CN105483770A - Iodide-added thiosulfate cyanide-free gold-electroplating solution and electroplating method - Google Patents
Iodide-added thiosulfate cyanide-free gold-electroplating solution and electroplating method Download PDFInfo
- Publication number
- CN105483770A CN105483770A CN201410470424.4A CN201410470424A CN105483770A CN 105483770 A CN105483770 A CN 105483770A CN 201410470424 A CN201410470424 A CN 201410470424A CN 105483770 A CN105483770 A CN 105483770A
- Authority
- CN
- China
- Prior art keywords
- gold
- electroplate liquid
- iodide
- selenite
- electroplating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000009713 electroplating Methods 0.000 title abstract description 29
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 title abstract 4
- 238000007747 plating Methods 0.000 claims abstract description 60
- 239000010931 gold Substances 0.000 claims abstract description 36
- 229910052737 gold Inorganic materials 0.000 claims abstract description 35
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 32
- -1 alcohol amine compound Chemical class 0.000 claims abstract description 26
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229940082569 selenite Drugs 0.000 claims abstract description 17
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 claims abstract description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 7
- 239000011630 iodine Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 37
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 claims description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 2
- 229960004418 trolamine Drugs 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 abstract description 2
- 229910003803 Gold(III) chloride Inorganic materials 0.000 abstract 2
- RJHLTVSLYWWTEF-UHFFFAOYSA-K gold trichloride Chemical compound Cl[Au](Cl)Cl RJHLTVSLYWWTEF-UHFFFAOYSA-K 0.000 abstract 2
- 229940076131 gold trichloride Drugs 0.000 abstract 2
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 abstract 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 abstract 1
- 239000003381 stabilizer Substances 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 37
- 238000000576 coating method Methods 0.000 description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 238000005554 pickling Methods 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004070 electrodeposition Methods 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229960000935 dehydrated alcohol Drugs 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 241000238097 Callinectes sapidus Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 235000019646 color tone Nutrition 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002659 electrodeposit Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- SRCZENKQCOSNAI-UHFFFAOYSA-H gold(3+);trisulfite Chemical compound [Au+3].[Au+3].[O-]S([O-])=O.[O-]S([O-])=O.[O-]S([O-])=O SRCZENKQCOSNAI-UHFFFAOYSA-H 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910001511 metal iodide Inorganic materials 0.000 description 1
- NICDRCVJGXLKSF-UHFFFAOYSA-N nitric acid;trihydrochloride Chemical compound Cl.Cl.Cl.O[N+]([O-])=O NICDRCVJGXLKSF-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 231100000004 severe toxicity Toxicity 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
The invention discloses an iodide-added thiosulfate cyanide-free gold-electroplating solution and an electroplating method. The gold-electroplating solution comprises 10-15 g/L by gold of gold trichloride, 100-140 g/L by thiosulfate radical of thiosulfate, 78-94 g/L by sulfite radical of sulfite, 30-55 g/L by iodine of iodide, 1-4 g/L of an alcohol amine compound, and 0.30-0.60 g/L by selenite radical of selenite. In the gold-electroplating solution, iodide is taken as a stabilizing agent; thiosulfate is taken as a complexant; the alcohol amine compound is taken as the electron accelerant; selenite is taken as a brightener; and gold trichloride is taken as main gold salt. Therefore, the obtained gold-electroplating solution is relatively good in dispersion and deep electroplating ability, high in cathodic current efficiency, and excellent in electroplating solution performance. Through adopting the electroplating solution in an alkaline condition, a plated layer obtained through electroplating is low in porosity, high in brightness, and excellent in plating quality.
Description
Technical field
The present invention relates to electro-coppering tin technical field, particularly relate to electroplate liquid and the electro-plating method of the thiosulphate cyanogen-less gold adding iodide.
Background technology
Gold ductility is good, is easy to polishing, has lower contact resistance, and conductivity, welding property are good, are widely used in the electronics industry as solderable coating.Gold is high temperature resistant, and hard gold is also more wear-resisting, and therefore gold plate is widely used in the part that precision instrument, instrument, printed-wiring board (PWB), unicircuit, shell, electric contact etc. require electrical parameter performance long-term stability.The chemical stability of gold is very high, and be only dissolved in chloroazotic acid and be insoluble to other acid, thus gold plate solidity to corrosion is very strong, and have good discoloration-resisting, meanwhile, au-alloy coating has multiple color tones, therefore is commonly used for famous and precious decorative coating, as jewelry, wrist-watch, artwork etc.
