CN105487052A - Compressed sensing LASAR sparse linear array optimization method based on low coherence - Google Patents
Compressed sensing LASAR sparse linear array optimization method based on low coherence Download PDFInfo
- Publication number
- CN105487052A CN105487052A CN201510896894.1A CN201510896894A CN105487052A CN 105487052 A CN105487052 A CN 105487052A CN 201510896894 A CN201510896894 A CN 201510896894A CN 105487052 A CN105487052 A CN 105487052A
- Authority
- CN
- China
- Prior art keywords
- array antenna
- lasar
- array
- denoted
- sparse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9094—Theoretical aspects
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于低相干性的压缩感知LASAR稀布线阵优化方法,它是利用压缩感知理论中测量矩阵的相干性特性作为压缩感知LASAR稀疏线阵优化的参考依据,基于LASAR系统中压缩感知测量矩阵相干性的最小化,借助傅里叶变换迭代搜索方法,实现了压缩传感LASAR稀布线阵天线的阵元分布优化设计,对稀疏线阵优化更为合理,有利于提高压缩感知LASAR系统的成像性能。本发明提出的方法也适用于其它基于压缩感知的稀布线阵天线优化技术领域。
The invention discloses a low-coherence-based compression sensing LASAR sparse line array optimization method, which uses the coherence characteristics of the measurement matrix in the compressed sensing theory as a reference basis for compressive sensing LASAR sparse line array optimization, and is based on the compressed sensing method in the LASAR system. The minimization of the coherence of the perceptual measurement matrix, with the help of the Fourier transform iterative search method, realizes the optimal design of the array element distribution of the compressed sensing LASAR sparse wiring array antenna, which is more reasonable for the sparse linear array optimization and is conducive to improving the compressed sensing LASAR System imaging performance. The method proposed by the invention is also applicable to other technical fields of sparse wiring array antenna optimization based on compressed sensing.
Description
技术领域:Technical field:
本技术发明属于雷达技术领域,它特别涉及了合成孔径雷达(SAR)成像技术和阵列天线设计技术领域。The technical invention belongs to the technical field of radar, and in particular relates to the technical fields of synthetic aperture radar (SAR) imaging technology and array antenna design.
背景技术:Background technique:
由于具有全天时、全天候和大场景观测等优势,合成孔径雷达(SAR)已成为当今大面积地形测绘的一项重要遥感技术,在地形测绘、自然灾害监测和自然资源调查等领域发挥越来越大的作用。线阵SAR(LASAR)是传统二维SAR成像技术目标维数空间分辨能力的扩展,可以获得观测目标场景的三维雷达成像,能够更加精细地描述观测场景中目标的几何和散射特征,较传统二维SAR提高了雷达系统的目标特征提取和目标识别能力,成为了近年来SAR成像技术的热点研究课题(详见参考文献“张清娟,李道京,李烈辰.连续场景的稀疏阵列SAR侧视三维成像研究.电子与信息学报,2013,(5):1097-1102.”)。LASAR成像系统的基本原理是通过线阵天线的运动合成一个大的虚拟二维面阵天线,获得面阵平面内的二维高分辨,再结合脉冲压缩技术获得雷达视线方向高分辨率,从而实现对观测目标场景的三维成像。Due to its advantages of all-day, all-weather and large-scale scene observation, synthetic aperture radar (SAR) has become an important remote sensing technology for large-area topographic surveying and mapping. greater effect. Linear array SAR (LASAR) is an extension of the target dimension space resolution capability of traditional two-dimensional SAR imaging technology, which can obtain three-dimensional radar imaging of the observed target scene, and can more precisely describe the geometric and scattering characteristics of the target in the observed scene, compared with the traditional two-dimensional SAR imaging technology. Two-dimensional SAR has improved the target feature extraction and target recognition capabilities of radar systems, and has become a hot research topic in SAR imaging technology in recent years (see reference "Zhang Qingjuan, Li Daojing, Li Liechen. Sparse array SAR side-view 3D imaging research in continuous scenes. Journal of Electronics and Information, 2013, (5): 1097-1102.”). The basic principle of the LASAR imaging system is to synthesize a large virtual two-dimensional area array antenna through the motion of the linear array antenna to obtain two-dimensional high resolution in the plane of the area array, and then combine pulse compression technology to obtain high resolution in the direction of the radar line of sight, so as to realize Three-dimensional imaging of the observation target scene.
压缩感知稀疏重构作为一种近几年新提出的信号处理理论,突破了传统Nyquist采样定理约束,可利用远低于Nyquist采样率精确重构原始稀疏信号(详见参考文献“D.L.Donoho.Compressedsensing.IEEETransactionsonInformationTheory,2006,52(4):1289-1306”),在降低雷达系统采样率、提高成像质量等方面有着巨大的应用潜力。由于LASAR成像场景中目标大多数数都是空间稀疏分布的,因此压缩感知理论可与LASAR系统有机结合,产生了基于压缩感知的线阵三维SAR稀疏成像系统,实现LASAR成像系统的稀疏信号降采样及三维成像精度的提高(详见参考文献“S-J.WeiS,X-L.Zhang,J.Shi.LineararraySARimagingviacompressedsensing,ProgressInElectromagneticsResearch,2011,117(8):299-319.”)。As a newly proposed signal processing theory in recent years, compressed sensing sparse reconstruction breaks through the constraints of the traditional Nyquist sampling theorem, and can accurately reconstruct the original sparse signal with a sampling rate much lower than that of Nyquist (see reference "D.L.Donoho.Compressedsensing .IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306"), which has great application potential in reducing the sampling rate of radar systems and improving imaging quality. Since most of the targets in the LASAR imaging scene are spatially sparsely distributed, the compressed sensing theory can be combined with the LASAR system to produce a linear array 3D SAR sparse imaging system based on compressed sensing, which realizes the sparse signal downsampling of the LASAR imaging system. and the improvement of three-dimensional imaging accuracy (see reference "S-J.WeiS, X-L.Zhang, J.Shi.LineararraySARimagingviacompressedsensing, ProgressInElectromagneticsResearch, 2011, 117(8):299-319.").
线阵天线是LASAR成像系统的关键组成部分,为线阵三维SAR成像系统提供了第三维的成像分辨能力。但是,相对于传统SAR系统中单天线而言,LASAR系统中线阵天线多阵元也大大增加了硬件系统实现的难度和成本,导致LASAR回波数据量过大、数据传输、存储和成像困难等问题。为了降低LASAR硬件系统与数据处理的成本,在LASAR系统中通常采用稀布线阵天线来实现降采样回波数据采集,但稀布线阵天线的阵元数不满足传统雷达系统的Nyquist采样率,导致传统SAR成像方法精度和质量下降。然而,对于压缩感知成像方法,即使采用稀疏线阵天线,LASAR稀疏成像系统仍然可以保证成像的精度和质量,实现高精度的三维SAR成像(详见参考文献“李学仕,孙光才,徐刚等.基于压缩感知的下视三维SAR成像新方法.电子与信息学报,2012,34(5):1017-1023.”)。由于LASAR稀布线阵天线的阵元数目和分布方式直接决定了压缩感知成像方法的性能,需对稀布线阵天线的阵元进行分布优化。但由于压缩感知与传统成像理论存在本质的差别,对于基于压缩感知的LASAR稀疏成像系统,传统的线阵天线阵元优化方法无法适用于其系统中稀布线阵天线的阵元优化。The linear array antenna is a key component of the LASAR imaging system, which provides the third-dimensional imaging resolution capability for the linear array 3D SAR imaging system. However, compared with the single antenna in the traditional SAR system, the multi-array elements of the linear array antenna in the LASAR system also greatly increase the difficulty and cost of hardware system implementation, resulting in excessive LASAR echo data volume, difficulties in data transmission, storage and imaging, etc. question. In order to reduce the cost of LASAR hardware system and data processing, sparse wiring array antennas are usually used in LASAR systems to achieve down-sampled echo data acquisition, but the number of array elements of sparse wiring array antennas does not meet the Nyquist sampling rate of traditional radar systems, resulting in The accuracy and quality of traditional SAR imaging methods have declined. However, for the compressed sensing imaging method, even if the sparse linear array antenna is used, the LASAR sparse imaging system can still guarantee the accuracy and quality of the imaging, and realize high-precision 3D SAR imaging (see reference "Li Xueshi, Sun Guangcai, Xu Gang et al. Based on compression A new method of perception-based three-dimensional SAR imaging. Journal of Electronics and Information Technology, 2012,34(5):1017-1023.”). Since the number and distribution of array elements of the LASAR sparse wiring array antenna directly determine the performance of the compressed sensing imaging method, it is necessary to optimize the distribution of the array elements of the sparse wiring array antenna. However, due to the essential difference between compressed sensing and traditional imaging theory, for the LASAR sparse imaging system based on compressed sensing, the traditional linear array antenna element optimization method cannot be applied to the array element optimization of the sparse wire array antenna in the system.
