CN105483645A - 一种制备竹节状SiC纳米线的方法 - Google Patents
一种制备竹节状SiC纳米线的方法 Download PDFInfo
- Publication number
- CN105483645A CN105483645A CN201610028462.3A CN201610028462A CN105483645A CN 105483645 A CN105483645 A CN 105483645A CN 201610028462 A CN201610028462 A CN 201610028462A CN 105483645 A CN105483645 A CN 105483645A
- Authority
- CN
- China
- Prior art keywords
- bamboo
- shaped sic
- hydrogen
- temperature
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种制备竹节状SiC纳米线的方法,将打磨抛光烘干后的块状石墨材料置于沉积炉中,低压1kPa下通电升温至预定温度后,向装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,将反应气源带入炉堂内进行反应。沉积结束后随炉冷却至室温,即可得到大量高纯竹节状SiC纳米线。本发明制备工艺简单,不需要预先合成工艺;沉积温度较低,降低了能耗和制备成本;制备的竹节状SiC纳米线纯度较高;可通过工艺参数的调节实现竹节状SiC纳米线的可控生长,易于实现工业生产;解决了现有技术中竹节状SiC纳米线制备工艺较为复杂、合成温度高、能耗大、成本高、产物难以控制的问题。
Description
技术领域
本发明属于化学材料技术领域,特别涉及一种制备竹节状SiC纳米线的方法。
本发明涉及一种竹节状SiC纳米线的制备方法。采用化学气相沉积(CVD)法在无催化剂的石墨基体上制备竹节状SiC纳米线,该方法可简单、高效、低能耗地制备大量的高纯竹节状SiC纳米线,解决了现有技术中竹节状SiC纳米线和的制备工艺复杂、能耗高、纯度低、不易控制等问题。
背景技术
SiC作为第三代半导体材料具有优异的物理化学性能,如高的热稳定性、良好的热传导性、高硬度和高模量、宽能带、良好的抗氧化及耐腐蚀能力。这些特殊性能使得SiC在航空航天、化学工业、机械工业、冶金工业、摩擦磨损、光学、电子、以及核能等领域得到广泛应用。而一维SiC纳米材料除了具有SiC块体材料的优良特性外,还拥有更出色的电学和力学性能。因此,SiC纳米线可作为复合材料的理想增强增韧材料使用,具有广阔的应用前景。近年来,各国学者相继采用不同的方法制备出形式多样的SiC纳米线,但大多数SiC纳米线的表面是光滑的。而文献“G.Y.Zhang,J.Xin,E.G.Wang,Appl.Phys.Lett.84(2004)2646-2648.”报道具有复杂表面结构的SiC纳米线作为增强增韧材料能够更好的嵌入基体,提高增强增韧效果。目前为止,研究者们已经成功制备了一些复杂结构的SiC纳米线增韧陶瓷涂层。例如,名称为“一种制备竹节状SiC纳米线增韧HfC陶瓷的方法(中国专利号CN201110050865.5,申请日2011年03月03日,公开日2011年07月20日”的专利以Si粉、C粉和SiO2粉为原料首先在石墨基体表面制备了竹节状的SiC纳米线,再采用化学气相沉积法制备HfC涂层,该方法借助竹节状SiC纳米线的节点与其周围HfC陶瓷基体之间的特殊机械式连锁增韧机理,可以将光滑表面SiC纳米线增韧涂层的韧性提高程度从77~114%提高到126~159%,但是该方法中采用碳热还原法制备出的竹节状SiC纳米线中含有大量的C粉、Si粉和SiO2粉,纯度较低影响增韧效果,而且制备温度高、能耗大、成本高。
发明内容
发明目的:本发明提供了一种制备竹节状SiC纳米线的方法,以解决现有技术中竹节状SiC纳米线的制备工艺复杂、纯度低、能耗大、成本高且不易控制等问题。该方法以甲基三氯硅烷为前驱体,采用低压化学气相沉积技术在无催化剂辅助的情况下和较低温度下合成竹节状SiC纳米线,此方法可以简单、低能耗、低成本且易于控制地制备出大量的高纯SiC纳米线和纳米带。
技术方案:为了实现上述目的,本发明采用以下技术方案:
一种制备竹节状SiC纳米线的方法,包括以下步骤:
步骤一、将石墨基体试样打磨抛光后用蒸馏水洗涤干净,再置于烘箱中烘干后取出备用;
步骤二、用一束碳纤维将处理过的石墨基体试样捆绑后,悬挂于立式气相沉积炉中;
步骤三、将立式气相沉积炉抽真空至1kPa保持真空30分钟,确定炉体不漏气后,再打开真空泵持续抽真空,保持炉内压力为1kPa;
步骤四、通电升温,升温过程中通入氩气保护,当炉温升到预定的沉积温度后,在装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,再将甲基三氯硅烷带入炉内,同时通入稀释氩气、稀释氢气;并调节稀释氩气、稀释氢气和载气氢气的流量值,在预定的沉积温度下沉积30分钟~120分钟后,关闭稀释氢气、载气氢气和甲基三氯硅烷;同时断电降温,使炉内自然冷却至室温,降温过程中依然保持炉内压力1kPa,且在降温过程中持续通入氩气保护。
进一步的,所述石墨基体试样是尺寸为20×10×5mm3的块状石墨材料。