Gold-plated and the cyanogen-less gold of cyanogen is had according to whether being divided into containing prussiate in gold-plated plating solution.Because prussiate has severe toxicity, under the large historical background progressively strengthened of environmental consciousness, cyanide electroplating gold starts to be limited by legislation by national governments.The exploitation of cyanogen-less gold highlights huge market outlook.The performance of existing cyanide electroplating gold ubiquity plating solution is not good, and the technological deficiency that quality of coating is not high, these seriously constrain cyanide-free gold electroplating further genralrlization industrially.
Summary of the invention
In view of this, one aspect of the present invention provides the electroplate liquid of the thiosulphate cyanogen-less gold adding iodide, and the plating solution performance of this electroplate liquid is better, and the quality of coating using this plating solution to obtain is higher.
An electroplate liquid for sulphite cyanogen-less gold, comprises in gold 10 ~ 15g/L gold perchloride, in thiosulfate anion 100 ~ 140g/L thiosulphate, in inferior sulfate radical 78 ~ 94g/L sulphite, in iodine 30 ~ 55g/L iodide, 1 ~ 4g/L alcohol amine compound and in selenite radical 0.30 ~ 0.60g/L selenite.
Wherein, comprise in gold 12g/L gold perchloride, in thiosulfate anion 125g/L thiosulphate, in inferior sulfate radical 88g/L sulphite, in iodine 45g/L iodide, 2.2g/L alcohol amine compound and in selenite radical 0.50g/L selenite.
Wherein, described alcohol amine compound is monoethanolamine, diethanolamine, trolamine or three ethanoldiamine.
In the technical scheme of above electroplate liquid, select as gold perchloride is main salt.In the present invention, gold ion content can make that cathode current density is higher and sedimentation velocity is very fast.If golden salts contg is too high, not only can increase electroplating cost, and coating can be made to produce the phenomenon of fragility increase; If content is too low, tint is poor, and cathode current density is lower, and sedimentation velocity is slower.
Thiosulphate is selected to be coordination agent.The dispersive ability of sulphite gold plating liquid and covering power good, current efficiency is high, and coating light is careful, firm with the combination of the plated base material such as copper, nickel, acidproof, salt fog resistance performance is good.Thiosulphate is preferably ammonium thiosulfate.Ammonium ion adds the stability that can improve plating solution in plating solution, suppresses plating solution deterioration and golden Precipitation occurs.
Iodide are as stablizer.Iodide ion has stronger reductibility, and it can stop thiosulfate anion oxidized.Iodide are preferably water-soluble iodide, such as alkaline metal iodide KI.
Select selenite to be brightening agent, improve the luminance brightness of coating.
Alcohol amine compound contains unpaired electron, and it can have the effect accelerating electron transmission, is conducive to the additive of the quickening of sedimentation velocity.These additives have hydrophilic group, to raising complex ion spread coefficient, reduce thickness of diffusion layer all favourable, thus accelerate the mobility of solution, improve the current density of plating solution.In addition, alcohol amine compound can also form title complex with the monovalence gold ion in plating solution, inhibits the disproportionation reaction of monovalence gold ion, thus improves the stability of plating solution.
Except mentioned component, the present invention also can select suitable amounts other in this area the additive commonly used, such as conductive agent salt of wormwood, auxiliary complexing agent and stablizer etc., these all can not damage the characteristic of coating.
The present invention provides on the other hand the electro-plating method of the thiosulphate cyanogen-less gold adding iodide, the method the better performances of electroplate liquid that is suitable for, higher according to quality of coating prepared by the method.
Use an above-mentioned electroplate liquid electric plating method, comprise the following steps:
(1) prepare electroplate liquid: in water, dissolve each feed composition form electroplate liquid, described often liter of electroplate liquid contains 10 ~ 15g gold perchloride, in thiosulfate anion 100 ~ 140g thiosulphate, in inferior sulfate radical 78 ~ 94g sulphite, in iodine 30 ~ 55g iodide, 1 ~ 4g alcohol amine compound and in selenite radical 0.30 ~ 0.60g selenite;
(2) insert with pretreated negative electrode and anode and pass into electric current in described electroplate liquid and electroplate.