对于基于压缩感知的LASAR稀疏成像系统,阵元数不需满足Nyquist采样率而只与目标稀疏度有关,若测量矩阵满足等距离约束性质(RIP),稀布线阵天线即可实现稀疏目标的高分辨率成像。然而,线阵三维SAR系统中压缩感知测量矩阵的RIP计算是一个非确定性多项式(NP)问题,因此难以利用压缩感知理论中测量矩阵的RIP作为衡量LASAR稀布线阵天线优化的指标(详见参考文献“李小波.基于压缩感知的测量矩阵研究.北京交通大学博士论文,2010.”)。压缩感知理论指出,如果测量矩阵的相干性越小意味着压缩感知算法准确重构目标散射系数的概率越高,因此在测量矩阵RIP难以计算情况下,可以利用相干性作为衡量LASAR稀疏线阵分布优化的标准,LASAR系统中稀布线阵天线的阵元分布设计要尽可能使其系统中压缩感知测量矩阵的相干性最小。For the LASAR sparse imaging system based on compressed sensing, the number of array elements does not need to meet the Nyquist sampling rate but is only related to the target sparsity. If the measurement matrix satisfies the Equidistance Constraint Property (RIP), the sparse wiring array antenna can achieve a high accuracy of the sparse target. resolution imaging. However, the RIP calculation of the compressed sensing measurement matrix in the linear array 3D SAR system is a non-deterministic polynomial (NP) problem, so it is difficult to use the RIP of the measurement matrix in the compressed sensing theory as an index to measure the optimization of the LASAR sparse linear array antenna (see References "Li Xiaobo. Research on Measurement Matrix Based on Compressive Sensing. Doctoral Dissertation of Beijing Jiaotong University, 2010."). The compressed sensing theory points out that if the coherence of the measurement matrix is smaller, the probability of the compressed sensing algorithm to accurately reconstruct the target scattering coefficient is higher. Therefore, when the measurement matrix RIP is difficult to calculate, the coherence can be used as a measure of the sparse linear array distribution of LASAR. As an optimization standard, the element distribution design of the sparse wiring array antenna in the LASAR system should minimize the coherence of the compressed sensing measurement matrix in the system as much as possible.
发明内容:Invention content:
本发明提供了一种基于低相干性的压缩感知LASAR稀布线阵优化方法,该方法基于LASAR系统中压缩感知测量矩阵相干性的最小化,借助傅里叶变换迭代搜索方法,实现了压缩传感LASAR稀布线阵天线的阵元分布优化设计,对稀疏线阵优化更为合理,有利于提高压缩感知LASAR系统的成像性能。本发明提出的方法也适用于其它基于压缩感知的稀布线阵天线优化技术领域。The present invention provides a low-coherence-based optimization method for compressive sensing LASAR sparse array. The method is based on the minimization of the coherence of the compressed sensing measurement matrix in the LASAR system, and realizes the compressed sensing by means of the Fourier transform iterative search method. The optimal design of array element distribution for LASAR sparse line array antenna is more reasonable for sparse line array optimization, which is beneficial to improve the imaging performance of compressed sensing LASAR system. The method proposed by the invention is also applicable to other technical fields of sparse wiring array antenna optimization based on compressed sensing.
为了方便描述本发明的内容,首先作以下术语定义:In order to describe content of the present invention conveniently, at first do following term definition:
定义1、范数Definition 1, norm
设X是数域上线性空间,表示复数域,若它满足如下性质:||X||≥0,且||X||=0仅有X=0,||aX||=|a|||X||,a为任意常数,||X1+X2||≤||X1||+||X2||,则称||X||为X空间上的范数,||·||表示范数符号,其中X1和X2为X空间上的任意两个值。对于定义1中的N×1维离散信号向量X=[x1,x2,…,xN]T,向量X的LP范数表达式为其中xi为向量X的第i个元素,|·|表示绝对值符号,Σ|·|表示绝对值求和符号,向量X的L1范数表达式为向量X的L2范数表达式为向量X的L0范数表达式为且xi≠0。详见文献“国外电子与通信教材系列:信号与系统(第二版)”,AlanV.Oppenheim等编著,刘树棠译,电子工业出版社出版。Let X be a number field on linear space, Represents a field of complex numbers, if it satisfies the following properties: ||X||≥0, and ||X||=0 only X=0, ||aX||=|a|||X||, a is arbitrary Constant, ||X 1 +X 2 ||≤||X 1 ||+||X 2 ||, then ||X|| is called the norm on the X space, and |||| , where X 1 and X 2 are any two values in X space. For the N×1-dimensional discrete signal vector X=[x 1 ,x 2 ,…,x N ] T in Definition 1, the LP norm expression of the vector X is Where x i is the i-th element of the vector X, |·| represents the absolute value symbol, Σ|·| represents the absolute value summation symbol, and the expression of the L1 norm of the vector X is The L2 norm expression of vector X is The expression of L0 norm of vector X is And x i ≠0. For details, see the document "Foreign Electronics and Communication Textbook Series: Signals and Systems (Second Edition)", edited by AlanV.Oppenheim et al., translated by Liu Shutang, and published by Electronic Industry Press.
定义2、奈奎斯特采样率Definition 2, Nyquist sampling rate
在进行模拟/数字信号的转换过程中,对于带宽有限信号,当采样频率大于信号最高频率的2倍时,采样后数字信号即可完整地保留和恢复原始信号中的信息,该采样率称为奈奎斯特采样率。采样定理又称奈奎斯特定理(Nyquist定理)或香农定理,详见文献“矩阵理论”,黄廷祝等编著,高等教育出版社出版。In the conversion process of analog/digital signals, for signals with limited bandwidth, when the sampling frequency is greater than twice the highest frequency of the signal, the digital signal can completely retain and restore the information in the original signal after sampling. This sampling rate is called Nyquist sampling rate. Sampling theorem is also called Nyquist theorem (Nyquist theorem) or Shannon theorem. For details, see the document "Matrix Theory", edited by Huang Tingzhu et al., published by Higher Education Press.
定义3、满阵线阵天线与稀布线阵天线Definition 3. Full line array antenna and sparse line array antenna
在雷达系统中利用线阵天线进行目标探测时,若线阵天线阵元分布满足称奈奎斯特定理时,则该线阵天线称为满阵线阵天线,通常雷达中满阵线阵相邻阵元之间的间距为雷达工作波长的0.5倍;若线阵天线阵元分布不满足称奈奎斯特定理时,则该线阵天线称为稀布线阵天线。When a linear array antenna is used for target detection in a radar system, if the distribution of elements of the linear array antenna satisfies the Nyquist theorem, the linear array antenna is called a full array antenna. The spacing between the elements is 0.5 times of the working wavelength of the radar; if the element distribution of the linear array antenna does not satisfy the Nyquist theorem, the linear array antenna is called a sparse wiring array antenna.
定义4、压缩感知Definition 4. Compressed Sensing
压缩感知主要是将高维原始信号进行非自适应线性投影到低维空间以保持信号的结构信息,再通过求解线性最优解重构出原始信号的理论,该理论主要包括信号稀疏表示、稀疏测量和稀疏重构三个方面。压缩感知稀疏重构方法的基本思想为求解特定约束条件下的最优解或次最优解,主要方法有贪婪追踪算法和凸松弛算法等。详细内容可参考文献“DonohoDL.Compressedsensing.IEEETransactionsonInformationTheory,2006,52(4):1289-1306.”。Compressed sensing is mainly a theory of non-adaptive linear projection of high-dimensional original signals to low-dimensional space to maintain the structural information of the signal, and then reconstructing the original signal by solving the linear optimal solution. The theory mainly includes signal sparse representation, sparse measurement and There are three aspects to sparse reconstruction. The basic idea of the compressed sensing sparse reconstruction method is to solve the optimal or suboptimal solution under certain constraints. The main methods include greedy pursuit algorithm and convex relaxation algorithm. For details, please refer to the document "DonohoDL. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.".
定义5、压缩感知测量矩阵的相干性Definition 5. Coherence of compressed sensing measurement matrix
在感知理论中,对于某个测量系统,压缩感知观测矩阵的相干性定义为:其中μ为测量系统观测矩阵的相干系数,χi表示测量矩阵的第i列,χj表示测量矩阵的第j列,<·>表示向量自相关运算符,|·|为取绝对值运算符号,||·||2为L2范数运算符号,max为函数求最大值运算符号。In perception theory, for a measurement system, the coherence of the compressed sensing observation matrix is defined as: Where μ is the coherence coefficient of the measurement system observation matrix, χ i represents the i-th column of the measurement matrix, χ j represents the j-th column of the measurement matrix, <·> represents the vector autocorrelation operator, and |·| is the operator symbol for taking the absolute value , ||·|| 2 is the L2 norm operation symbol, and max is the maximum value operation symbol of the function.
定义6、线阵合成孔径雷达(LinearArraySAR,简称LASAR)Definition 6. Linear Array SAR (LASAR for short)
线阵合成孔径雷达是将线性阵列天线固定于载荷运动平台上并与平台运动方向与垂直,结合运动平台的运动以合成二维平面阵列实现阵列平面维二维成像,再利用雷达波束向回波延时实现距离一维成像,从而实现观测目标三维成像的一种合成孔径雷达技术。Linear array synthetic aperture radar is to fix the linear array antenna on the load motion platform and perpendicular to the motion direction of the platform, combine the motion of the motion platform to synthesize a two-dimensional planar array to realize the two-dimensional imaging of the array plane, and then use the radar beam to echo It is a synthetic aperture radar technology that realizes one-dimensional imaging of range and three-dimensional imaging of observation targets with time delay.
