CN105464634A - Method for exploiting methane hydrate by using stored carbon dioxide - Google Patents
Method for exploiting methane hydrate by using stored carbon dioxide Download PDFInfo
- Publication number
- CN105464634A CN105464634A CN201510933048.2A CN201510933048A CN105464634A CN 105464634 A CN105464634 A CN 105464634A CN 201510933048 A CN201510933048 A CN 201510933048A CN 105464634 A CN105464634 A CN 105464634A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- methane hydrate
- methane
- soil layer
- hydrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0099—Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
本发明提供了一种利用埋存二氧化碳开采甲烷水合物的方法,包括如下步骤:选择海床下适宜深度的甲烷水合物土层,再根据地质信息架设由海洋平台连通至甲烷水合物土层的二氧化碳注入井;向二氧化碳注入井内注入液态二氧化碳,液态二氧化碳在甲烷水合物土层内扩散和渗流后,与甲烷水合物产生置换而产生甲烷气体;根据二氧化碳与甲烷水合物的置换效率,确定开采时间,然后在二氧化碳注入井的置换范围内架设通向甲烷水合物土层的甲烷开采井,实现甲烷气体的开采。本发明将二氧化碳注入埋存后,二氧化碳在渗流过程中会置换这些区域的甲烷水合物,这个过程中地层的力学特性变化小,可避免甲烷水合物抽气开采引起的地质灾害,同时降低温室气体。
The invention provides a method for exploiting methane hydrate by storing carbon dioxide, which includes the following steps: selecting a methane hydrate soil layer with a suitable depth under the seabed, and then erecting a carbon dioxide mine connected to the methane hydrate soil layer from an ocean platform according to geological information. Injection well; inject liquid carbon dioxide into the carbon dioxide injection well. After the liquid carbon dioxide diffuses and percolates in the methane hydrate soil layer, it will be replaced with methane hydrate to generate methane gas; the production time will be determined according to the replacement efficiency of carbon dioxide and methane hydrate. Then erect a methane production well leading to the methane hydrate soil layer within the replacement range of the carbon dioxide injection well to realize the production of methane gas. After the carbon dioxide is injected and stored in the present invention, the carbon dioxide will replace the methane hydrate in these areas during the seepage process. During this process, the mechanical properties of the formation change little, which can avoid geological disasters caused by methane hydrate pumping and mining, and reduce greenhouse gases at the same time. .
Description
技术领域technical field
本发明涉及深海资源开采领域,特别是涉及一种通过向海底甲烷水合物土层埋存二氧化碳以置换可开采的甲烷气体的方法。The invention relates to the field of deep-sea resource exploitation, in particular to a method for replacing recoverable methane gas by storing carbon dioxide in seabed methane hydrate soil layers.
背景技术Background technique
目前开采海下甲烷水合物土层中甲烷气体的油气井降压开采方式和加热开采方式,经美国、日本和加拿大等国际甲烷水合物试验性开采证实其效率既不能满足商业化开采需求,又会引起对人类不利的地质与环境效应。因此,需要提出新的甲烷水合物的经济、安全开采技术,为甲烷水合物的商业化利用提供技术储备。At present, the oil and gas well depressurization mining method and heating mining method for exploiting methane gas in the subsea methane hydrate soil layer have been proved by the international methane hydrate experimental mining in the United States, Japan and Canada, and their efficiency can neither meet the needs of commercial exploitation nor meet the needs of commercial exploitation. It will cause geological and environmental effects that are unfavorable to humans. Therefore, it is necessary to propose a new economical and safe mining technology for methane hydrate, so as to provide technical reserves for the commercial utilization of methane hydrate.
发明内容Contents of the invention
本发明的目的是要提供一种开采海床下水合物层中甲烷气体的方法,以避免直接开采方式对地质造成破坏。The purpose of the present invention is to provide a method for exploiting the methane gas in the hydrate layer under the seabed, so as to avoid the geological damage caused by direct exploitation.