Wherein, described electric current is monopulse rectangular wave current; The pulsewidth of described monopulse rectangular wave current is 0.5 ~ 1ms, and dutycycle is 5 ~ 30%, and average current density is 0.5 ~ 1A/dm
2.
Wherein, in described step (2), the pH of electroplate liquid is 6 ~ 8.
Wherein, the temperature of electroplate liquid is 50 ~ 60 DEG C.
Wherein, the time of plating is 20 ~ 40min.
Wherein, the area ratio of described step (2) Anodic and negative electrode is (1 ~ 4): 1.
In the technical scheme of above electro-plating method, monopulse rectangular wave current is defined as at t
1passing into current density in time is J
pelectric current, at t
2without passing into electric current in time, it is a kind of intermittent pulse current.Dutycycle is defined as t
1/ (t
1+ t
2), frequency is 1/ (t
1+ t
2), mean current is defined as J
pt
1/ (t
1+ t
2).Compare with DC electrodeposition, thickness and the ion concentration distribution of electrostatic double layer all change; While adding electrochemical polarization, reduce concentration polarization, the direct effect of generation is, the coating that pulse plating obtains than DC electrodeposition coating evenly, crystallization is finer and closely woven.Moreover, pulse plating also has: hardness and the wear resistance of (1) coating are all high; (2) solution dispersibility and covering power good; (3) decrease the super plating of part edge, coating distributing homogeneity is good, can save plating solution usage quantity.
Using Copper Foil as negative electrode, take platinized platinum as anode.Anticathode pre-treatment is by comprising anticathode sand papering, oil removing, pickling, preimpregnation copper after elder generation successively.This use sand papering can polish twice, and first time with flint paper such as 200 object sand paperings, can be used fine sandpaper, such as, can use WC28 abrasive paper for metallograph for the second time.This oil removing can first adopt chemical alkali liquor oil removing then to adopt the dehydrated alcohol oil removing of 95%.Wherein, chemical alkali lye consists of: 50 ~ 80g/LNaOH, 15 ~ 20g/LNa
3pO
4, 15 ~ 20g/LNa
2cO
3and 5g/LNa
2siO
3with 1 ~ 2g/LOP-10.Electrochemical deoiling detailed process is through treating oil removing negative electrode 15 ~ 40 DEG C of dipping 30s in chemical alkali lye.The pickling time is 1 ~ 2min, and the object of pickling is activation, specifically, removes the oxide film on plating piece top layer, makes the lattice of matrix completely exposed, be in active state.Pickling solution composition used is: 100g/L sulfuric acid and 0.15 ~ 0.20g/L thiocarbamide.The preimpregnation copper time is 1 ~ 2min, and solution composition used is: 100g/L sulfuric acid, 50g/L anhydrous cupric sulfate and 0.20g/L thiocarbamide.
The area ratio of step (2) Anodic and negative electrode is preferably 3:1.Ratio of cathodic to anodic area is crossed conference and is made it more easily passivation occur; Otherwise, then cathode copper sedimentation rate can be caused too small, thus reduce current efficiency.
The temperature of electroplate liquid is 50 ~ 60 DEG C.If temperature is too high, thiosulfate anion decomposes in plating solution.
The pH of electroplate liquid is 6 ~ 8.PH is less than 6, and the redox reaction that thiosulfate anion can be caused under acidic conditions to produce disproportionation produces sulphur simple substance.If be greater than 8, plating solution can become dun, affects the gloss of final coating.
The present invention is stablizer with iodide, take thiosulphate as coordination agent, take alcohol amine compound as Accelerating electron agent, take selenite as brightening agent, take gold perchloride as the main salt of gold, the plating solution of acquisition is made to have good dispersion force and covering power thus, cathode efficiency is high, and plating solution performance is excellent.The porosity that employing electroplates the coating of acquisition in the basic conditions at plating solution is low, and luminance brightness is high, and quality of coating is good.
Embodiment
Technical scheme of the present invention is further illustrated below in conjunction with embodiment.
According to formulated electroplate liquid described in embodiment 1 ~ 6, specific as follows: the quality taking each feed composition according to formula electronic balance.Fully mix then after each feed composition is dissolved in appropriate deionized water respectively, add water move to pre-determined volume, add alkali or acid for adjusting pH value is 6 ~ 8.