定义7、线阵合成孔径雷达的切航迹向Definition 7. Tangent track direction of linear array synthetic aperture radar
在线阵合成孔径雷达观测过程中,线阵合成孔径雷达平台运动轨迹方向垂直且与线阵天线阵元布置方向平行的方向,称为线阵合成孔径雷达的切航迹向。During the line-array SAR observation process, the direction of the line-array SAR platform motion trajectory is perpendicular to and parallel to the arrangement direction of the line-array antenna elements, which is called the tangential direction of the line-array SAR.
定义8、线阵合成孔径雷达的线阵天线观测空间Definition 8. Linear array antenna observation space of linear array synthetic aperture radar
在线阵合成孔径雷达观测过程中,由切航迹向和地表垂直方向构成的二维平面,称为线阵合成孔径雷达的线阵天线观测空间。During the observation process of linear array synthetic aperture radar, the two-dimensional plane composed of the tangential direction and the vertical direction of the ground surface is called the linear array antenna observation space of linear array synthetic aperture radar.
定义9、线阵天线中稀疏阵元的激励向量Definition 9. The excitation vector of the sparse array element in the linear array antenna
线阵天线中稀疏阵元激励向量是用以表征线阵天线中稀疏阵元位置分布的向量。假设线阵天线中可安置的阵元总数为N,稀疏阵元激励向量为β=[β1,…,βN],向量β的维数为N,其中β1表为向量β第1个元素值,βN表为向量β第N个元素值,βk表为向量β第k个元素值,当线阵天线中第k个阵元被选择时βk=1,线阵天线中第k个阵元未被选择时βk=0。The sparse element excitation vector in the linear array antenna is a vector used to characterize the position distribution of the sparse element in the linear array antenna. Assuming that the total number of array elements that can be placed in the linear array antenna is N, the excitation vector of sparse array elements is β=[β 1 ,…,β N ], and the dimension of vector β is N, where β 1 is the first element of vector β element value, β N represents the value of the Nth element of vector β, and β k represents the value of the kth element of vector β, when the kth array element in the linear array antenna is selected, β k = 1, the linear array antenna β k =0 when k array elements are not selected.
定义10、线阵合成孔径雷达中线阵天线的角分辨率Definition 10. Angular resolution of linear array antenna in linear array synthetic aperture radar
线阵合成孔径雷达中线阵天线在观测空间能有效区分的最小角度,称为线阵合成孔径雷达系统中线阵天线的角分辨率,角分辨率与雷达工作波长和线阵天线长度有关,详见文献“双基地SAR与线阵SAR原理及成像技术研究”,师君,电子科技大学博士论文,2012年。The minimum angle that the linear array antenna can effectively distinguish in the observation space in the linear array synthetic aperture radar is called the angular resolution of the linear array antenna in the linear array synthetic aperture radar system. The angular resolution is related to the radar operating wavelength and the length of the linear array antenna. For details, see Document "Bistatic SAR and Linear Array SAR Principles and Imaging Technology Research", Shi Jun, Ph.D. thesis, University of Electronic Science and Technology of China, 2012.
本发明提供的一种基于低相干性的压缩感知LASAR稀布线阵优化方法,它包括以下步骤:A kind of compressed sensing LASAR sparse line array optimization method based on low coherence provided by the present invention, it comprises the following steps:
步骤1、初始化LASAR系统参数:Step 1. Initialize the LASAR system parameters:
初始化LASAR系统参数包括:雷达平台高度,记做H;雷达工作中心频率,记做fc;雷达载频波长,记做λ;雷达发射基带信号的信号带宽,记做Br;雷达发射信号脉冲宽度,记做TP;雷达发射信号的调频斜率,记做fdr;雷达接收波门持续宽度,记做To;雷达接收系统的采样频率,记做fs;雷达发射系统的脉冲重复频率,记做PRF;雷达系统的脉冲重复时间,记为PRI;天线在方位向的有效孔径长度,记做Da;上述参数均为LASAR系统标准参数,其中雷达平台高度H,雷达中心频率fc,雷达载频波长λ,雷达发射基带信号的信号带宽Br,雷达发射信号脉冲宽度TP,雷达发射信号调频斜率fdr,雷达接收波门持续宽度To,雷达接收系统的采样频率fs,雷达系统的脉冲重复频率PRF,雷达系统的脉冲重复时间PRI,天线在方位向的有效孔径长度Da在LASAR系统设计和观测过程中已经确定;根据LASAR成像系统方案和观测方案,LASAR稀布线阵天线优化方法需要的初始化系统参数均为已知。Initialize LASAR system parameters include: radar platform height, denoted as H; radar working center frequency, denoted as f c ; radar carrier frequency wavelength, denoted as λ; radar transmitting baseband signal bandwidth, denoted as B r ; radar transmitting signal pulse Width, denoted as T P ; frequency modulation slope of radar transmitting signal, denoted as f dr ; duration width of radar receiving gate, denoted as T o ; sampling frequency of radar receiving system, denoted as f s ; pulse repetition frequency of radar transmitting system , denoted as PRF; the pulse repetition time of the radar system, denoted as PRI; the effective aperture length of the antenna in the azimuth direction, denoted as D a ; the above parameters are standard parameters of the LASAR system, where the radar platform height H, radar center frequency f c , radar carrier frequency wavelength λ, radar transmitting baseband signal bandwidth B r , radar transmitting signal pulse width T P , radar transmitting signal FM slope f dr , radar receiving wave gate duration T o , radar receiving system sampling frequency f s , the pulse repetition frequency PRF of the radar system, the pulse repetition time PRI of the radar system, and the effective aperture length D a of the antenna in the azimuth direction have been determined during the LASAR system design and observation process; according to the LASAR imaging system scheme and observation scheme, the LASAR sparse wiring The initialization system parameters required by the array antenna optimization method are all known.
步骤2、初始化LASAR稀布线阵天线的参数:Step 2. Initialize the parameters of the LASAR sparse wiring array antenna:
初始化LASAR稀布线阵天线的参数包括:满阵线阵天线的阵元总数记为NA;满阵线阵天线中相邻阵元的间距,记为d,在LASAR系统中d的取值为系统载频波长的一半,即为其中λ为步骤1中初始化得到的雷达载频波长;满阵线阵天线的阵列长度,记为L,并且L的取值为L=(NA-1)d;稀布线阵天线中的阵元总数,记为NS,并且NS<NA;稀布线阵天线阵元是满阵线阵天线阵元的子集,即稀布线阵天线阵元是从满阵线阵天线的NA个阵元中选取NS个阵元组成;满阵线阵天线中第1个阵元在切航迹-高度平面中的位置,记为p1;满阵线阵天线中第2个阵元在切航迹-高度平面中的位置,记为p2;满阵线阵天线中第NA个阵元在切航迹-高度平面中的位置,记为满阵线阵天线中第n个阵元在切航迹-高度平面中的位置,记为pn,其中下标n为满阵线阵天线中第n个阵元的序号,n为自然数,n=1,2,...,NA,并且pn=[(n-1)d,H]T,其中H为步骤1中初始化得到的雷达平台高度;满阵线阵天线中所有阵元在切航迹-高度平面中的位置集合,记做P,其中集合P为一个2×NA维的矩阵,并且
步骤3、初始化LASAR线阵天线观测空间参数:Step 3. Initialize the LASAR linear array antenna observation space parameters:
初始化线阵SAR线阵天线观测空间参数,包括:以满阵线阵天线的第1个阵元位置为参考阵元,线阵天线在切航迹-高度平面中的观测角度区间大小,记为θ0;LASAR线阵天线在切航迹-高度平面中的观测角度总区间,记为LASAR线阵天线在切航迹-高度平面中观测角度总区间的离散化单元格总数,记为M;以满阵线阵天线的参考阵元为圆心,将LASAR线阵天线在切航迹-高度平面中观测角度总区间均匀划分成大小相等的角度单元格,并且每一个角度单元格对应的角度值要小于LASAR线阵天线在切航迹向的角度分辨率;采用公式计算得到LASAR观测角度区间中第m个单元格在地平面上的位置,记为qm,m=1,2,…,M,其中m表示LASAR观测角度区间中第m个角度单元格,m为自然数,并且m=1,2,…,M;H为步骤1中初始化得到的雷达平台高度,右上角符号T表示转置运算符号。Initialize the observation space parameters of the linear array SAR array antenna, including: taking the position of the first array element of the full array array antenna as the reference array element, the size of the observation angle interval of the linear array antenna in the tangential track-height plane, denoted as θ 0 ; the total interval of the observation angle of the LASAR linear array antenna in the tangential track-height plane, denoted as The total number of discretized cells in the total interval of the observation angle of the LASAR linear array antenna in the tangential track-height plane is denoted as M; taking the reference array element of the full-array linear array antenna as the center of the circle, the LASAR linear array antenna in the tangential track-height plane The total range of observation angles in the plane is evenly divided into angular cells of equal size, and the angle value corresponding to each angular cell is smaller than the angular resolution of the LASAR linear array antenna in the tangential track direction; the formula Calculate the position of the mth cell on the ground plane in the LASAR observation angle interval, denoted as q m , m=1,2,...,M, where m represents the mth angle cell in the LASAR observation angle interval, m is a natural number, and m=1,2,...,M; H is the height of the radar platform initialized in step 1, and the symbol T in the upper right corner represents the transpose operation symbol.