特别地,本发明提供一种利用埋存二氧化碳开采甲烷水合物的方法,包括如下步骤:In particular, the present invention provides a method for exploiting methane hydrate by storing carbon dioxide, comprising the following steps:
步骤101,选择海床下适宜深度的甲烷水合物土层,再根据地质信息架设由海洋平台连通至甲烷水合物土层的二氧化碳注入井;Step 101, selecting a methane hydrate soil layer at a suitable depth under the seabed, and erecting a carbon dioxide injection well connected from the offshore platform to the methane hydrate soil layer according to geological information;
步骤102,向二氧化碳注入井内注入液态二氧化碳,液态二氧化碳在甲烷水合物土层内扩散和渗流后,与甲烷水合物产生置换而产生甲烷气体;Step 102, inject liquid carbon dioxide into the carbon dioxide injection well, and after the liquid carbon dioxide diffuses and percolates in the methane hydrate soil layer, it replaces with the methane hydrate to generate methane gas;
步骤103,根据二氧化碳与甲烷水合物的置换效率,确定开采时间,然后在二氧化碳注入井的置换范围内架设通向甲烷水合物土层的甲烷开采井,实现甲烷气体的开采。Step 103, according to the replacement efficiency of carbon dioxide and methane hydrate, determine the production time, and then set up a methane production well leading to the methane hydrate soil layer within the replacement range of the carbon dioxide injection well, so as to realize the production of methane gas.
进一步地,在所述二氧化碳注入井的底端设置沿水平方向延伸的水平井。Further, a horizontal well extending horizontally is arranged at the bottom of the carbon dioxide injection well.
进一步地,所述水平井位于所述甲烷水合物土层的底部,且在井身上设置有多个方便二氧化碳向外部扩散和渗流的贯穿孔。Further, the horizontal well is located at the bottom of the methane hydrate soil layer, and a plurality of through holes are provided on the wellbore to facilitate the diffusion and seepage of carbon dioxide to the outside.
进一步地,所述甲烷水合物土层处的海水深度至少大于800米。Further, the seawater depth at the methane hydrate soil layer is at least greater than 800 meters.
进一步地,所述地质信息包括所述甲烷水合物土层的甲烷水合物含量、渗透率、含水率、孔隙度、力学刚度与强度、孔隙液体压力与温度参数。Further, the geological information includes methane hydrate content, permeability, water content, porosity, mechanical stiffness and strength, pore liquid pressure and temperature parameters of the methane hydrate soil layer.
进一步地,在架设所述二氧化碳注入井时,根据所述地质信息确定二氧化碳注入速度、注入时间、注入压力和注入温度。Further, when erecting the carbon dioxide injection well, the carbon dioxide injection rate, injection time, injection pressure and injection temperature are determined according to the geological information.
进一步地,二氧化碳的注入量Q采用下式确定:Further, the injection quantity Q of carbon dioxide is determined by the following formula:
Q=π·x2·L/2Q=π·x 2 ·L/2
其中,L为水平井的长度,x为二氧化碳注入井的长度。Among them, L is the length of the horizontal well, and x is the length of the carbon dioxide injection well.
进一步地,所述二氧化碳注入井的长度x采用下式确定:Further, the length x of the carbon dioxide injection well is determined by the following formula:
其中,ke为甲烷水合物土层渗透率、φe为甲烷水合物土层孔隙度、μ为二氧化碳粘度系数、ct为地层可压缩系数,t为二氧化碳注入时间。Among them, k e is the permeability of methane hydrate soil layer, φ e is the porosity of methane hydrate soil layer, μ is the viscosity coefficient of carbon dioxide, c t is the compressibility coefficient of formation, and t is the injection time of carbon dioxide.
进一步地,所述步骤103中,在开采甲烷气体过程中,需要根据二氧化碳与甲烷水合物的置换情况,确定二氧化碳在甲烷水合物土层的渗透率,进而调整二氧化碳的注入量,以平衡甲烷气体的开采速度和生成速度,二氧化碳在所述甲烷水合物土层的渗透率kec采用下式计算:Further, in step 103, in the process of exploiting methane gas, it is necessary to determine the permeability of carbon dioxide in the methane hydrate soil layer according to the replacement of carbon dioxide and methane hydrate, and then adjust the injection amount of carbon dioxide to balance the methane gas The production rate and production rate of the carbon dioxide gas in the methane hydrate soil layer are calculated using the following formula:
其中,ke为甲烷水合物土层渗透率,ΔSh为水合物饱和度的变化值,Sh为水合物饱和度,N为水合物土层渗透率随水合物饱和度增加的下降指数。Among them, k e is the permeability of methane hydrate soil layer, ΔS h is the change value of hydrate saturation, Sh is the hydrate saturation, and N is the decrease index of hydrate soil permeability with the increase of hydrate saturation.