The electroplate liquid of formulated described in embodiment 1 ~ 6 and comparative example is used to carry out electric plating method:
(1) negative electrode adopts the Copper Foil of 10mm × 10mm × 0.1mm specification.Metalluster is exposed with the polishing of WC28 abrasive paper for metallograph to surface again after first tentatively being polished with 200 order waterproof abrasive papers by Copper Foil.Successively through temperature be 50 ~ 70 DEG C chemical alkali liquor oil removing, distilled water flushing, 95% dehydrated alcohol oil removing, distilled water flushing, pickling 1 ~ 2min, preimpregnation copper 1 ~ 2min, redistilled water rinse.Wherein, the formula of chemical alkali lye is 50 ~ 80g/LNaOH, 15 ~ 20g/LNa
3pO
4, 15 ~ 20g/LNa
2cO
3and 5g/LNa
2siO
3with 1 ~ 2g/LOP-10.Pickling solution composition used is: 100g/L sulfuric acid and 0.15 ~ 0.20g/L thiocarbamide.The solution composition used of preimpregnation copper is: 100g/L sulfuric acid, 50g/L anhydrous cupric sulfate and 0.20g/L thiocarbamide.
(2) with the platinum plate of 15mm × 10mm × 0.2mm specification for anode, by level and smooth for sand papering, deionized water rinsing and oven dry before plating.
(3) by the electroplate liquid in pretreated anode and negative electrode immersion plating groove, just plating tank is placed in thermostat water bath, and is plating tank installation electric blender, the stirring rod of electric blender is inserted in electroplate liquid.Bath temperature to be regulated makes temperature of electroplating solution maintain 50 ~ 60 DEG C, and after mechanical stirring rotating speed is adjusted to 100 ~ 250rpm, make pulse power supply, the pulsewidth of pulsed current is 0.5 ~ 1ms, and dutycycle is 5 ~ 30%, and average current density is 0.5 ~ 1A/dm
2.After 20 ~ 40min to be energised, cut off the power supply of electroplanting device.Take out steel plate, use distilled water cleaning, drying.
Embodiment 1
The formula of electroplate liquid is as follows:
Plating technology condition: the pulsewidth of monopulse rectangular wave current is 0.5ms, and dutycycle is 30%, and average current density is 0.5A/dm
2; PH is 6, and temperature is 60 DEG C, and electroplating time is 40min.
Embodiment 2
The formula of electroplate liquid is as follows:
Plating technology condition: the pulsewidth of monopulse rectangular wave current is 0.6ms, and dutycycle is 25%, and average current density is 0.6A/dm
2; PH is 6.5, and temperature is 60 DEG C, and electroplating time is 35min.
Embodiment 3
The formula of electroplate liquid is as follows:
Plating technology condition: the pulsewidth of monopulse rectangular wave current is 0.8ms, and dutycycle is 20%, and average current density is 1A/dm
2; PH is 7, and temperature is 50 DEG C, and electroplating time is 20min.
Embodiment 4
The formula of electroplate liquid is as follows:
Plating technology condition: the pulsewidth of monopulse rectangular wave current is 1ms, and dutycycle is 15%, and average current density is 0.9A/dm
2; PH is 8, and temperature is 50 DEG C, and electroplating time is 25min.
Embodiment 5
The formula of electroplate liquid is as follows:
Plating technology condition: the pulsewidth of monopulse rectangular wave current is 0.9ms, and dutycycle is 5%, and average current density is 0.8A/dm
2; PH is 7.5, and temperature is 55 DEG C, and electroplating time is 30min.
Embodiment 6
The formula of electroplate liquid is as follows:
Plating technology condition: the pulsewidth of monopulse rectangular wave current is 0.7ms, and dutycycle is 10%, and average current density is 0.7A/dm
2; PH is 7.2, and temperature is 55 DEG C, and electroplating time is 35min.