进一步的,所述步骤一中,将石墨基体试样打磨抛光依次采用800号和1000号的砂纸进行。
进一步的,所述步骤三中,保持真空时当真空表无变化,则说明炉体不漏气,密封完好。
进一步的,所述步骤四中,所述沉积温度为1200℃~1300℃。
进一步的,所述步骤四中,稀释氩气、稀释氢气和载气氢气的流量分别为100~400sccm、1000~2000sccm和20~80sccm。
进一步的,所述步骤四中,升温和降温的过程中通入的氩气流量为100sccm。
进一步的,所述氢气和氩气纯度都大于99.99%。
进一步的,所述甲基三氯硅烷的纯度大于98%,并通过氢气鼓泡的方式将其带入立式气相沉积炉内。
有益效果:本发明竹节状SiC纳米线制备工艺简单,不需要预先合成工艺;沉积温度较低,降低了能耗和制备成本;制备的竹节状SiC纳米线纯度较高;可通过工艺参数的调节实现竹节状SiC纳米线的可控生长,易于实现工业生产,解决了现有技术中竹节状SiC纳米线制备工艺较为复杂、合成温度高、能耗大、成本高、产物难以控制的问题。
附图说明
图1是本发明中实施例2所制备的竹节状SiC纳米线的扫描电镜照片;
图2是本发明中实施例2所制备的竹节状SiC纳米线的透射电镜照片。
具体实施方式
下面结合实施例对本发明作更进一步的说明。
实施例1
将块状石墨材料加工成20×10×5mm3的试样,依次用800号、1000号砂纸打磨后用蒸馏水超声洗涤干净,于120℃烘箱中烘干后,作为沉积基体。
用一束碳纤维将烘干后的石墨试样捆扎后悬挂于立式化学气相沉积炉沉积区域中。将沉积炉抽真空至1kPa,保真空30分钟确定沉积炉密封性能完好后,再打开真空泵控制压力在1kPa。然后以10℃/min的速率将沉积炉升温至1200℃,升温过程中以100sccm的流量向沉积炉中通氩气。到温后,向装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,流量为20sccm,将反应气源甲基三氯硅烷带入炉堂内,同时调节稀释氩气及稀释氢气流量分别为200sccm和2000sccm,进入反应恒温区反应60分钟后关闭稀释氢气、载气氢气和反应气源,同时断电降温,使炉膛自然冷却至室温,此过程中不关闭真空泵,炉内压力依然保持1kPa且以100sccm的流量通氩气保护。
经过以上过程制备完成取出试样后,在试样表面得到少量淡绿色产物,即为竹节状SiC纳米线。
实施例2
将块状石墨材料加工成20×10×5mm3的试样,依次用800号、1000号砂纸打磨后用蒸馏水超声洗涤干净,于120℃烘箱中烘干后,作为沉积基体。
用一束碳纤维将烘干后的石墨试样捆扎后悬挂于立式化学气相沉积炉沉积区域中。将沉积炉抽真空至1kPa,保真空30分钟确定沉积炉密封性能完好,再打开真空泵持续抽真空保持炉内压力为1kPa。然后以10℃/min的速率将沉积炉升温至1300℃,升温过程中以100sccm的流量向沉积炉中通氩气。到温后,向装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,流量为50sccm,将反应气源甲基三氯硅烷带入炉堂内,同时调节稀释氩气及稀释氢气流量分别为300sccm和1500sccm,进入反应恒温区反应120分钟后关闭稀释氢气、载气氢气和反应气源,同时断电降温,使炉膛自然冷却至室温,此过程中不关闭真空泵,炉内压力依然保持1kPa且以100sccm的流量通氩气保护。
经过以上过程制备完成取出试样后,在试样表面得到大量淡绿色产物,即为竹节状SiC纳米线。由图1可见,在石墨基体上覆盖了大量的高纯SiC纳米线所得SiC纳米线粗细均匀,直径在50-100nm之间,长度可达数百微米。由图2可见,所得SiC纳米的表面形貌类似于竹节状。
实施例3
将块状石墨材料加工成20×10×5mm3的试样,依次用800号、1000号砂纸打磨后用蒸馏水超声洗涤干净,于120℃烘箱中烘干后,作为沉积基体。
用一束碳纤维将烘干后的石墨试样捆扎后悬挂于立式化学气相沉积炉沉积区域中。将沉积炉抽真空至1kPa,保真空30分钟确定沉积炉密封性能完好,再打开真空泵持续抽真空保持炉内压力在1kPa。然后以10℃/min的速率将沉积炉升温至1250℃,升温过程中以100sccm的流量向沉积炉中通氩气,到温后,向装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,流量为80sccm,将反应气源甲基三氯硅烷带入炉堂内,同时调节稀释氩气及稀释氢气流量分别为400sccm和2000sccm,进入反应恒温区反应120分钟后关闭稀释氢气、载气氢气和反应气源,同时断电降温,使炉膛自然冷却至室温,此过程中不关闭真空泵,炉内压力依然保持1kPa且以100sccm的流量通氩气保护。
实施例4
将块状石墨材料加工成20×10×5mm3的试样,依次用800号、1000号砂纸打磨后用蒸馏水超声洗涤干净,于120℃烘箱中烘干后,作为沉积基体。
用一束碳纤维将烘干后的石墨试样捆扎后悬挂于立式化学气相沉积炉沉积区域中。将沉积炉抽真空至1kPa,保真空30分钟确定沉积炉密封性能完好,再打开真空泵持续抽真空保持炉内压力在1kPa。然后以10℃/min的速率将沉积炉升温至1280℃,升温过程中以100sccm的流量向沉积炉中通氩气,到温后,向装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,流量为80sccm,将反应气源甲基三氯硅烷带入炉堂内,同时调节稀释氩气及稀释氢气流量分别为100sccm和1000sccm,进入反应恒温区反应30分钟后关闭稀释氢气、载气氢气和反应气源,同时断电降温,使炉膛自然冷却至室温,此过程中不关闭真空泵,炉内压力依然保持1kPa且以100sccm的流量通氩气保护。