步骤4、初始化LASAR稀布线阵天线优化方法的相关参数:Step 4. Initialize the relevant parameters of the LASAR sparse wiring array antenna optimization method:
初始化LASAR稀布线阵天线优化方法的相关参数包括:算法迭代估计过程的最大迭代次数,记做MaxIter;k记为迭代估计过程的第k次迭代,k为自然数,k初始值设置为k=0,并且k的取值范围为k=0,1,2,…,MaxIter;迭代算法中的相关系数阈值,记为T;迭代算法中的迭代终止条件阈值,记为ε;第k次迭代中LASAR稀布线阵天线阵元的激励向量,记为β(k),k=0,1,2,…,MaxIter,其中β(k)是一个NA维大小的向量,NA是步骤2中初始化得到的满阵线阵天线的阵元总数;随机产生一个NA维的向量,记为α,其中α里每个元素值只为1或0,并且值为1的元素个数为NS,NS为步骤2中初始化得到的稀布线阵天线的阵元总数;将向量α赋值给所有迭代过程中LASAR稀布线阵天线阵元的激励向量β(k),k=0,1,2,…,MaxIter,作为稀布线阵天线阵元激励向量β(k)的初始值;第k次迭代中激励向量β(k)中元素值为1的元素所在位置组成的序号集合,记为Ω(k),k=0,1,2,…,MaxIter,其中序号集合Ω(k)为一个NS维大小的向量;序号集合Ω(k)中的元素值即为第k次迭代中稀布线阵激励阵元在满阵线阵天线中对应的阵元序号;Initialize the relevant parameters of the LASAR sparse wire array antenna optimization method include: the maximum number of iterations in the iterative estimation process of the algorithm, denoted as MaxIter; k is denoted as the kth iteration of the iterative estimation process, k is a natural number, and the initial value of k is set to k=0 , and the value range of k is k=0,1,2,...,MaxIter; the correlation coefficient threshold in the iterative algorithm is denoted as T; the iteration termination condition threshold in the iterative algorithm is denoted as ε; in the kth iteration The excitation vector of the LASAR sparse wiring array antenna element is denoted as β (k) , k=0,1,2,...,MaxIter, where β (k) is a N A -dimensional vector, and N A is the vector in step 2 The total number of array elements of the full-array linear array antenna obtained by initialization; randomly generate a N A -dimensional vector, denoted as α, where the value of each element in α is only 1 or 0, and the number of elements with a value of 1 is N S , N S is the total number of elements of the sparse wiring array antenna initialized in step 2; assign the vector α to the excitation vector β (k) of the LASAR sparse wiring array antenna elements in all iterations, k=0,1,2, ..., MaxIter, as the initial value of the excitation vector β (k) of the sparse wiring array antenna element; in the kth iteration, the set of sequence numbers composed of the positions of the elements whose element value is 1 in the excitation vector β (k) is denoted as Ω ( k) , k=0,1,2,…,MaxIter, where the serial number set Ω (k) is a vector of N S dimension; the element value in the serial number set Ω (k) is the sparse wiring in the kth iteration Array element number corresponding to the array excitation element in the full-array linear array antenna;
步骤5、采用迭代算法进行LASAR稀布线阵优化设计,该迭代算法主要包括步骤5.1至步骤5.5,具体步骤实现如下:Step 5. Use an iterative algorithm to optimize the design of the LASAR sparse wiring array. The iterative algorithm mainly includes steps 5.1 to 5.5. The specific steps are as follows:
步骤5.1、在第k次迭代中计算LASAR稀布线阵天线激励阵元的位置Step 5.1. Calculate the position of the excitation element of the LASAR sparse wiring array antenna in the kth iteration
在第k次迭代过程中,若迭代次数k=0时,根据集合Ω(0)中的元素,在满阵线阵天线中选取对应的阵元,得到第0次迭代中LASAR稀布线阵激励阵元的位置集合,记为S(0),其中Ω(0)为步骤4初始化得到的第0次迭代中激励向量β(0)中元素值为1的元素所在位置组成的序号集合,β(0)为第0次迭代中LASAR稀布线阵天线阵元的激励向量;S(0)表示为位置集合P中选取满足元素序号为Ω(0)的元素值组成的位置集合,S(0)为一个2×NS维的矩阵,其中P为步骤2中初始化得到的满阵线阵天线中各阵元在切航迹向的位置集合;令矩阵S(0)的列向量组成表达形式为其中为矩阵S(0)的第1列且物理意义为第0次迭代中稀布线阵天线中第1个激励阵元位置,为矩阵S(0)的第2列且物理意义为第0次迭代中稀布线阵天线中第2个激励阵元位置,为矩阵S(0)的第NS列且物理意义为第0次迭代中稀布线阵天线中第NS个激励阵元位置;矩阵S(0)的第l列记为且物理意义为第0次迭代中稀布线阵天线中第l个激励阵元位置,l为自然数,并且l的取值范围为l=1,2,…,NS,NS为步骤2初始化得到的稀布线阵天线阵元总数;In the k-th iteration process, if the number of iterations k=0, according to the elements in the set Ω (0) , select the corresponding array elements in the full array antenna, and obtain the LASAR sparse wiring array excitation array in the 0th iteration The location set of elements, denoted as S (0) , where Ω (0) is the sequence number set composed of the positions of the elements whose element value is 1 in the excitation vector β (0) in the 0th iteration initialized in step 4, β ( 0) is the excitation vector of the LASAR sparse wiring array antenna element in the 0th iteration; S (0) represents the position set composed of selected element values satisfying the element number Ω (0) in the position set P, S (0) is a 2×N S -dimensional matrix, where P is the position set of each array element in the tangential track direction of the full-array linear array antenna initialized in step 2; the expression form of the column vector composition of the matrix S (0) is in is the first column of the matrix S (0) and its physical meaning is the position of the first excitation element in the sparse wiring array antenna in the 0th iteration, is the second column of the matrix S (0) and its physical meaning is the position of the second excitation element in the sparse wiring array antenna in the 0th iteration, is the N Sth column of the matrix S (0) and its physical meaning is the position of the N Sth excitation element in the sparse wiring array antenna in the 0th iteration; the lth column of the matrix S (0) is denoted as And the physical meaning is the position of the lth excitation element in the sparse wiring array antenna in the 0th iteration, l is a natural number, and the value range of l is l=1,2,..., NS , NS is initialized in step 2 The total number of antenna elements of the sparsely wired array obtained;
在算法第k次迭代,若迭代次数k>0时,在满阵线阵天线中选取阵元序号为集合Ω(k-1)中元素所对应的的阵元,得到第k次迭代中LASAR稀布线阵激励阵元的阵元位置集合,记为S(k),其中Ω(k-1)为迭代算法第k-1次迭代中得到的激励向量β(k-1)中元素值为1元素所在位置组成的序号集合,β(k-1)为第k-1次迭代中LASAR稀布线阵天线阵元的激励向量;S(k)表示为位置集合P中选取满足元素序号为Ω(k)的元素值组成的位置集合,S(k)为一个2×NS维的矩阵;定义矩阵S(k)的列向量组成表达形式为其中为矩阵S(k)的第1列且物理意义为第k次迭代中稀布线阵天线中第1个激励阵元位置,为矩阵S(k)的第2列且物理意义为第k次迭代中稀布线阵天线中第2个激励阵元位置,为矩阵S(k)的第NS列且物理意义为第k次迭代中稀布线阵天线中第NS个激励阵元位置,矩阵S(k)的第l列记为且物理意义为第k次迭代中稀布线阵天线中第l个激励阵元位置,l为自然数,并且l=1,2,…,NS。In the k-th iteration of the algorithm, if the number of iterations k>0, select the array element whose serial number is the element corresponding to the element in the set Ω (k-1) in the full-array linear array antenna, and obtain the LASAR sparse array in the k-th iteration The set of array element positions of the wiring array excitation element, denoted as S (k) , where Ω (k-1) is the value of the element in the excitation vector β (k-1) obtained in the k-1 iteration of the iterative algorithm is 1 The sequence number set composed of the position of the element, β (k-1) is the excitation vector of the LASAR sparse wiring array antenna element in the k - 1th iteration; The position collection that the element value of k) is formed, S (k) is a matrix of 2 * N S dimensions; The column vector composition expression form of definition matrix S (k) is in is the first column of the matrix S (k) and its physical meaning is the position of the first excitation element in the sparse wiring array antenna in the k-th iteration, is the second column of the matrix S (k) and its physical meaning is the position of the second excitation element in the sparse wiring array antenna in the k-th iteration, is the N Sth column of the matrix S (k) and its physical meaning is the position of the N Sth excitation element in the sparse wiring array antenna in the kth iteration, and the lth column of the matrix S (k) is denoted as And the physical meaning is the position of the lth excitation element in the sparse wiring array antenna in the kth iteration, l is a natural number, and l=1,2,...,N S .