With reference to following methods, dispersive ability test is carried out to the plating solution of embodiment 1 ~ 6:
The dispersive ability of plating solution adopts far and near cathode method (Haring-Blue method) to measure.Measure the Hull groove that groove adopts the HullCell267ml model of Kocour company of the U.S., interior dimensions is 150mm × 50mm × 70mm.Negative electrode selects thickness to be the copper sheet of 0.5mm, and working face is of a size of 50mm × 50mm; Anode is plating nickel plate with holes; Plating electric current 1A, electroplating time 30min.
The dispersive ability calculation formula of plating solution is:
Dispersive ability=[K-(the Δ M of plating solution
1/ Δ M
2)]/(K-1) (result represents with percentage);
In formula, K is negative electrode far away to the distance of anode and nearly negative electrode to the ratio of distances constant of anode, and in this test, K gets 2; Δ M
1for the increment (g) after plating on nearly negative electrode; Δ M
2for the increment (g) after plating on negative electrode far away.
With reference to following methods, covering power test is carried out to the plating solution of embodiment 1 ~ 6:
Endoporus method is adopted to measure.Negative electrode selects internal diameter l10mm, and pipe range is the copper pipe of 50mm, and one end is closed.During test, the distance of the mouth of pipe and anode is fixed on 80mm, test current 0.2A, electroplating time 30min.According to following formulae discovery:
Covering power=endoporus coating length/pipe range (result represents with percentage).
With reference to following methods, current efficiency test is carried out to the plating solution of embodiment 1 ~ 6:
Copper voltameter method is adopted to measure.Negative electrode to be tested and copper voltameter cleaned and dry up rear electronic scale weighing, then insert in electrodeposit groove by two negative electrodes simultaneously, be energized 10 ~ 30min, take out and clean dry up after use electronic scale weighing.According to following formulae discovery:
Current efficiency=(1.186 × cathode quality to be measured)/(electrochemical equivalent of copper voltameter quality × cathodic deposition metal to be measured) × 100%.Here, electrochemical equivalent=molar mass ÷ (depositing ions valency × 26.8), unit is g.A
-1.h
-1.In this test, trivalent Au electrochemical equivalent is 2.453g.A
-1.h
-1.
Speed test is plated with reference to the plating solution of following methods to embodiment 1 ~ 6:
Mass method is adopted to measure sedimentation rate.Be 10 with sensitivity
-4electronic balance weighing sample plating before and after quality.By the acquisition sedimentation rate of poor quality of unit time, unit surface, press formulae discovery below:
Plating speed=(after plating before sample mass-plating sample mass)/(specimen surface to be plated long-pending × plating time).Each Data duplication is measured three times and is got its mean value.
Test with reference to the bonding force of following methods to the coating of embodiment 1 ~ 6:
The method adopting line to draw lattice measures the bonding force of coating, is specially: being 30 degree with one cutting edge by electrodeposition cladding, converted steel draws parallel lines or the 1mm that 2mm of being separated by drawn by cutter
2square lattice.Whether the coating observing line tilts or peels off.Should master the dynamics during line, a cutter just can scratch coating, arrives matrix metal.Adopt quench to measure the bonding force of coating, be specially: the test piece of having plated is placed in retort furnace quenching in the cold water being heated to 300 DEG C of insulation 30min taking-up immersion 10 DEG C immediately, observe coating and whether occur bubble and decortication phenomenon.
With reference to following methods, toughness test is carried out to the coating of embodiment 1 ~ 6:
Coating is stripped down, is bent to 180 °, and extrudes knee, observe coating and whether occur fracture.
With reference to following methods, porosity test is carried out to the coating of embodiment 1 ~ 6:
The large young pathbreaker of porosity is directly connected to the corrosion resisting property of coating, adopts paster method to press GB5935-86 standard detection.The etchant solution that the potassium ferricyanide solution of 10g/L and the sodium chloride solution of 20g/L are tested as porosity.Operation steps is: after wiped clean of being deoiled by coating surface, is close to coating surface with the filter paper soaking into etchant solution, and the two can not have gap.Buy the fully wetting filter paper of etchant solution solution by glass stick or degreasing swab stick, supplement a solution at interval of lmin, taken off by filter paper after 5min, dry after clean with distilled water flushing, record hole is counted.Be placed on cleaned glass plate and dry, the number of number Bluepoint.Substitute into formulae discovery voidage below:
Number/tested area (individual/the cm of porosity=spot
2);
When calculating number of apertures, do following calculating by spot diameter size: hot spot diameter is less than lmm, and with a porosimeter at often; Be greater than lmm and be less than 3mm often o'clock with three porosimeters; Be greater than 3mm and be less than 5mm, often with ten porosimeters.