进一步地,所述甲烷水合物土层被二氧化碳置换后的有效孔隙率采用下式计算:Further, the effective porosity of the methane hydrate soil layer after being replaced by carbon dioxide Calculated using the following formula:
其中,φe为甲烷水合物土层孔隙度。Among them, φe is the porosity of methane hydrate soil layer.
本发明将二氧化碳注入埋存后,通过几十年在水合物地层中渗流一定范围,二氧化碳在渗流过程中会置换这些区域的甲烷水合物,从而获得游离状态的甲烷气体,在积存几十年后即可直接进行甲烷气体开采,这个过程中地层的力学特性变化小,可避免甲烷水合物抽气开采引起的地质灾害,同时降低温室气体。In the present invention, after the carbon dioxide is injected and stored, it will seep in a certain range in the hydrate formation for decades, and the carbon dioxide will replace the methane hydrate in these areas during the seepage process, thereby obtaining methane gas in a free state. After decades of accumulation Methane gas mining can be carried out directly. During this process, the mechanical properties of the formation change little, which can avoid geological disasters caused by methane hydrate pumping and mining, and reduce greenhouse gases at the same time.
附图说明Description of drawings
图1是根据本发明一个实施例的方法流程示意图;Fig. 1 is a schematic flow chart of a method according to an embodiment of the present invention;
图2是根据本发明一个实施例的二氧化碳注入和开采示意图;Fig. 2 is a schematic diagram of carbon dioxide injection and extraction according to an embodiment of the present invention;
图中:10-海水层、20-上覆土层、30-水合物层、40-二氧化碳注入井、50-甲烷开采井、60-水平井、61-贯穿孔。In the figure: 10-seawater layer, 20-overlying soil layer, 30-hydrate layer, 40-carbon dioxide injection well, 50-methane production well, 60-horizontal well, 61-through hole.
具体实施方式detailed description
如图1所示,本发明一个实施例公开一种利用埋存二氧化碳开采甲烷水合物的方法实施过程。在海水层10下面的土壤一般分为上层的上覆土层20,和下层的水合物层20,该水合物层会因为含不同矿物质而形成相应的水合物层,如甲烷水合物层。本实施例是采用置换的方式将甲烷水合物中的甲烷变成气体,再进行开采,从而减少对地质的损害。该方法一般包括如下步骤:As shown in FIG. 1 , an embodiment of the present invention discloses an implementation process of a method for exploiting methane hydrate by storing carbon dioxide. The soil below the seawater layer 10 is generally divided into an upper overlying soil layer 20 and a lower hydrate layer 20, and the hydrate layer will form a corresponding hydrate layer, such as a methane hydrate layer, because it contains different minerals. In this embodiment, the methane in the methane hydrate is converted into gas by means of replacement, and then exploited, thereby reducing the damage to the geology. The method generally includes the following steps:
步骤101,选择海床下适宜深度的甲烷水合物土层,再根据地质信息架设由海洋平台连通至甲烷水合物土层的二氧化碳注入井;Step 101, selecting a methane hydrate soil layer at a suitable depth under the seabed, and erecting a carbon dioxide injection well connected from the offshore platform to the methane hydrate soil layer according to geological information;
在本实施例中,该甲烷水合物土层处的海水层10深度一般大于800米。在架设二氧化碳注入井40前,先根据地球物理勘探、地质钻探资料来获取当前甲烷水合物土层的甲烷水合物含量、渗透率、含水率、孔隙度、力学刚度与强度、孔隙液体压力与温度参数等地质信息。In this embodiment, the depth of the seawater layer 10 at the methane hydrate soil layer is generally greater than 800 meters. Before setting up the carbon dioxide injection well 40, first obtain the methane hydrate content, permeability, water content, porosity, mechanical stiffness and strength, pore liquid pressure and temperature of the current methane hydrate soil layer according to geophysical exploration and geological drilling data parameters and other geological information.