经过以上过程制备完成取出试样后,在试样表面得到少量淡绿色产物,即为竹节状SiC纳米线。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (9)
1.一种制备竹节状SiC纳米线的方法,其特征在于,包括以下步骤:
步骤一、将石墨基体试样打磨抛光后用蒸馏水洗涤干净,再置于烘箱中烘干后取出备用;
步骤二、用一束碳纤维将处理过的石墨基体试样捆绑后,悬挂于立式气相沉积炉中;
步骤三、将立式气相沉积炉抽真空至1kPa保持真空30分钟,确定炉体不漏气后,再打开真空泵持续抽真空,保持炉内压力为1kPa;
步骤四、通电升温,升温过程中通入氩气保护,当炉温升到预定的沉积温度后,在装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,再将甲基三氯硅烷带入炉内,同时通入稀释氩气、稀释氢气;并调节稀释氩气、稀释氢气和载气氢气的流量值,在预定的沉积温度下沉积30分钟~120分钟后,关闭稀释氢气、载气氢气和甲基三氯硅烷;同时断电降温,使炉内自然冷却至室温,降温过程中依然保持炉内压力1kPa,且在降温过程中持续通入氩气保护。
2.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述石墨基体试样是尺寸为20×10×5mm3的块状石墨材料。
3.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述步骤一中,将石墨基体试样打磨抛光依次采用800号和1000号的砂纸进行。
4.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述步骤三中,保持真空时当真空表无变化,则说明炉体不漏气,密封完好。
5.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述步骤四中,所述沉积温度为1200℃~1300℃。
6.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述步骤四中,稀释氩气、稀释氢气和载气氢气的流量分别为100~400sccm、1000~2000sccm和20~80sccm。
7.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述步骤四中,升温和降温的过程中通入的氩气流量为100sccm。
8.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述氢气和氩气纯度都大于99.99%。
9.根据权利要求1所述的制备竹节状SiC纳米线的方法,其特征在于:所述甲基三氯硅烷的纯度大于98%,并通过氢气鼓泡的方式将其带入立式气相沉积炉内。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610028462.3A CN105483645B (zh) | 2016-01-18 | 2016-01-18 | 一种制备竹节状SiC纳米线的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610028462.3A CN105483645B (zh) | 2016-01-18 | 2016-01-18 | 一种制备竹节状SiC纳米线的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105483645A true CN105483645A (zh) | 2016-04-13 |
CN105483645B CN105483645B (zh) | 2018-02-02 |
Family
ID=55670907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610028462.3A Expired - Fee Related CN105483645B (zh) | 2016-01-18 | 2016-01-18 | 一种制备竹节状SiC纳米线的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105483645B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106631085A (zh) * | 2016-12-26 | 2017-05-10 | 西北工业大学 | 采用溶胶‑凝胶+碳热还原技术原位合成手链状Al4C3纳米线的制备方法 |
CN109607541A (zh) * | 2019-01-07 | 2019-04-12 | 南京航空航天大学 | 一种竹节状SiC纳米线及其制备方法 |