With reference to following methods, Surface flat test is carried out to the coating of embodiment 1 ~ 6:
By the Hull groove of the HullCell267ml model with the Kocour company of the test piece U.S. after 200 order sand paperings evenly at 3A/dm
2dC current density carries out plating 10min at 25 DEG C of temperature, and whether then observe test piece has scratch.
To expose aptitude tests with reference to the coating of following methods to embodiment 1 ~ 6:
Adopt the Hull groove of the HullCell267ml model of Kocour company of the U.S. at 3A/dm
2after DC current density carries out plating 10min at 25 DEG C of temperature, observe the surface luminous intensity of coating.
The test result of the coating of embodiment 1 ~ 6 and comparative example and the performance of plating solution is as follows:
As can be seen from the above table, in embodiment 1 ~ 6, consider from the integration test effect of plating solution and coating, the dispersive ability of the formula plating solution of embodiment 6, covering power, current efficiency and plating speed, the porosity of coating and bonding force will be got well compared with other embodiment.Thus, this formula is screening formulation of the present invention, and the preferred plating conditions of its correspondence is the pulsewidth of monopulse rectangular wave current is 0.7ms, and dutycycle is 10%, and average current density is 0.7A/dm
2; PH is 7.2, and temperature is 55 DEG C, and electroplating time is 35min, and male and femal face is long-pending than being 3:1.
It should be noted that and understand, when not departing from the spirit and scope of accompanying claim the present invention for required protection, various amendment and improvement can be made to the present invention of foregoing detailed description.Therefore, the scope of claimed technical scheme is not by the restriction of given any specific exemplary teachings.
Below know-why of the present invention is described in conjunction with specific embodiments.These describe just in order to explain principle of the present invention, and can not be interpreted as limiting the scope of the invention by any way.Based on explanation herein, those skilled in the art does not need to pay performing creative labour can associate other embodiment of the present invention, and these modes all will fall within protection scope of the present invention.
Claims (9)
1. one kind is added the electroplate liquid of the thiosulphate cyanogen-less gold of iodide, it is characterized in that, comprise in gold 10 ~ 15g/L gold perchloride, in thiosulfate anion 100 ~ 140g/L thiosulphate, in inferior sulfate radical 78 ~ 94g/L sulphite, in iodine 30 ~ 55g/L iodide, 1 ~ 4g/L alcohol amine compound and in selenite radical 0.30 ~ 0.60g/L selenite.
2. electroplate liquid according to claim 1, it is characterized in that, comprise in gold 12g/L gold perchloride, in thiosulfate anion 125g/L thiosulphate, in inferior sulfate radical 88g/L sulphite, in iodine 45g/L iodide, 2.2g/L alcohol amine compound and in selenite radical 0.50g/L selenite.
3. electroplate liquid according to claim 1, is characterized in that, described alcohol amine compound is monoethanolamine, diethanolamine, trolamine or three ethanoldiamine.
4. use the electroplate liquid electric plating method described in claim 1, it is characterized in that, comprise the following steps:
(1) prepare electroplate liquid: in water, dissolve each feed composition form electroplate liquid, described often liter of electroplate liquid contains in gold 10 ~ 15g gold perchloride, in thiosulfate anion 100 ~ 140g thiosulphate, in inferior sulfate radical 78 ~ 94g sulphite, in iodine 30 ~ 55g iodide, 1 ~ 4g alcohol amine compound and in selenite radical 0.30 ~ 0.60g selenite;
(2) insert with pretreated negative electrode and anode and pass into electric current in described electroplate liquid and electroplate.
5. want the method described in 4 according to right, it is characterized in that, described electric current is monopulse rectangular wave current; The pulsewidth of described monopulse rectangular wave current is 0.5 ~ 1ms, and dutycycle is 5 ~ 30%, and average current density is 0.5 ~ 1A/dm
2.
6. method according to claim 4, is characterized in that, in described step (2), the pH of electroplate liquid is 6 ~ 8.
7. method according to claim 4, is characterized in that, the temperature of electroplate liquid is 50 ~ 60 DEG C.