为提高二氧化碳的置换效果,可以在二氧化碳注入井40的底端设置沿甲烷水合物层水平方向延伸的水平井60,水平井60用于垂直连接二氧化碳注入井40,以将注入的二氧化碳传递到更远的地方。水平井60的位置可以处于甲烷水合物层的最底部,以方便二氧化碳向上方扩散。进一步地,为加快二氧化碳的排放速度,可以在水平井60的井身上设置多个朝向不同方向的贯穿孔61。In order to improve the replacement effect of carbon dioxide, a horizontal well 60 extending horizontally along the methane hydrate layer can be arranged at the bottom of the carbon dioxide injection well 40, and the horizontal well 60 is used to vertically connect the carbon dioxide injection well 40 to transfer the injected carbon dioxide to a further far away. The horizontal well 60 may be located at the bottom of the methane hydrate layer to facilitate the upward diffusion of carbon dioxide. Further, in order to speed up the discharge rate of carbon dioxide, a plurality of through holes 61 facing different directions may be arranged on the wellbore of the horizontal well 60 .
其中,二氧化碳的注入量Q采用下式确定:Among them, the injection quantity Q of carbon dioxide is determined by the following formula:
Q=π·x2·L/2Q=π·x 2 ·L/2
式中,L为水平井60的长度,x为二氧化碳注入井40的长度。In the formula, L is the length of the horizontal well 60, and x is the length of the carbon dioxide injection well 40.
二氧化碳注入井40的长度x采用下式确定:The length x of the carbon dioxide injection well 40 is determined by the following formula:
式中,ke为甲烷水合物土层渗透率、φe为甲烷水合物土层孔隙度、μ为二氧化碳粘度系数、ct为地层可压缩系数,t为二氧化碳注入时间。In the formula, k e is the permeability of methane hydrate soil layer, φ e is the porosity of methane hydrate soil layer, μ is the viscosity coefficient of carbon dioxide, c t is the formation compressibility coefficient, and t is the injection time of carbon dioxide.
在上述地质信息的基础上确定架设的二氧化碳注入井40的二氧化碳注入速度,注入时间长短,以及注入压力和注入温度等参数。On the basis of the above geological information, the carbon dioxide injection rate, injection time, injection pressure, injection temperature and other parameters of the erected carbon dioxide injection well 40 are determined.
步骤102,向二氧化碳注入井内注入液态二氧化碳,液态二氧化碳在甲烷水合物土层内扩散和渗流后,与甲烷水合物产生置换而产生甲烷气体。Step 102, inject liquid carbon dioxide into the carbon dioxide injection well, and after the liquid carbon dioxide diffuses and percolates in the methane hydrate soil layer, it replaces with the methane hydrate to generate methane gas.
二氧化碳进入甲烷水合物土层后,会与甲烷水合物中的甲烷发生置换,从而生成二氧化碳水合物,同时,置换后的甲烷以游离气态而储存在地层孔隙中。After carbon dioxide enters the methane hydrate soil layer, it will replace with methane in the methane hydrate to form carbon dioxide hydrate. At the same time, the replaced methane is stored in the pores of the formation in a free gas state.
步骤103,根据二氧化碳与甲烷水合物的置换效率,确定开采时间,然后在二氧化碳注入井的置换范围内架设通向甲烷水合物土层的甲烷开采井,实现甲烷气体的开采。Step 103, according to the replacement efficiency of carbon dioxide and methane hydrate, determine the production time, and then set up a methane production well leading to the methane hydrate soil layer within the replacement range of the carbon dioxide injection well, so as to realize the production of methane gas.
本步骤中的置换效率,需要根据二氧化碳的渗透率和置换效率等信息确定,再根据置换效率确定甲烷水合物土层中的甲烷生成量是否达到可供开采的标准。甲烷开采井50可以架设在以二氧化碳注入井40或水平井60形成的渗透范围边,以从外围收集被挤压的甲烷气体。可以根据地层监测信息显示的甲烷分布信息,架设多个分处不同位置处的甲烷开采井50。The replacement efficiency in this step needs to be determined based on information such as carbon dioxide permeability and replacement efficiency, and then determine whether the amount of methane generated in the methane hydrate soil layer meets the standard for exploitation according to the replacement efficiency. The methane recovery well 50 can be erected on the side of the permeable area formed by the carbon dioxide injection well 40 or the horizontal well 60 to collect the squeezed methane gas from the periphery. A plurality of methane production wells 50 at different locations can be erected according to the methane distribution information displayed by the formation monitoring information.
