Adopt switched inductor 's trans -Z source converter | |
CN105763045A (en) | Coupled inductor quasi-Z-source DC-DC converter | |
CN103633844B (en) | A kind of magnetic coupling type high-gain DC/DC changer | |
CN105763044A (en) | Taping inductor quasi-Z-source converter | |
CN205336115U (en) | Adopt transformer and voltage lifting technology's accurate Z source converter | |
CN205622503U (en) | Accurate Z source type booster converter of switch | |
CN205377662U (en) | Adopt accurate Z source converter of transformer | |
CN205622505U (en) | High -gain accurate Z source converter of inductor type that takes a percentage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160413 |
|
RJ01 | Rejection of invention patent application after publication |