8. method according to claim 4, is characterized in that, the time of plating is 20 ~ 40min.
9. method according to claim 4, is characterized in that, the area ratio of described step (2) Anodic and negative electrode is (1 ~ 4): 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410470424.4A CN105483770A (en) | 2014-09-15 | 2014-09-15 | Iodide-added thiosulfate cyanide-free gold-electroplating solution and electroplating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410470424.4A CN105483770A (en) | 2014-09-15 | 2014-09-15 | Iodide-added thiosulfate cyanide-free gold-electroplating solution and electroplating method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105483770A true CN105483770A (en) | 2016-04-13 |
Family
ID=55671027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410470424.4A Pending CN105483770A (en) | 2014-09-15 | 2014-09-15 | Iodide-added thiosulfate cyanide-free gold-electroplating solution and electroplating method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105483770A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113755695A (en) * | 2021-08-11 | 2021-12-07 | 昆明理工大学 | A kind of method for enriching and recovering gold (Au(S2O3)23-) in thiosulfate solution |
-
2014
- 2014-09-15 CN CN201410470424.4A patent/CN105483770A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113755695A (en) * | 2021-08-11 | 2021-12-07 | 昆明理工大学 | A kind of method for enriching and recovering gold (Au(S2O3)23-) in thiosulfate solution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104630837A (en) | Electroplating liquid and electroplating method of anthraquinone dye system acid copper plating | |
CN105316718A (en) | Electroplate liquid and electroplate method for cyanide-free gold electroplating of sulfite | |
CN105274587A (en) | Diphenyl methane dye system acid copper plating electroplating liquid and electroplating method thereof | |
CN104264195A (en) | Mercaptoiminazole cyanide-free gold-electroplating solution and electroplating method thereof | |
CN105274588A (en) | Succinimide cyanogen-free monovalent copper plating electroplating liquid and electroplating method thereof | |
CN105274589A (en) | Alkaline cyanogen-free copper plating electroplating liquid and electroplating method thereof | |
CN105316719A (en) | Electroplate liquid and electroplate method for cyanide-free gold plating of thallium-contained sulfite | |
CN105297087A (en) | Electroplating liquid for hydroxylamine reducing agent cyanide-free univalence copper plating and electroplating method | |
CN105297089A (en) | Arsenic-contained sulfite cyanide-free plated gold electroplating liquid and electroplating method | |
CN105297088A (en) | Electroplate liquid for acid copper plating of triphenylmethane dye system and electroplating method | |
CN105441995A (en) | Glucosaminic-acid cyanide-free gold-plating electroplating liquid and electroplating method thereof | |
CN105177643A (en) | Electroplating solution for acidic copper plating by phenol dye system and electroplating method thereof | |
CN105441997A (en) | Glutamic-acid cyanide-free gold-plating electroplating liquid and electroplating method thereof | |
CN104233385A (en) | Electroplating liquid for non-cyanide plating gold by thiazole and electroplating method thereof | |
CN105483770A (en) | Iodide-added thiosulfate cyanide-free gold-electroplating solution and electroplating method | |
CN105200464A (en) | Hydrazine reducing agent cyanide-free cuprous electroplating solution and electroplating method | |
CN105132961A (en) | Electroplating solution for hydroxymethyldimethyl cyanide-free monovalent copper plating, and electroplating method thereof | |
CN105316720A (en) | Electroplate liquid and electroplate method for cyanide-free gold plating of antimony-contained sulfite | |
CN105483769A (en) | Propylene-glycol-added thiosulfate cyanide-free gold-electroplating solution and electroplating method | |
CN105316724A (en) | Electroplate liquid and electroplate method for pyrophosphate used for cyanide-free plated Cu-Sn alloy | |
CN105441996A (en) | Thiosulfate cyanide-free gold-plating electroplating liquid with added hydrazine hydrochloride and electroplating method | |
CN105401179A (en) | Thiosulfate cyanogens-free gold plating liquid added with phenol, and electroplating method | |
CN104630847A (en) | Electroplating solution for HEDP cyanide-free copper plating and electroplating method | |
CN105332017A (en) | Disulfide heterocyclic compound cyanide-free gilding electroplating solution and method | |
CN105316728A (en) | Electroplate liquid and electroplate method for gelatin cyanide-free plated Cu-Sn alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160413 |