步骤5.2、计算LASAR线阵天线观测空间中不同单元格之间的相关系数Step 5.2. Calculate the correlation coefficient between different cells in the LASAR linear array antenna observation space
在算法第k次迭代,对LASAR切航迹向观测角度区间中的任意两个不同单元格,序号分别记为i和j,i和j均为自然数,并且i和j的取值范围分别为i=1,2,…,M和j=1,2,…,M并且i≠j,其中M为步骤3中初始化得到的LASAR线阵天线在切航迹-高度平面中观测角度总区间的离散化单元格总数;利用步骤3中初始化得到的LASAR观测角度区间中第m个单元格在地平面上的位置
采用公式l=1,2,…,NS,i=1,2,…,M,计算得到算法第k迭代中LASAR观测角度区间第i个单元格到稀布线阵天线中第l个激励阵元的斜距,记为R(k)(l,i),其中为步骤5.2得到的位置集合S(k)的第l列,||·||2表示向量的L2范数运算符号;采用公式
采用公式
采用公式g=|j-i|,i=1,2,…,M,j=1,2,…,M,i≠j计算得到LASAR观测角度区间第i个与第j个单元格的序号差绝对值,记为g,自然数g的取值范围为g=1,2,…,M-1;将满足g值所对应的所有第i个与第j个单元格在稀疏线阵天线条件下的相关系数ρ(k)(i,j)求和取平均,得到相关系数结果记为g=1,2,…,M-1;将所有的按照下标序号从小到大排序组成向量,得到第k次迭代中LASAR线阵天线观测空间中不同单元格之间的相关系数向量,记为其中表示为g=1时对应的元素值表示为g=2时对应的元素值表示为g=M-1时对应的元素值 Use the formula g=|ji|, i=1,2,...,M,j=1,2,...,M,i≠j to calculate the absolute difference between the serial number of the i-th cell and the j-th cell in the LASAR observation angle interval Value, denoted as g, the value range of the natural number g is g=1,2,...,M-1; it will satisfy all the i-th and j-th cells corresponding to the g value under the sparse linear array antenna condition The correlation coefficient ρ (k) (i, j) is summed and averaged, and the result of the correlation coefficient is recorded as g=1,2,...,M-1; put all According to the subscript sequence numbers, the vectors are sorted from small to large, and the correlation coefficient vector between different cells in the LASAR linear array antenna observation space in the kth iteration is obtained, which is denoted as in Expressed as the corresponding element value when g=1 Expressed as the corresponding element value when g=2 Expressed as the corresponding element value when g=M-1
步骤5.3、利用阈值约束相关系数向量的值Step 5.3, use the threshold to constrain the value of the correlation coefficient vector
在第k次迭代中,如果向量X(k)中第g个元素的值小于阈值T,则保持该元素的值不变,如果向量X(k)中第g个元素值的值大于阈值T,则元素的值设置为阈值T,得到阈值约束后的相关系数向量,记为Y(k),其中X(k)为步骤5.2得到的相关系数向量,T为步骤4中初始化得到的迭代算法相关系数阈值。In the k-th iteration, if the g-th element in the vector X (k) If the value is less than the threshold T, keep the element The value of is unchanged, if the value of the gth element in the vector X (k) The value is greater than the threshold T, then the element The value of is set as the threshold T, and the correlation coefficient vector after the threshold constraint is obtained, denoted as Y (k) , where X (k) is the correlation coefficient vector obtained in step 5.2, and T is the iterative algorithm correlation coefficient threshold initialized in step 4 .
步骤5.4、估计LASAR稀布线阵天线阵元的激励向量Step 5.4. Estimate the excitation vector of the LASAR sparse wiring array antenna element
在第k次迭代中,采用表示式Z(k)=|IFFT(Y(k))|计算得到逆傅里叶变换后的向量,记为Z(k),其中Y(k)为步骤5.3中第k次迭代得到的阈值约束后的相关系数向量,IFFT(·)为逆傅里叶变换运算符号,|·|为取绝对值运算符号;将向量Z(k)中前NS个最大值元素的值置为1,其它位置元素的值置为0,得到的向量记为C(k),其中NS为步骤2得到的稀布线阵天线的阵元总数;采用β(k)=C(k)得到第k次迭代中LASAR稀布线阵天线阵元的激励向量。In the kth iteration, use the expression Z (k) =|IFFT(Y (k) )| to calculate the vector after the inverse Fourier transform, denoted as Z (k) , where Y (k) is step 5.3 The correlation coefficient vector after the threshold constraint obtained in the kth iteration, IFFT (·) is the inverse Fourier transform operation symbol, |·| is the absolute value operation symbol; the first N S largest in the vector Z (k) The value of the value element is set to 1, and the value of other position elements is set to 0, and the obtained vector is recorded as C (k) , where N S is the total number of array elements of the sparse wiring array antenna obtained in step 2; using β (k) = C (k) obtains the excitation vector of the LASAR sparse wiring array antenna elements in the kth iteration.
步骤5.5、迭代判定Step 5.5, iterative judgment
如果且k<MaxIter,则k的值更新为k+1,执行步骤5.1至步骤5.5,否则终止算法迭代,此刻第k次迭代得到的β(k)即为LASAR稀布线阵天线阵元最终的激励向量,其中表示为在i和j变化范围内的函数求最大值符号,k表示迭代估计过程中的第k迭代次数,MaxIter为步骤4中初始化得到的算法重构处理的最大迭代次数,ρ(k)(i,j)为步骤5.2得到的第k次迭代LASAR线阵天线观测空间中不同单元格之间的相关系数,ε为步骤4中初始化得到的迭代算法中的迭代终止条件阈值。if And k<MaxIter, then update the value of k to k+1, execute step 5.1 to step 5.5, otherwise the algorithm iteration is terminated, and the β (k) obtained in the kth iteration at this moment is the final excitation of the LASAR sparse wiring array antenna element vector, where Expressed as the symbol for finding the maximum value of the function within the range of i and j, k represents the kth iteration number in the iterative estimation process, MaxIter is the maximum number of iterations of the algorithm reconstruction process initialized in step 4, ρ (k) ( i, j) is the correlation coefficient between different cells in the observation space of the k-th iteration LASAR linear array antenna obtained in step 5.2, and ε is the iteration termination condition threshold in the iterative algorithm initialized in step 4.
步骤6、得到最终的稀布线阵天线阵元优化结果:Step 6. Obtain the final optimization result of the sparse wiring array antenna element:
利用迭代方法步骤5.5最终得到的LASAR稀布线阵天线阵元激励向量β(k),根据步骤5.1得到中LASAR稀布线阵激励阵元的位置集合S(k);将LASAR稀布线阵激励阵元的位置集合S(k)赋予稀布线阵天线阵元,得到LASAR稀疏线阵天线最终的阵元优化结果。Using the excitation vector β (k) of the LASAR sparse wiring array antenna element finally obtained in step 5.5 of the iterative method, the position set S (k) of the LASAR sparse wiring array excitation element in the medium is obtained according to step 5.1; the LASAR sparse wiring array excitation element The location set S (k) of the sparse wire array antenna is assigned to the array element, and the final array element optimization result of the LASAR sparse linear array antenna is obtained.
本发明的创新点在于利用压缩感知理论中测量矩阵的相干性特性,提供了一种基于低相干性的压缩感知LASAR稀布线阵优化方法,该方法基于LASAR系统中压缩感知测量矩阵相干性的最小化,借助傅里叶变换迭代搜索方法,实现了压缩传感LASAR稀布线阵天线的阵元分布优化设计。The innovation of the present invention is to use the coherence characteristics of the measurement matrix in the compressed sensing theory to provide a low-coherence based compressed sensing LASAR sparse wiring array optimization method, which is based on the minimum coherence of the compressed sensing measurement matrix in the LASAR system With the aid of the Fourier transform iterative search method, the optimal design of the array element distribution of the compressed sensing LASAR sparse wiring array antenna is realized.
本发明的优点在于利用压缩感知理论中测量矩阵的相干性特性作为压缩感知LASAR稀疏线阵优化的参考依据,对稀疏线阵优化更为合理,有利于提高压缩感知LASAR系统的成像性能。本发明提出的方法也适用于其它基于压缩感知的稀布线阵天线优化技术领域。The invention has the advantage of using the coherence characteristics of the measurement matrix in the compressed sensing theory as a reference basis for the optimization of the compressed sensing LASAR sparse line array, which is more reasonable for the optimization of the sparse line array, and is beneficial to improving the imaging performance of the compressed sensing LASAR system. The method proposed by the invention is also applicable to other technical fields of sparse wiring array antenna optimization based on compressed sensing.
附图说明:Description of drawings:
图1为本发明所提供的基于低相干性的压缩感知LASAR稀布线阵优化方法处理流程示意图。FIG. 1 is a schematic diagram of the processing flow of the low-coherence-based compressed sensing LASAR sparse array optimization method provided by the present invention.
图2为本发明具体实施方式采用的系统仿真参数表。FIG. 2 is a table of system simulation parameters used in a specific embodiment of the present invention.