此外,在本步骤中,还需要考虑,随着二氧化碳的逐步渗透和置换,甲烷水合物土层的渗透率和孔隙率也会发生变化,因此二氧化碳注入速度和甲烷的开采速度也需要进行相应的调整。In addition, in this step, it is also necessary to consider that with the gradual infiltration and replacement of carbon dioxide, the permeability and porosity of the methane hydrate soil layer will also change, so the injection rate of carbon dioxide and the production rate of methane also need to be adjusted accordingly. Adjustment.
其中,二氧化碳在甲烷水合物土层的渗透率kec采用下式计算:Among them, the permeability k ec of carbon dioxide in the methane hydrate soil layer is calculated by the following formula:
式中,ΔSh为水合物饱和度的变化值,Sh为水合物饱和度,N为水合物土层渗透率随水合物饱和度增加的下降指数。In the formula, ΔS h is the change value of hydrate saturation, Sh is the hydrate saturation, and N is the decrease index of hydrate soil permeability with the increase of hydrate saturation.
甲烷水合物土层被二氧化碳置换后的有效孔隙率采用下式计算:Effective porosity of methane hydrate soil layers replaced by carbon dioxide Calculated using the following formula:
式中,ΔSh为水合物饱和度的变化值,Sh为水合物饱和度。In the formula, ΔS h is the change value of hydrate saturation, and Sh is the hydrate saturation.
根据本发明的方法:水平井60长度1000m,注入二氧化碳时间为20年,甲烷水合物土层水合物饱和度为50%,有效渗透率10-17m2为,有效孔隙度为20%,二氧化碳渗流前端距离井筒的长度约为160m,注入液态二氧化碳注入量约为8×107m6。以20年为例,二氧化碳渗流到的甲烷水合物土层中,二氧化碳将水合物中的甲烷置换出来,并生成二氧化碳水合物,那么地层中水合物有两种,一是置换后剩余的甲烷水合物,二是二氧化碳生成的水合物。通过监测地层中甲烷浓度沿着地层深度的分布,确定游离甲烷的浓度,在浓度达到开采经济性的指标后,选择开采层位,采用二氧化碳驱的方法,开采游离甲烷气。According to the method of the present invention: the length of the horizontal well 60 is 1000m, the injection time of carbon dioxide is 20 years, the hydrate saturation of the methane hydrate soil layer is 50%, the effective permeability is 10-17 m2 , the effective porosity is 20%, and the carbon dioxide The length of the seepage front from the wellbore is about 160m, and the injection volume of liquid carbon dioxide is about 8×10 7 m 6 . Taking 20 years as an example, carbon dioxide seeps into the methane hydrate soil layer, and carbon dioxide replaces the methane in the hydrate to form carbon dioxide hydrate. Then there are two types of hydrate in the formation, one is the hydration of the remaining methane after replacement The second is the hydrate formed by carbon dioxide. By monitoring the distribution of methane concentration in the formation along the depth of the formation, the concentration of free methane is determined. After the concentration reaches the index of mining economy, the mining layer is selected, and the method of carbon dioxide flooding is used to mine free methane gas.
在本发明中,在同一个甲烷水合物土层区域可以根据地质信息同时打多个二氧化碳注入井40。此外,一个二氧化碳注入井40也可以同时连接朝向不同方向的多个水平井60。In the present invention, multiple carbon dioxide injection wells 40 can be drilled simultaneously in the same methane hydrate soil zone according to geological information. In addition, one carbon dioxide injection well 40 can also be connected to multiple horizontal wells 60 facing different directions at the same time.