CN114276163A (zh) * | 2022-01-25 | 2022-04-05 | 西安交通大学 | 一种耐高温的轻质高强多孔陶瓷及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1834287A (zh) * | 2005-03-18 | 2006-09-20 | 西北工业大学 | 碳/碳复合材料表面碳化硅纳米线的制备方法 |
-
2016
- 2016-01-18 CN CN201610028462.3A patent/CN105483645B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1834287A (zh) * | 2005-03-18 | 2006-09-20 | 西北工业大学 | 碳/碳复合材料表面碳化硅纳米线的制备方法 |
Non-Patent Citations (4)
Title |
---|
付前刚等: "沉积位置对化学气相沉积SiC涂层微观组织的影响", 《西安交通大学学报》 * |
张玉龙等: "《先进复合材料制造技术手册》", 30 June 2003, 机械工业出版社 * |
李军等: "C/C复合材料表面原位生长SiCw的工艺", 《中国有色金属学报》 * |
葛毅成等: "C/C复合材料表面无催化剂CVD制备SiC纳米线的结构表征(英文)", 《TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106631085A (zh) * | 2016-12-26 | 2017-05-10 | 西北工业大学 | 采用溶胶‑凝胶+碳热还原技术原位合成手链状Al4C3纳米线的制备方法 |
CN106631085B (zh) * | 2016-12-26 | 2019-08-09 | 西北工业大学 | 采用溶胶-凝胶+碳热还原技术原位合成手链状Al4C3纳米线的制备方法 |
CN109607541A (zh) * | 2019-01-07 | 2019-04-12 | 南京航空航天大学 | 一种竹节状SiC纳米线及其制备方法 |
CN114276163A (zh) * | 2022-01-25 | 2022-04-05 | 西安交通大学 | 一种耐高温的轻质高强多孔陶瓷及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105483645B (zh) | 2018-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105506579B (zh) | 一种石墨烯包覆碳化硅纳米线的制备方法 | |
CN103773985B (zh) | 一种高效原位制备石墨烯增强铜基复合材料的方法 | |
CN102634868B (zh) | 一种具有氮化硼结构表层的碳化硅纤维的制备方法 | |
CN103911596B (zh) | 一种制备金刚石膜的装置及使用该装置制备金刚石膜的方法 | |
CN106431498B (zh) | 一种制备石墨/碳化硅致密复合材料的方法 | |
CN102277560B (zh) | 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法 | |
CN105541412A (zh) | 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法 | |
CN102126859A (zh) | 一种制备竹节状SiC纳米线增韧HfC陶瓷的方法 | |
CN104775103B (zh) | ZrC涂层的制备方法 | |
CN105483645B (zh) | 一种制备竹节状SiC纳米线的方法 | |
CN105039928B (zh) | 一种金刚石/碳化硅三维复合结构的制备方法及其制备的产品 | |
CN106517165B (zh) | 一种在6H/4H-SiC硅面上用金属辅助内外碳源结合方式生长石墨烯的方法 | |
CN105986247B (zh) | 一种金刚石表面镀膜的流化床装置和方法以及使用该方法制备的产品 | |
CN105463403B (zh) | 一种陶瓷基复合材料氮化硼界面涂层的制备方法 | |
CN104098346A (zh) | 一种基体表面金黄色氮化锆涂层的制备方法 | |
CN102978706A (zh) | 一种SiC晶须的制备方法 | |
CN1834287A (zh) | 碳/碳复合材料表面碳化硅纳米线的制备方法 | |
CN102304701A (zh) | 一种碳化硅薄膜的制备方法 | |
CN115637419A (zh) | 一种钽-碳化钽复合涂层的制备方法及其制品 | |
CN103757603B (zh) | 一种二硼化锆涂层的制备方法 | |
CN104609406B (zh) | 一种常压二段过程催化固体碳源合成石墨烯的方法 | |
CN105648417B (zh) | 一种利用低温化学气相沉积技术制备非晶碳薄膜的方法 | |
CN102618841B (zh) | 一种硼掺杂玻璃炭材料及其制备方法 | |
JP4736076B2 (ja) | SiC膜被覆ガラス状炭素材およびその製造方法 | |
CN212609576U (zh) | 一种基板式碳纳米管制备设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180202 |