具体实施方式detailed description
本发明主要采用仿真实验的方法进行验证,所有步骤和结论都在MATLABR2012b软件上验证正确。具体实施步骤如下:The present invention mainly adopts the method of simulation experiment to verify, and all steps and conclusions are verified correct on MATLABR2012b software. The specific implementation steps are as follows:
步骤1、初始化LASAR系统参数:Step 1. Initialize the LASAR system parameters:
初始化LASAR系统参数包括:雷达平台高度H=1000m;雷达工作中心频率fc=35×109Hz;雷达载频波长λ=0.00857m;雷达发射基带信号的信号带宽Br=1.5×108Hz;雷达发射信号脉冲宽度TP=5×10-6s;雷达发射信号的调频斜率fdr=3×1013Hz/s;雷达接收波门持续宽度To=6×10-4s;雷达接收系统的采样频率fs=3×108Hz;雷达发射系统的脉冲重复频率PRF=600Hz;雷达系统的脉冲重复时间PRI=1×10-3s;天线在方位向的有效孔径长度Da=1.06m;上述参数均为LASAR系统标准参数,在LASAR系统设计和观测过程中已经确定;根据LASAR成像系统方案和观测方案,LASAR稀布线阵天线优化方法需要的初始化系统参数均为已知。Initialize LASAR system parameters include: radar platform height H = 1000m; radar operating center frequency f c = 35×10 9 Hz; radar carrier frequency wavelength λ = 0.00857m; radar baseband signal bandwidth B r = 1.5×10 8 Hz ; pulse width of radar transmitting signal T P =5×10 -6 s; frequency modulation slope of radar transmitting signal f dr =3×10 13 Hz/s; duration width of radar receiving wave gate T o =6×10 -4 s; The sampling frequency f s of the receiving system = 3×10 8 Hz; the pulse repetition frequency PRF of the radar transmitting system = 600 Hz; the pulse repetition time of the radar system PRI = 1×10 -3 s; the effective aperture length D a of the antenna in the azimuth direction =1.06m; the above parameters are standard parameters of the LASAR system, which have been determined during the design and observation process of the LASAR system; according to the LASAR imaging system scheme and observation scheme, the initialization system parameters required by the LASAR sparse wiring array antenna optimization method are all known.
步骤2、初始化LASAR稀布线阵天线的参数:Step 2. Initialize the parameters of the LASAR sparse wiring array antenna:
初始化LASAR稀布线阵天线的参数包括:满阵线阵天线的阵元总数NA=1000;满阵线阵天线中相邻阵元的间距d为LASAR系统载频波长的一半,即其中λ为步骤1中初始化得到的雷达载频波长λ=0.00857m;满阵线阵天线的阵列长度L取值为L=(NA-1)d;稀布线阵天线中阵元总数NS=500;稀布线阵天线阵元是满阵线阵天线阵元的子集,即稀布线阵天线阵元是从满阵线阵天线1000个阵元中选取500个阵元组成;满阵线阵天线中第1个阵元在切航迹-高度平面中的位置为p1=[0,H]T,其中H为步骤1中初始化得到的雷达平台高度H=1000m;满阵线阵天线中第2个阵元在切航迹-高度平面中的位置为p2=[d,H]T;满阵线阵天线中第NA个阵元在切航迹-高度平面中的位置为满阵线阵天线中第n个阵元在切航迹-高度平面中位置为pn,其中下标n为满阵线阵天线中第n个阵元的序号,n为自然数,n=1,2,...,NA,NA=1000,并且pn=[(n-1)d,H]T;满阵线阵天线中所有阵元在切航迹-高度平面中的位置集合P,其中集合P为一个2×NA维的矩阵,并且
步骤3、初始化LASAR线阵天线观测空间参数:Step 3. Initialize the LASAR linear array antenna observation space parameters:
初始化LASAR线阵天线观测空间参数,包括:以满阵线阵天线的第1个阵元位置为参考阵元,线阵天线在切航迹-高度平面中的观测角度区间大小θ0=10°;LASAR线阵天线在切航迹-高度平面中的观测角度总区间为[-5°,5°];LASAR线阵天线在切航迹-高度平面中观测角度总区间的离散化单元格总数M=1000;以满阵线阵天线的参考阵元为圆心,将LASAR线阵天线在切航迹-高度平面中观测角度总区间均匀划分成大小相等的角度单元格;采用公式计算得到LASAR观测角度区间中第m个单元格在地平面上的位置qm,其中m表示LASAR观测角度区间中第m个角度单元格,m为自然数,m=1,2,…,M;H为步骤1中初始化得到的雷达平台高度H=1000m,右上角符号T表示矩阵转置运算符号。Initialize the observation space parameters of the LASAR linear array antenna, including: taking the position of the first array element of the full-array linear array antenna as the reference array element, the observation angle interval size of the linear array antenna in the tangent track-height plane is θ 0 =10°; The total interval of the observation angle of the LASAR linear array antenna in the tangential track-altitude plane is [-5°, 5°]; the total number of discretized cells M =1000; taking the reference array element of the full-array linear array antenna as the center of the circle, the total range of observation angles of the LASAR linear array antenna in the tangent track-altitude plane is evenly divided into angular cells of equal size; using the formula Calculate the position q m of the mth cell in the LASAR observation angle interval on the ground plane, where m represents the mth angle cell in the LASAR observation angle interval, m is a natural number, m=1,2,...,M; H is the radar platform height H=1000m obtained by initialization in step 1, and the symbol T in the upper right corner represents the matrix transposition operation symbol.
步骤4、初始化LASAR稀布线阵天线优化方法的相关参数:Step 4. Initialize the relevant parameters of the LASAR sparse wiring array antenna optimization method:
初始化LASAR稀布线阵天线优化方法的相关参数包括:算法迭代估计过程的最大迭代次数MaxIter=100;k为迭代估计过程的第k次迭代,k为自然数,k初始值设置为k=0,k取值范围为k=0,1,2,…,MaxIter;迭代算法中的相关系数阈值T=0.3;迭代算法中的迭代终止条件阈值为ε=0.1;第k次迭代中LASAR稀布线阵天线阵元的激励向量β(k),k=0,1,2,…,MaxIter,MaxIter=100,β(k)是一个NA维大小的向量;随机产生一个NA维的向量α,其中α里每个元素值只为1或0,并且值为1的元素个数为NS,其中,NA为步骤2初始化得到的满阵线阵天线中阵元总数NA=1000,NS为步骤2初始化得到的稀布线阵天线中阵元总数NS=500;将向量α赋值给所有迭代过程中LASAR稀布线阵天线阵元的激励向量β(k),k=0,1,2,…,MaxIter,MaxIter=100,作为稀布线阵天线阵元激励向量β(k)的初始值;第k次迭代中激励向量β(k)中元素值为1的元素所在位置组成的序号集合为Ω(k),k=0,1,2,…,MaxIter,MaxIter=100,序号集合Ω(k)为一个NS维大小的向量,序号集合Ω(k)中的元素值即为第k次迭代中稀布线阵激励阵元在满阵线阵天线中对应的阵元序号。Initialize the relevant parameters of the LASAR sparse wire array antenna optimization method include: the maximum number of iterations of the algorithm iterative estimation process MaxIter = 100; k is the kth iteration of the iterative estimation process, k is a natural number, and the initial value of k is set to k = 0, k The value range is k=0,1,2,...,MaxIter; the correlation coefficient threshold in the iterative algorithm is T=0.3; the iteration termination condition threshold in the iterative algorithm is ε=0.1; the LASAR sparse wire array antenna in the kth iteration The excitation vector β (k) of the array element, k=0,1,2,..., MaxIter, MaxIter=100, β (k) is a vector of N A dimension size; a vector α of N A dimension is randomly generated, where The value of each element in α is only 1 or 0, and the number of elements with a value of 1 is N S , where N A is the total number of elements in the full-array linear array antenna obtained by the initialization in step 2 N A =1000, and N S is The total number of array elements N S =500 in the sparse wiring array antenna obtained by initialization in step 2; assign the vector α to the excitation vector β (k) of the LASAR sparse wiring array antenna elements in all iterations, k=0,1,2, ..., MaxIter, MaxIter=100, as the initial value of the excitation vector β (k) of the sparse wiring array antenna element; in the kth iteration, the sequence number set composed of the elements with the element value 1 in the excitation vector β (k) is Ω (k) , k=0,1,2,..., MaxIter, MaxIter=100, the sequence number set Ω (k) is a vector of N S dimension size, and the element value in the sequence number set Ω (k) is the kth In the second iteration, the array element number corresponding to the sparse wiring array excitation element in the full array antenna.