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。So far, those skilled in the art should appreciate that, although a number of exemplary embodiments of the present invention have been shown and described in detail herein, without departing from the spirit and scope of the present invention, the disclosed embodiments of the present invention can still be used. Many other variations or modifications consistent with the principles of the invention are directly identified or derived from the content. Accordingly, the scope of the present invention should be understood and deemed to cover all such other variations or modifications.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510933048.2A CN105464634A (en) | 2015-12-15 | 2015-12-15 | Method for exploiting methane hydrate by using stored carbon dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510933048.2A CN105464634A (en) | 2015-12-15 | 2015-12-15 | Method for exploiting methane hydrate by using stored carbon dioxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105464634A true CN105464634A (en) | 2016-04-06 |
Family
ID=55602741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510933048.2A Pending CN105464634A (en) | 2015-12-15 | 2015-12-15 | Method for exploiting methane hydrate by using stored carbon dioxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105464634A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106437653A (en) * | 2016-09-27 | 2017-02-22 | 大连理工大学 | Method for jointly exploiting hydrates and hermetically storing carbon dioxide by aid of quicklime and carbon dioxide injection processes |
CN106677745A (en) * | 2016-12-02 | 2017-05-17 | 中国石油大学(华东) | A process method combining natural gas hydrate depressurization exploitation and CO2 storage |
CN106896836A (en) * | 2017-01-09 | 2017-06-27 | 神华集团有限责任公司 | Control of injection pressure method and device |
CN107083943A (en) * | 2017-06-01 | 2017-08-22 | 中国石油大学(华东) | A kind of hot CO of segment level well2The method that the heterogeneous hydrate of exploitation of handling up is hidden |
CN108179996A (en) * | 2017-08-03 | 2018-06-19 | 中山大学 | A kind of method that liquid carbon dioxide replaces gas hydrates in situ |
CN108868706A (en) * | 2018-06-06 | 2018-11-23 | 中国矿业大学 | Directional drilling supercritical carbon dioxide fracturing replacement exploitation of gas hydrate method |
CN111022000A (en) * | 2019-03-04 | 2020-04-17 | 深圳市弘毅海洋智能装备有限公司 | Combustible ice mining method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100163246A1 (en) * | 2008-12-31 | 2010-07-01 | Chevron U.S.A. Inc. | Method and system for producing hydrocarbons from a hydrate reservoir using a sweep gas |
US20120012321A1 (en) * | 2009-02-04 | 2012-01-19 | Leibniz-Institut Fuer Meereswissenschaften | Method for Producing Natural Gas from Hydrocarbon Hydrates While Simultaneously Storing Carbon Dioxide in Geological Formations |
CN102337895A (en) * | 2010-07-22 | 2012-02-01 | 中国石油天然气股份有限公司 | Method and device for exploiting marine natural gas hydrate |
CN102720473A (en) * | 2011-03-31 | 2012-10-10 | 中联煤层气有限责任公司 | Method for exploiting coal bed gas |
CN103174407A (en) * | 2013-03-19 | 2013-06-26 | 中国石油天然气股份有限公司 | CO2Method for replacing methane in stratum natural gas hydrate by natural gas replacement emulsion |
CN103216219A (en) * | 2013-05-01 | 2013-07-24 | 吉林大学 | A CO2/N2 Underground Replacement Method for Exploiting Natural Gas Hydrate |
CN103982165A (en) * | 2014-05-21 | 2014-08-13 | 中国石油大学(北京) | A Method for Exploiting Natural Gas Hydrate Using Mixed Gas of CO2 and H2 |
-
2015
- 2015-12-15 CN CN201510933048.2A patent/CN105464634A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100163246A1 (en) * | 2008-12-31 | 2010-07-01 | Chevron U.S.A. Inc. | Method and system for producing hydrocarbons from a hydrate reservoir using a sweep gas |
US20120012321A1 (en) * | 2009-02-04 | 2012-01-19 | Leibniz-Institut Fuer Meereswissenschaften | Method for Producing Natural Gas from Hydrocarbon Hydrates While Simultaneously Storing Carbon Dioxide in Geological Formations |
CN102337895A (en) * | 2010-07-22 | 2012-02-01 | 中国石油天然气股份有限公司 | Method and device for exploiting marine natural gas hydrate |
CN102720473A (en) * | 2011-03-31 | 2012-10-10 | 中联煤层气有限责任公司 | Method for exploiting coal bed gas |
CN103174407A (en) * | 2013-03-19 | 2013-06-26 | 中国石油天然气股份有限公司 | CO2Method for replacing methane in stratum natural gas hydrate by natural gas replacement emulsion |
CN103216219A (en) * | 2013-05-01 | 2013-07-24 | 吉林大学 | A CO2/N2 Underground Replacement Method for Exploiting Natural Gas Hydrate |