步骤5、采用迭代算法进行LASAR稀布线阵优化设计,该迭代算法主要包括步骤5.1至步骤5.5,具体步骤实现如下:Step 5. Use an iterative algorithm to optimize the design of the LASAR sparse wiring array. The iterative algorithm mainly includes steps 5.1 to 5.5. The specific steps are as follows:
步骤5.1、在第k次迭代中计算LASAR稀布线阵天线激励阵元的位置Step 5.1. Calculate the position of the excitation element of the LASAR sparse wiring array antenna in the kth iteration
在第k次迭代过程中,若迭代次数k=0时,根据集合Ω(0)中的元素,在满阵线阵天线中选取对应的阵元,得到第0次迭代中LASAR稀布线阵激励阵元的位置集合S(0);S(0)表示为位置集合P中选取满足元素序号为Ω(0)的元素值组成的位置集合,S(0)是一个2×NS维的矩阵;矩阵S(0)的列向量组成表达形式为其中为矩阵S(0)的第1列且物理意义为第0次迭代中稀布线阵天线中第1个激励阵元位置,为矩阵S(0)的第2列且物理意义为第0次迭代中稀布线阵天线中第2个激励阵元位置,为矩阵S(0)的第NS列且物理意义为第0次迭代中稀布线阵天线中第NS个激励阵元位置;矩阵S(0)的第l列记为且物理意义为第0次迭代中稀布线阵天线中第l个激励阵元位置,l为自然数,并且l的取值范围为l=1,2,…,NS,其中k=0,1,2,…,MaxIter,MaxIter=100,Ω(0)为步骤4初始化得到的第0次迭代中激励向量β(0)中元素值为1的元素所在位置组成的序号集合,β(0)为步骤4中第0次迭代中LASAR稀布线阵天线阵元的激励向量,P为步骤2中初始化得到的满阵线阵天线中各阵元在切航迹向的位置集合,NS为步骤2初始化得到的稀布线阵天线阵元总数NS=500;In the k-th iteration process, if the number of iterations k=0, according to the elements in the set Ω (0) , select the corresponding array elements in the full array antenna, and obtain the LASAR sparse wiring array excitation array in the 0th iteration The position set S (0) of element; S (0) is expressed as the position set that is selected to satisfy the element sequence number in the position set P and is the element value that Ω (0) forms, and S (0) is a matrix of 2 * N S dimensions; The expression form of column vector composition of matrix S (0) is in is the first column of the matrix S (0) and its physical meaning is the position of the first excitation element in the sparse wiring array antenna in the 0th iteration, is the second column of the matrix S (0) and its physical meaning is the position of the second excitation element in the sparse wiring array antenna in the 0th iteration, is the N Sth column of the matrix S (0) and its physical meaning is the position of the N Sth excitation element in the sparse wiring array antenna in the 0th iteration; the lth column of the matrix S (0) is denoted as And the physical meaning is the position of the lth excitation element in the sparse wiring array antenna in the 0th iteration, l is a natural number, and the value range of l is l=1,2,...,N S , where k=0,1 ,2,...,MaxIter, MaxIter=100, Ω (0) is the sequence number set composed of the position of the element whose element value is 1 in the excitation vector β (0) in the 0th iteration initialized in step 4, β (0) is the excitation vector of the LASAR thin line array antenna element in the 0th iteration in step 4, P is the position set of each element in the full array linear array antenna initialized in step 2 in the tangential track direction, N S is the step 2 The total number of antenna elements of the sparse wiring array N S =500 obtained by initialization;
在算法第k次迭代,若迭代次数k>0时,在满阵线阵天线中选取阵元序号为集合Ω(k-1)中元素所对应的的阵元,得到第k次迭代中稀布线阵激励阵元的阵元位置集合S(k),k=0,1,2,…,MaxIter,MaxIter=100;S(k)是位置集合P中选取满足元素序号为Ω(k)的元素值组成的位置集合,S(k)是一个2×NS维的矩阵;矩阵S(k)的列向量组成表达形式为
步骤5.2、计算LASAR线阵天线观测空间中不同单元格之间的相关系数Step 5.2. Calculate the correlation coefficient between different cells in the LASAR linear array antenna observation space
在算法第k次迭代,对LASAR切航迹向观测角度区间中的任意两个不同单元格,序号分别记为i和j,i和j均为自然数,并且i和j的取值范围分别为i=1,2,…,M和j=1,2,…,M并且i≠j,其中M为步骤3中LASAR线阵天线在切航迹-高度平面中观测角度总区间的离散化单元格总数M=1000;利用步骤3中初始化得到的LASAR观测角度区间中第m个单元格在地平面上的位置
采用公式
采用公式
采用公式g=|j-i|,i=1,2,…,M,j=1,2,…,M,i≠j,M=1000,计算得到LASAR观测角度区间第i个与第j个单元格的序号差绝对值g,自然数g的取值范围为g=1,2,…,M-1;将满足g值所对应的所有第i个与第j个单元格在稀疏线阵天线条件下的相关系数ρ(k)(i,j)求和取平均,得到相关系数结果g=1,2,…,M-1;将所有的按照下标序号从小到大排序组成向量,得到第k次迭代中LASAR线阵天线观测空间中不同单元格之间的相关系数向量其中表示为g=1时对应的元素值表示为g=2时对应的元素值表示为g=M-1时对应的元素值k=0,1,2,…,MaxIter,MaxIter=100。Using the formula g=|ji|, i=1,2,...,M,j=1,2,...,M,i≠j, M=1000, calculate the i-th and j-th units of the LASAR observation angle interval The absolute value of the serial number difference g of the cell, the value range of the natural number g is g=1,2,...,M-1; it will satisfy all the i-th and j-th cells corresponding to the g value in the sparse linear array antenna condition The correlation coefficient ρ (k) (i,j) under is summed and averaged to obtain the correlation coefficient result g=1,2,...,M-1; put all According to the subscript sequence number, sort the vectors from small to large, and get the correlation coefficient vector between different cells in the LASAR linear array antenna observation space in the kth iteration in Expressed as the corresponding element value when g=1 Expressed as the corresponding element value when g=2 Expressed as the corresponding element value when g=M-1 k=0, 1, 2, . . . , MaxIter, MaxIter=100.
步骤5.3、利用阈值约束相关系数向量的值Step 5.3, use the threshold to constrain the value of the correlation coefficient vector
在第k次迭代中,如果向量X(k)中第g个元素的值小于阈值T,则保持该元素的值不变,如果向量X(k)中第g个元素值的值大于阈值T,则元素的值设置为阈值T,得到阈值约束后的相关系数向量Y(k),其中X(k)为步骤5.2得到的第k次迭代中LASAR线阵天线观测空间中不同单元格之间的相关系数向量,k=0,1,2,…,MaxIter,其中MaxIter为步骤4中算法迭代估计过程的最大迭代次数MaxIter=100,T为步骤4中初始化得到的迭代算法相关系数阈值T=0.3。In the k-th iteration, if the g-th element in the vector X (k) If the value is less than the threshold T, keep the element The value of is unchanged, if the value of the gth element in the vector X (k) The value is greater than the threshold T, then the element The value of is set as the threshold T, and the correlation coefficient vector Y (k) after the threshold constraint is obtained, where X (k) is the correlation coefficient between different cells in the LASAR linear array antenna observation space in the kth iteration obtained in step 5.2 Vector, k=0,1,2,...,MaxIter, where MaxIter is the maximum number of iterations MaxIter=100 in the algorithm iterative estimation process in step 4, and T is the iterative algorithm correlation coefficient threshold T=0.3 initialized in step 4.
步骤5.4、估计LASAR稀布线阵天线阵元的激励向量Step 5.4. Estimate the excitation vector of the LASAR sparse wiring array antenna element
在第k次迭代中,采用表示式Z(k)=|IFFT(Y(k))|计算得到逆傅里叶变换后的向量Z(k),将向量Z(k)中前NS个最大值元素的值置为1,其它位置元素的值置为0,得到向量C(k),采用β(k)=C(k)得到第k次迭代中LASAR稀布线阵天线阵元的激励向量,k=0,1,2,…,MaxIter;其中Y(k)为步骤5.3中第k次迭代得到的阈值约束后的相关系数向量,MaxIter为步骤4中算法迭代估计过程的最大迭代次数为MaxIter=100,IFFT(·)为逆傅里叶变换运算符号,|·|为取绝对值运算符号,NS为步骤2得到的稀布线阵天线的阵元总数NS=500。In the kth iteration, use the expression Z ( k) = | IFFT (Y (k) )| The value of the maximum value element is set to 1, and the values of other position elements are set to 0, and the vector C (k ) is obtained, and the excitation of the LASAR sparse wiring array antenna element in the k-th iteration is obtained by using β (k) = C (k) Vector, k=0,1,2,...,MaxIter; where Y (k) is the threshold-constrained correlation coefficient vector obtained by the kth iteration in step 5.3, and MaxIter is the maximum iteration number of the algorithm iterative estimation process in step 4 MaxIter=100, IFFT(·) is the operation symbol of inverse Fourier transform, |·| is the operation symbol of absolute value, N S is the total number of array elements N S =500 of the sparse wiring array antenna obtained in step 2.
步骤5.5、迭代判定Step 5.5, iterative judgment
如果且k<MaxIter,则k的值更新为k+1,执行步骤5.1至步骤5.5,否则终止算法迭代,此刻第k次迭代得到的β(k)即为LASAR稀布线阵天线阵元最终的激励向量,其中表示为在i和j变化范围内的函数求最大值符号,k表示迭代估计过程中的第k迭代次数,k=0,1,2,…,MaxIter,MaxIter为步骤4中得到的算法迭代估计过程的最大迭代次数MaxIter=100,ρ(k)(i,j)为步骤5.2得到的第k次迭代LASAR线阵天线观测空间中不同单元格之间的相关系数,ε为步骤4中初始化得到的迭代算法中的迭代终止条件阈值ε=0.1。if And k<MaxIter, then update the value of k to k+1, execute step 5.1 to step 5.5, otherwise the algorithm iteration is terminated, and the β (k) obtained in the kth iteration at this moment is the final excitation of the LASAR sparse wiring array antenna element vector, where Expressed as the symbol for finding the maximum value of the function within the range of i and j, k represents the kth iteration number in the iterative estimation process, k=0,1,2,...,MaxIter, MaxIter is the iterative estimation of the algorithm obtained in step 4 The maximum number of iterations of the process MaxIter=100, ρ (k) (i, j) is the correlation coefficient between different cells in the observation space of the k-th iteration LASAR linear array antenna obtained in step 5.2, and ε is the initialization obtained in step 4 The iteration termination condition threshold ε=0.1 in the iterative algorithm of .