CN103982165A (en) * | 2014-05-21 | 2014-08-13 | 中国石油大学(北京) | A Method for Exploiting Natural Gas Hydrate Using Mixed Gas of CO2 and H2 |
Non-Patent Citations (1)
Title |
---|
李实 等: "含水合物沉积物力学性质: 方法、特性与定量关系", 《地质科技情报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106437653A (en) * | 2016-09-27 | 2017-02-22 | 大连理工大学 | Method for jointly exploiting hydrates and hermetically storing carbon dioxide by aid of quicklime and carbon dioxide injection processes |
CN106437653B (en) * | 2016-09-27 | 2018-07-20 | 大连理工大学 | A kind of hydrate exploitation and the carbon dioxide sequestration integrated processes of note quick lime and carbon dioxide process |
CN106677745A (en) * | 2016-12-02 | 2017-05-17 | 中国石油大学(华东) | A process method combining natural gas hydrate depressurization exploitation and CO2 storage |
CN106677745B (en) * | 2016-12-02 | 2018-10-12 | 中国石油大学(华东) | A kind of gas hydrates decompression exploitation and CO2Bury the process of combination |
CN106896836A (en) * | 2017-01-09 | 2017-06-27 | 神华集团有限责任公司 | Control of injection pressure method and device |
CN107083943A (en) * | 2017-06-01 | 2017-08-22 | 中国石油大学(华东) | A kind of hot CO of segment level well2The method that the heterogeneous hydrate of exploitation of handling up is hidden |
CN107083943B (en) * | 2017-06-01 | 2019-10-18 | 中国石油大学(华东) | A method for exploiting heterogeneous gas hydrate reservoirs with thermal CO2 huff and puff in segmented horizontal wells |
CN108179996A (en) * | 2017-08-03 | 2018-06-19 | 中山大学 | A kind of method that liquid carbon dioxide replaces gas hydrates in situ |
CN108868706A (en) * | 2018-06-06 | 2018-11-23 | 中国矿业大学 | Directional drilling supercritical carbon dioxide fracturing replacement exploitation of gas hydrate method |
CN111022000A (en) * | 2019-03-04 | 2020-04-17 | 深圳市弘毅海洋智能装备有限公司 | Combustible ice mining method |
CN111022000B (en) * | 2019-03-04 | 2022-01-07 | 深圳市弘毅海洋智能装备有限公司 | Combustible ice mining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105464634A (en) | Method for exploiting methane hydrate by using stored carbon dioxide | |
CA2729807C (en) | Methods for downhole sequestration of carbon dioxide | |
EP2109584B1 (en) | Method for reducing the emission of green house gases into the atmosphere | |
CN104481520A (en) | Early evaluation method of recoverable reserves of shale gas wells | |
CN104295292B (en) | Multiple superposed coalbed methane system recovery well method for designing | |
CN111749658B (en) | Carbon dioxide huff and puff oil production method and device | |
Yanze et al. | The role of diffusion for nonequilibrium gas injection into a fractured reservoir | |
CN106368694B (en) | One kind develops for complicated field reservoir pore space and restores and physical property prediction technique | |
CN105041277B (en) | A kind of method for characterizing fracture-pore reservoir waterflooding behavior effect | |
Saeedi et al. | Effect of residual natural gas saturation on multiphase flow behaviour during CO2 geo-sequestration in depleted natural gas reservoirs | |
CN106545336A (en) | Consider the Productivity of tight gas reservoir seepage flow mechanism | |
US10830019B1 (en) | Method for enhancing gas recovery of natural gas hydrate reservoir | |
CN103291265A (en) | Method for judging full profile control degree of water injection well | |
Wang et al. | Utilizing macroscopic areal permeability heterogeneity to enhance the effect of CO2 flooding in tight sandstone reservoirs in the Ordos Basin | |
CN104727790A (en) | Method for predicting period of re-enriching remaining oil of water flooding reservoir into new reservoir | |
CN111749688B (en) | A prediction method for the development horizon and direction of dominant seepage channels | |
RU2474676C1 (en) | Multiformation oil deposit development method | |
CN116502756B (en) | Method for calculating carbon dioxide theoretical maximum buried quantity of constant-volume closed oil reservoir | |
CN108446511A (en) | The reserve forecasting method of fracture-pore reservoir oil, water | |
RU2342523C2 (en) | Method of implementation of vertical water flooding of oil deposit | |
Akinnikawe et al. | Geologic model and fluid flow simulation of Woodbine aquifer CO2 sequestration | |
CN106869880B (en) | Sandstone reservoir acidification method | |
CN114562238A (en) | Top control and sand prevention exploitation method for deep sea natural gas hydrate | |
CN115807657B (en) | Method and device for determining residual oil distribution | |
Sazonov | Hydrodynamic simulation of reservoir fluids filtration at diverter technology conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160406 |