步骤6、得到最终的稀布线阵天线阵元优化结果:Step 6. Obtain the final optimization result of the sparse wiring array antenna element:
利用迭代方法步骤5.5最终得到的LASAR稀布线阵天线阵元激励向量β(k),根据步骤5.1得到中LASAR稀布线阵激励阵元的位置集合S(k),将LASAR稀布线阵激励阵元的位置集合S(k)赋予稀布线阵天线阵元,得到LASAR稀疏线阵天线最终的阵元优化位置。Using the excitation vector β (k) of the LASAR sparse wiring array antenna element finally obtained in step 5.5 of the iterative method, the location set S (k) of the LASAR sparse wiring array excitation element is obtained according to step 5.1, and the LASAR sparse wiring array excitation element The location set S (k) of the sparse wire array antenna is assigned to the array element, and the final optimal location of the array element of the LASAR sparse linear array antenna is obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896894.1A CN105487052B (en) | 2015-12-08 | 2015-12-08 | Compressed sensing LASAR bare cloth linear array optimization methods based on low coherence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510896894.1A CN105487052B (en) | 2015-12-08 | 2015-12-08 | Compressed sensing LASAR bare cloth linear array optimization methods based on low coherence |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105487052A true CN105487052A (en) | 2016-04-13 |
CN105487052B CN105487052B (en) | 2017-10-17 |
Family
ID=55674161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510896894.1A Expired - Fee Related CN105487052B (en) | 2015-12-08 | 2015-12-08 | Compressed sensing LASAR bare cloth linear array optimization methods based on low coherence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105487052B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576961A (en) * | 2017-10-10 | 2018-01-12 | 电子科技大学 | A kind of relatively prime down-sampled sparse imaging method of interval synthetic aperture radar |
CN108845975A (en) * | 2018-06-22 | 2018-11-20 | 深圳大学 | A kind of phase recovery method based on array antenna |
CN109001689A (en) * | 2018-04-27 | 2018-12-14 | 安徽四创电子股份有限公司 | A kind of radar receives the card i/f aligning method of extension set |
CN110032805A (en) * | 2019-04-16 | 2019-07-19 | 电子科技大学 | A kind of sparse linear array optimization under geographic constraint is structured the formation method |
WO2019200664A1 (en) * | 2018-04-19 | 2019-10-24 | 深圳大学 | Under-determined phase recovery method based on array antenna |
CN111145337A (en) * | 2019-12-13 | 2020-05-12 | 电子科技大学 | Linear array SAR three-dimensional imaging method based on resolution approximation and rapid sparse reconstruction |
US11774546B1 (en) * | 2023-05-12 | 2023-10-03 | Hubble Network Inc. | Antenna arrays for position determination |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8681037B2 (en) * | 2011-04-28 | 2014-03-25 | Raytheon Company | Performance model for synthetic aperture radar automatic target recognition and method thereof |
CN103698763A (en) * | 2013-12-12 | 2014-04-02 | 电子科技大学 | Hard threshold OMP (orthogonal matching pursuit)-based linear array SAR (synthetic aperture radar) sparse imaging method |
CN103713288A (en) * | 2013-12-31 | 2014-04-09 | 电子科技大学 | Linear array SAR imaging method based on iterative minimization sparse Bayesian reconstitution |
CN104833973A (en) * | 2015-05-08 | 2015-08-12 | 电子科技大学 | Linear array SAR backward projection self-focusing imaging method based on positive semi-definite programming |
-
2015
- 2015-12-08 CN CN201510896894.1A patent/CN105487052B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8681037B2 (en) * | 2011-04-28 | 2014-03-25 | Raytheon Company | Performance model for synthetic aperture radar automatic target recognition and method thereof |
CN103698763A (en) * | 2013-12-12 | 2014-04-02 | 电子科技大学 | Hard threshold OMP (orthogonal matching pursuit)-based linear array SAR (synthetic aperture radar) sparse imaging method |
CN103713288A (en) * | 2013-12-31 | 2014-04-09 | 电子科技大学 | Linear array SAR imaging method based on iterative minimization sparse Bayesian reconstitution |
CN104833973A (en) * | 2015-05-08 | 2015-08-12 | 电子科技大学 | Linear array SAR backward projection self-focusing imaging method based on positive semi-definite programming |
Non-Patent Citations (5)
Title |
---|
SHUN-JUN WEI ET AL.: "Sparse array SAR 3-D imaging using compressed sensing", 《RADAR CONFERENCE 2013, IET INTERNATIONAL》 * |
SHUN-JUN WEI ET AL.: "Sparse autofocus via Bayesian learning iterative maximum and applied for LASAR 3-D imaging", 《 RADAR CONFERENCE, 2014 IEEE》 * |
曾伟一等: "基于迭代FFT算法的平面稀疏阵列优化方法", 《电讯技术》 * |
韦顺军: "线阵三维合成孔径雷达稀疏成像技术研究", 《中国博士学位论文全文数据库 信息科技辑》 * |
黄伟等: "一种基于迭代FFT算法的直线稀疏阵列优化方法", 《现代雷达》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107576961A (en) * | 2017-10-10 | 2018-01-12 | 电子科技大学 | A kind of relatively prime down-sampled sparse imaging method of interval synthetic aperture radar |
CN107576961B (en) * | 2017-10-10 | 2019-07-19 | 电子科技大学 | A Coprime Downsampling Intermittent Synthetic Aperture Radar Sparse Imaging Method |
WO2019200664A1 (en) * | 2018-04-19 | 2019-10-24 | 深圳大学 | Under-determined phase recovery method based on array antenna |
CN109001689A (en) * | 2018-04-27 | 2018-12-14 | 安徽四创电子股份有限公司 | A kind of radar receives the card i/f aligning method of extension set |
CN108845975A (en) * | 2018-06-22 | 2018-11-20 | 深圳大学 | A kind of phase recovery method based on array antenna |
CN108845975B (en) * | 2018-06-22 | 2021-04-13 | 深圳大学 | A Phase Recovery Method Based on Array Antenna |
CN110032805A (en) * | 2019-04-16 | 2019-07-19 | 电子科技大学 | A kind of sparse linear array optimization under geographic constraint is structured the formation method |
CN111145337A (en) * | 2019-12-13 | 2020-05-12 | 电子科技大学 | Linear array SAR three-dimensional imaging method based on resolution approximation and rapid sparse reconstruction |
CN111145337B (en) * | 2019-12-13 | 2022-07-29 | 电子科技大学 | Linear array SAR three-dimensional imaging method based on resolution approximation and rapid sparse reconstruction |
US11774546B1 (en) * | 2023-05-12 | 2023-10-03 | Hubble Network Inc. | Antenna arrays for position determination |
Also Published As
Publication number | Publication date |
---|---|
CN105487052B (en) | 2017-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105487052A (en) | Compressed sensing LASAR sparse linear array optimization method based on low coherence | |
CN103713288B (en) | Sparse Bayesian reconstruct linear array SAR formation method is minimized based on iteration | |
CN103983972B (en) | The sparse formation method of a kind of Fast Compression sensing D S AR | |
CN103698763B (en) | Sparse Imaging Method for Linear SAR Based on Hard Threshold Orthogonal Matching Pursuit | |
Zhang et al. | BP algorithm for the multireceiver SAS | |
CN107037429B (en) | Linear array SAR three-dimensional imaging method based on threshold gradient tracking algorithm | |
CN102323583B (en) | Super-resolution linear array three-dimensional synthetic aperture radar imaging method | |
CN104237883B (en) | Airborne radar space time self-adaptation processing method with sparse representation | |
CN104345300B (en) | The airborne non-working side battle array radar STAP method of clutter space-time spectrum linear compensation | |
CN108008389B (en) | A Fast Frequency Domain Backprojection 3D Imaging Method Based on GPU | |
CN108008385A (en) | Interference environment ISAR high-resolution imaging methods based on management loading | |
CN104730520A (en) | Circumference SAR back projection self-focusing method based on subaperture synthesis | |
CN108226927A (en) | SAR imaging methods based on weighted iteration minimum sparse Bayesian restructing algorithm | |
CN103913741A (en) | Synthetic aperture radar efficient autofocus BP method | |
CN103018740B (en) | InSAR (Interferometric Synthetic Aperture Radar) imaging method based on curved surface projection | |
CN105699950B (en) | Based on before and after adaptive iteration to the radar clutter suppression method of smooth conjugate gradient | |
CN102788979A (en) | GPU (graphic processing unit) implementing method based on backward projection InSAR (interfering synthetic aperture radar) imaging registration | |
CN105866740A (en) | Underwater sound matched field localization method based on compressed sensing | |
CN110109107B (en) | Motion error compensation method of synthetic aperture radar frequency domain BP algorithm | |
CN113608218A (en) | Frequency domain interference phase sparse reconstruction method based on back projection principle | |
CN104182753A (en) | Target scattering center extraction method by combining image segmentation with subspace matching pursuit | |
CN110596706B (en) | A Radar Scattering Cross-sectional Area Extrapolation Method Based on 3D Image Domain Projection Transformation | |
CN103293527A (en) | Self-adaption ISAR (information storage and retrieval) imaging method based on confidence frame | |
Gu et al. | DLSLA 3-D SAR imaging via sparse recovery through combination of nuclear norm and low-rank matrix factorization | |
Shuzhen et al. | Near-field 3D imaging approach combining MJSR and FGG-NUFFT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171017 Termination date: 20211208 |
|
CF01 | Termination of patent right due to non-payment of annual fee |